亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        微生物菌劑對廚余垃圾堆肥溫室氣體減排的影響

        2022-03-10 05:16:22陳文旭劉逸飛蔣思楠武澤月王騫旗李國學(xué)李彥明宮小燕
        農(nóng)業(yè)工程學(xué)報 2022年23期
        關(guān)鍵詞:堆體廚余菌劑

        陳文旭,劉逸飛,蔣思楠,武澤月,王騫旗,李國學(xué),李彥明,宮小燕

        微生物菌劑對廚余垃圾堆肥溫室氣體減排的影響

        陳文旭1,2,劉逸飛1,蔣思楠1,武澤月1,王騫旗1,李國學(xué)1,李彥明1,宮小燕1※

        (1. 中國農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院農(nóng)田土壤污染防控與修復(fù)北京市重點實驗室,北京 100193;2. 青島匯君環(huán)境能源工程有限公司,青島 266100)

        為對廚余垃圾堆肥過程中的溫室氣體進行減排,在60 L強制通風靜態(tài)堆肥裝置中進行為期35 d的廚余垃圾和園林廢棄物的聯(lián)合好氧堆肥試驗。在堆肥原料中分別添加復(fù)合微生物菌劑VT1000(VT)、枯草芽孢桿菌(BS)和地衣芽孢桿菌(BL)三種菌劑,并以不加菌劑的堆肥處理(CK)作為對照,監(jiān)測堆肥過程中的CH4和N2O排放,以研究不同微生物菌劑對于廚余垃圾堆肥溫室氣體排放的影響。結(jié)果表明:微生物菌劑的添加會加快堆體升溫和促進腐熟,同時能夠?qū)崿F(xiàn)不同程度的溫室氣體減排。堆肥過程中N2O的排放量在總溫室氣體二氧化碳排放當量中占比遠高于甲烷,達到總排放當量的76.83%~88.57%,排放高峰期分別出現(xiàn)在堆肥初期和腐熟期。各處理的總溫室氣體排放當量分別為95.84 kg/t(CK)、52.31 kg/t(VT)、42.03 kg/t(BS)和62.49 kg/t(BL)。與CK處理相比,BS處理的總溫室氣體的減排效果最好,減排率為56.15%,BL處理的減排率最低,為34.80%,VT處理減排率為45.42%。相較于CH4,菌劑對N2O的減排效果更好,可達35.32%~61.86%。結(jié)合堆肥過程的溫度及各腐熟度指標,該研究選取的微生物菌劑能夠在保證堆肥效率和產(chǎn)品質(zhì)量的前提下有效減少溫室氣體排放。

        好氧;堆肥;溫室氣體減排;微生物菌劑;廚余垃圾

        0 引 言

        廚余垃圾是指居民日常生活和學(xué)校、公司、餐館等單位供餐,以及餐廳服務(wù)等活動中產(chǎn)生的垃圾,在生活垃圾中占比達到49.4%~64.5%[1]。在中國垃圾分類政策推行以后,廚余垃圾與可回收垃圾、有害垃圾進行了分類投放,提高了廚余垃圾分類收集效率,為其高效處理提供可能。廚余垃圾具有高含水率和有機質(zhì)的特點,如未經(jīng)妥善處理,在自然環(huán)境下容易腐爛,會對環(huán)境造成嚴重污染。然而經(jīng)過妥善處理和加工,廚余垃圾可轉(zhuǎn)化為新的資源[2-3]。

        堆肥能夠?qū)N余垃圾在無害化、減量化的基礎(chǔ)上進行資源化利用,將有機廢棄物轉(zhuǎn)化為相對穩(wěn)定的產(chǎn)品,可用作肥料或土壤改良劑[4]。然而堆肥過程中的負面效應(yīng),如CO2、CH4、N2O等溫室氣體的排放,不但降低了堆肥產(chǎn)品的價值,同時也對環(huán)境造成二次污染[5]。溫室氣體的增加導(dǎo)致全球氣候變化,近年來,溫室效應(yīng)的加劇給各國造成了巨大經(jīng)濟損失。因此針對這一問題展開了一系列的研究,以減少對環(huán)境的污染。Yang等[6]發(fā)現(xiàn)添加玉米秸稈等輔料能夠有效減少廚余垃圾堆肥過程的溫室氣體排放,其他研究添加園林廢棄物作為輔料也得到了相似的結(jié)果[5,7]。此外,提高通風速率[7],進行蚯蚓輔助堆肥,添加腐熟堆肥[8-9]和使用化學(xué)添加劑[10]等方式也可對溫室氣體進行減排。堆肥過程是微生物對有機物進行降解和轉(zhuǎn)化、同時自身得到繁殖的生化過程,通過添加適宜的外源微生物,能夠在堆肥初期增加高效降解菌的數(shù)量,從而縮短堆肥時間、加速有機質(zhì)降解并提高堆肥產(chǎn)品中氮磷的含量,在堆肥中具有廣闊的應(yīng)用前景[11-13]。

        有研究表明,雖然CH4和N2O的排放規(guī)律仍有爭議,但其排放與功能微生物密切相關(guān),添加微生物可有效控制溫室氣體的排放。在CH4大量產(chǎn)生的堆肥前期, 接種菌劑可降低堆體中與甲烷產(chǎn)生相關(guān)的mcr A基因豐度, 而增加與甲烷消耗有關(guān)的pmo A基因豐度,從而減少甲烷的排放[14-16]。添加排硫硫桿菌()和硫磺可以減少雞糞堆肥中46.13%的N2O釋放量[17]。接種具有纖維素降解功能的復(fù)合微生物菌劑可以在牛糞堆肥中減少33%的CH4和45%的N2O釋放量[18]。微生物菌劑的添加不僅能提高堆肥效率,而且可以避免額外增加堆肥產(chǎn)品鹽度等其他化學(xué)添加劑可能產(chǎn)生的問題,具有很好的應(yīng)用潛力。垃圾分類政策實施之前,大多數(shù)的研究聚焦于糞便堆肥過程中的氣體減排。隨著全國各地垃圾分類不斷推進,廚余垃圾的分出量急劇增加,為其堆肥處理帶來了挑戰(zhàn),而微生物菌劑在此領(lǐng)域的溫室氣體減排效果也鮮有報道。

        基于此,本文以城市中收集的園林廢棄物(園林剪枝)作為輔料,對城市廚余垃圾進行好氧堆肥,通過分別添加多種微生物菌劑,以研究外源單一和復(fù)合微生物對堆肥過程中溫室氣體排放的影響,為廚余垃圾堆肥的污染氣體減排提供技術(shù)和理論支持。

        1 材料與方法

        1.1 堆肥原料、設(shè)備與方法

        試驗地點為中國農(nóng)業(yè)大學(xué)上莊試驗站,堆肥原料為廚余垃圾和園林剪枝。廚余垃圾于堆肥當天取自北京市馬家樓垃圾轉(zhuǎn)運站,經(jīng)人工分揀,去除金屬、玻璃、塑料等其他垃圾,得到廚余垃圾作為堆肥原料。園林剪枝取自美尚生態(tài)景觀股份有限公司的無錫生態(tài)景觀園林剪枝。微生物接種劑分別為復(fù)合微生物菌劑:VT,主要由芽孢桿菌、白腐菌、霉菌和酵母菌構(gòu)成,購于北京沃土天地生物科技股份有限公司;單一菌劑:枯草芽孢桿菌和地衣芽孢桿菌,廣西農(nóng)保生物工程有限公司。廚余垃圾和園林剪枝的理化指標見表1。

        表1 廚余垃圾和園林剪枝的理化性質(zhì)

        將廚余垃圾、園林剪枝及所用微生物菌劑混合均勻,裝入60 L堆肥發(fā)酵罐中,進行高溫好氧堆肥,發(fā)酵罐結(jié)構(gòu)見文獻[5]。廚余垃圾和園林剪枝的濕重比為85∶15,此時達到適宜的含水率(65%),微生物菌劑的添加量以廚余垃圾和園林廢棄物總干質(zhì)量比計,為1.5%。通風方式為機械強制間歇通風,每30 min通風15 min,通風速率控制在0.28 L/(min·kg)。試驗設(shè)置4個處理,分別添加復(fù)合菌劑(VT)、枯草芽孢桿菌(BS)和地衣芽孢桿菌(BL),以不添加菌劑的處理作為對照(CK)。

        1.2 測定項目與分析方法

        堆肥周期為35 d,堆體溫度由溫度傳感器測定,自動測溫儀(175-T3,Testo,德國)通過紅外裝置接收讀取數(shù)據(jù)。堆肥實驗開始后分別于第3、7、14、21、28天和35天翻堆并取混合新鮮樣品500 g,分成兩份。一份用于含水率的測定(105 ℃烘干);另一份用于水浸提液的制備(固液比1∶10),并使用多參數(shù)分析儀(DZS-706-A,雷磁,上海)測定 pH值和電導(dǎo)率值(EC)。取上述水浸提液5 mL于盛有10粒蘿卜種子并鋪有濾紙的培養(yǎng)皿中,置于(20±1)℃培養(yǎng)箱(SHP-250,精宏,上海)中避光培養(yǎng)48 h,測定種子發(fā)芽率指數(shù)(GI)。通過便攜式沼氣分析儀(Biogas 5000,Geotech,英國)于每天固定時間直接讀數(shù)測定CO2含量。此外,于每天固定時間使用鋁箔采氣袋在容器的排氣管收集氣體,通過安裝有火焰電離檢測器、電子捕獲檢測器的氣相色譜(SP-3420A,北京北分瑞利分析儀器有限責任公司,中國)測定CH4和N2O。

        1.3 數(shù)據(jù)處理

        所有試驗數(shù)值以均值表示,作圖采用 origin 2018 軟件完成;統(tǒng)計分析采用 Microsoft Excel 和 SPSS 20.0 軟件完成。

        2 結(jié)果與討論

        2.1 溫度和CO2含量變化趨勢

        溫度能夠反映堆體中的微生物代謝強度,當堆體溫度超過55 ℃時,堆肥進入高溫期。如圖1a所示,所有處理溫度變化呈現(xiàn)相似的趨勢,經(jīng)過了升溫、高溫、降溫和腐熟四個階段,高溫期(≥55 ℃)均能持續(xù)10 d以上,滿足超過5 d堆肥的安全衛(wèi)生學(xué)標準(NY/T 3442-2019)。VT和BL處理于堆肥開始第2天即進入高溫期,于第4天達到最高溫,分別為74.13 ℃和73.81 ℃,CK和BS處理均延遲一天進入高溫期,此后所有處理溫度逐漸降低,在28 d后溫度達到穩(wěn)定并伴有小幅波動。第7和14天翻堆后各處理溫度略有回升,這說明翻堆使堆體的疏松程度、均勻性和通氣效果得到改善,加速了微生物代謝速率,提高了產(chǎn)熱量[19]。此外,在第14天翻堆后,VT處理回溫最快且溫度最高,BS處理次之,而BL處理較CK處理慢,說明VT在提高堆肥升溫方面具有優(yōu)勢。CK處理在第2天進入高溫期,并在第4天溫度達到最高74 ℃,表明即使沒有外源微生物的加入,本文所選取原料的物料比也能夠獲得堆體快速升溫的效果。

        注:CK為不添加菌劑的處理,VT為添加VT1000的處理,BS為添加枯草芽孢桿菌的處理,BL為添加地衣芽孢桿菌的處理(下同)。

        溫度和CO2能夠反映堆肥過程中的微生物代謝活性和有機物降解速率,而CO2含量的變化則主要反映了有機物礦化速率,在整個堆肥過程中,溫度和CO2含量呈顯著正相關(guān)(=0.900,<0.01)。在堆肥初始階段,各處理尾氣的CO2含量迅速升高,其最高值均出現(xiàn)在第3~5天,處于11.3%~12.7%范圍內(nèi),表明此階段有機物的礦化過程非?;钴S,微生物代謝活動較為劇烈。此后CO2含量呈現(xiàn)出翻堆后小幅上升,整體為波動下降的趨勢并于第23天前后達到穩(wěn)定。

        2.2 基本腐熟度指標變化分析

        電導(dǎo)率(EC)是衡量堆肥含鹽量的重要參數(shù),當EC值過高時,抑制植物生長,當?shù)陀? mS/cm時,不會對植物產(chǎn)生不利影響[20]。堆肥過程EC值變化趨勢如圖2a所示,所有處理的初始EC值在1.88~2.28 mS/cm范圍內(nèi),堆肥初期各處理的EC均出現(xiàn)上升趨勢,這可能是由于大量小分子油價算和無機鹽物質(zhì)被微生物分解利用所致[21],到第3天達到最高,這與已報道的研究結(jié)果一致[22]。第3天后,各處理EC值有所回落,這是由于此階段已進入高溫期,有機質(zhì)的礦化作用使氨氣的揮發(fā)所致[23]。在第7~28天,EC值先出現(xiàn)了小幅上升,這可能是由于翻堆使物料再講解的過程中轉(zhuǎn)變成為更易溶解的無機鹽離子所致[24]。堆肥結(jié)束時所有處理穩(wěn)定在1.77~2.11 mS/cm范圍內(nèi),均未超過3.0 mS/cm,表明EC值在作物生長安全范圍之內(nèi)[21]。

        圖2 堆肥過程中堆肥腐熟度指標變化

        由于廚余垃圾的易腐特性,堆肥初始堆體積累少量有機酸,使pH值呈弱酸性,在5.38~5.76之間。隨著堆肥的進行,pH值持續(xù)升高,第7天達到最高。在此階段堆體持續(xù)升溫到達高溫期,微生物代謝活躍,有機酸經(jīng)礦化以二氧化碳的形式排出,同時氨態(tài)氮累積,導(dǎo)致堆體pH值持續(xù)升高[25-26]。此后,堆體中的有機物逐漸耗盡,pH值趨于穩(wěn)定,至堆肥結(jié)束時pH值在8.80~8.95之間,符合腐熟堆肥弱堿性的要求。

        種子發(fā)芽率指數(shù)(GI)作為檢驗堆肥產(chǎn)品是否具有生物毒性的重要指標,可以對堆肥腐熟度進行評價[27]。我國有機肥料標準(NY525-2021)規(guī)定,當GI≥70%時可認為堆體達到腐熟。由圖2c可知,各處理種子發(fā)芽率指數(shù)持續(xù)上升。堆肥初始各處理的GI值均接近0,表明堆肥原料對種子具有較大的毒害作用。隨著堆肥進行,微生物持續(xù)對有機物進行分解,轉(zhuǎn)化為穩(wěn)定的腐殖質(zhì),隨著對植物生長有毒害物質(zhì)的降解,堆體的GI值逐漸升高。BS處理在前期GI值最高且升高最快,于第14天即達到72.83%,達到腐熟標準,這表明三種菌劑中枯草芽孢桿菌在腐熟度方面較VT和地衣芽孢桿菌略有優(yōu)勢。CK、BL和VT處理雖腐熟較慢,但于第21天也均超過了70%,至堆肥結(jié)束時,5個處理的堆肥產(chǎn)品浸提液GI分別為117.13%(CK)、116.73%(VT)、124.02%(BS)和113.78%(BL),均達到堆肥產(chǎn)品的腐熟度要求。

        2.3 CH4排放規(guī)律

        CH4是有機質(zhì)厭氧降解的產(chǎn)物,主要由產(chǎn)甲烷菌轉(zhuǎn)化乙酸及氫氣和CO2生成[28]。不同處理的CH4排放特征如圖3所示,4個處理具有相似的排放規(guī)律,經(jīng)過較長的延遲期,在堆肥的降溫期呈現(xiàn)出先上升后下降的趨勢,這與陳輝等[29]的研究結(jié)果一致。堆肥升溫和高溫階段供氧充足,較高氧化還原電位抑制了產(chǎn)甲烷菌的活性。從排放速率來看,除BS處理外,其余4個處理的CH4排放量在前17天一直維持在較低水平。隨后,所有處理均出現(xiàn)排放高峰期(第18~24 d),這是由于翻堆后堆體出現(xiàn)了二次升溫,微生物代謝活躍,隨著高溫持續(xù)和有機質(zhì)降解造成了堆體局部厭氧,二氧化碳含量增加而氧氣含量降低(圖1b),從而促進了甲烷的排放[30]。王義祥等[31]表明添加微生物菌劑會提高堆肥過程中的CO2排放量,隨著后期堆體溫度的降低,CH4排放增加。VT和BS處理在高峰期的CH4排放量相對較低,而BL處理相對CK處理的CH4排放量較高,所有處理的最高峰值出現(xiàn)在第19 d,分別為4.38 mg/(kg·d)(CK)、2.80 mg/(kg·d)(VT)、2.71 mg/(kg·d)(BS)和4.96 mg/(kg·d)(BL)。堆肥結(jié)束時,CK處理的CH4累計排放量最高,為39.29 mg/(kg·d),VT處理累計釋放量最低,為31.87 mg/(kg·d),其余2個處理沒有較大差異。李舒清等[16]在使用復(fù)合菌劑對牛糞堆肥的CH4減排中也得到了類似的研究結(jié)果。

        圖3 堆肥過程CH4的排放特征

        4個處理的CH4累積排放量由高到低依次為CK、地衣芽孢桿菌、枯草芽孢桿菌、VT,結(jié)果表明VT的CH4減排效果最好,為18.89%。李旺旺等[32]通過在污泥堆肥中添加VT也實現(xiàn)了CH4的減排,他們表示可能是由于VT與土著產(chǎn)甲烷菌發(fā)生競爭從而抑制了CH4的排放。

        2.4 N2O排放規(guī)律

        堆肥中銨態(tài)氮的硝化反應(yīng)與硝態(tài)氮的反硝化過程均會產(chǎn)生N2O[28]。不同處理的N2O排放規(guī)律如圖4所示,與CH4不同的是,N2O的排放具有兩個高峰,第一個出現(xiàn)在堆肥初期,于第3天達到峰值,這與李丹陽等[33]的研究結(jié)果相似。此階段的高排放量主要是源于堆肥開始前物料堆積產(chǎn)生的硝態(tài)氮積累,隨著溫度的升高,反硝化作用使氧化亞氮開始排放[34],VT處理的排放量要高于其他處理,楊佳等[35]表明VT菌劑會通過加強反硝化作用增加N2O的產(chǎn)生量,這與本研究的結(jié)果一致。隨著堆體溫度的升高,N2O排放量迅速降低,這可能是由于高溫抑制了硝化細菌的活性,使得銨根離子無法通過硝化作用轉(zhuǎn)化所致[5]。在第一次排放高峰期,CK的氧化亞氮累積排放量達到30.00 mg/(kg·d),其余3個處理分別為54.73 mg/(kg·d)(VT)、26.83 mg/(kg·d)(BS)和30.09 mg/(kg·d)(BL)。隨著有機質(zhì)的降解,堆肥進入腐熟期,堆體溫度下降,對硝化細菌的抑制作用減弱,硝化作用增強,N2O排放再次增加,第28天出現(xiàn)了第二個高峰[36]。BS和VT處理的第二次排放峰值遠低于第一次,這與其他研究結(jié)果是相似的[37],而CK和BL處理在第二個高峰期排放量仍然較高,這表明添加地衣芽孢桿菌在堆肥后期對N2O的減排效果并不明顯,而枯草芽孢桿菌和VT或可對硝化作用產(chǎn)生抑制。堆肥結(jié)束時,BS處理的N2O累積排放量最低,為126.13 mg/(kg·d),VT和BL分別為167.96和213.94 mg/kg,CK最高,為330.78 mg/kg。王佳等[38]在同比例玉米秸稈添加的廚余垃圾堆肥中也得到了類似的排放量,這表明該試驗所選取的微生物菌劑確可對N2O進行減排。

        圖4 堆肥過程N2O的排放特征

        綜上,添加菌劑對N2O的減排作用體現(xiàn)在第二個排放高峰期,通過抑制硝化過程實現(xiàn)對N2O的減排。此外Guo等[39]研究發(fā)現(xiàn),在豬糞和麥秸混合堆肥中添加5%的巨大芽孢桿菌可以促進高溫期氨氧化細菌的生長、增加氨單加氧酶基因amoA的豐度、調(diào)節(jié)硝化和反硝化過程,從而減少N2O的排放。在本研究中,枯草芽孢桿菌對于N2O的減排效果最好,減排率高達61.86%,VT次之,減排率為49.22%,地衣芽孢桿菌最低,減排率為35.32%。

        2.5 溫室效應(yīng)變化分析

        IPCC第五次評估報告表示,CH4和N2O的全球增溫潛勢(GWP)分別是28和256[40]。將 CH4和N2O轉(zhuǎn)化成二氧化碳當量(CO2-eq),計算出堆肥過程中溫室氣體排放當量如表2所示。

        表2 堆肥過程中溫室效應(yīng)

        注:對N2O和CH4分別使用的全球變暖潛勢為CO2的256和28倍;kg·t-1指每噸物料(以干基計)溫室氣體排放的二氧化碳當量。

        Note: The global warming potential used for N2O and CH4is 256 and 28 times that of CO2, respectively; kg·t-1refers to the amount of carbon dioxide equivalent emitted by greenhouse gas emissions per ton of material (based on wet mass basis)

        數(shù)據(jù)表明,堆肥過程中排放的N2O對溫室效應(yīng)的貢獻相對較大,占三種溫室氣體總CO2排放當量的76.83%~88.57%。本研究中,微生物菌劑的加入能夠有效的對溫室氣體進行減排,BS(添加枯草芽孢桿菌)處理的綜合減排效果最好,高達56.15%。BL(添加地衣芽孢桿菌)處理的CO2排放量最低,為6.69 kg/t,與CK處理相比減少約33.50%的排放量;復(fù)合菌劑VT處理的CH4減排效果最好,為19.10%,但其排放量與其他處理相比并無較大差別,溫室氣體的減排是重要課題,但堆肥是個高溫好氧的過程,必然伴隨著CO2的排放,這是實現(xiàn)堆肥CO2減排的矛盾點,如何在保證堆肥質(zhì)量的同時減少CO2和CH4排放,降低碳素損失是今后需要克服的問題。BS處理的N2O減排效果最好,高達61.87%,因此枯草芽孢桿菌對于控制堆肥過程中的N2O排放具有重要意義,本研究中無明顯滲濾液外排,氮元素主要以氣體形式損失,研究表明添加外源微生物菌劑可通過減少氣體外排提高堆體的肥效,增加堆肥結(jié)束時的總氮含量[41-43]。

        研究表明,一些無機化學(xué)試劑如磷石膏等的添加可以實現(xiàn)7.3%~19.31%的溫室氣體減排效果[44-45]。而使用其他生物添加如腐熟堆肥時,可以獲得更好的減排效果(37.62%~69.17%),這是可能是由于腐熟堆肥中含有的大量微生物參與了堆肥反應(yīng)[46]。當外源微生物為添加劑時,即使添加量僅為20 g/t,聯(lián)合熱風循環(huán)工藝也可減排17.5%的溫室氣體排放量[47]。生物添加在溫室氣體減排方面具有更好的優(yōu)勢,本試驗所用微生物菌劑也表現(xiàn)出較好的減排效果,VT菌劑作為復(fù)合菌對溫室氣體具有較好的減排效果,但略低于枯草芽孢桿菌。有研究表明復(fù)合菌劑內(nèi)部各菌的比例對堆肥效果有較大的影響[48-49],VT作為復(fù)合菌,其內(nèi)部不同的功能菌可在堆肥不同階段發(fā)揮作用,通過影響堆體內(nèi)的微生物群落結(jié)構(gòu)進行溫室氣體的減排,但添加BS的處理減排效果要優(yōu)于添加VT的處理,這可能是菌劑內(nèi)部的復(fù)合比例產(chǎn)生了影響。曹玉博等[50]表明堆肥過程中溫室氣體的排放與氮素的轉(zhuǎn)化等過程互相關(guān)聯(lián),堆肥過程的氮素轉(zhuǎn)化和N2O排放與堆肥各階段的微生物群落及功能性微生物密切相關(guān),因此對于N2O的減排可能是通過外源菌劑與硝化、反硝化菌競爭獲取養(yǎng)分,從而影響N2O的產(chǎn)生實現(xiàn)的。雖對于N2O的減排已有較多研究,但缺少針對CH4進行減排的微生物菌劑。因此若想在溫室氣體減排上取得更好的效果,適應(yīng)性強、效果穩(wěn)定且能實現(xiàn)溫室氣體協(xié)同減排的多功能復(fù)合菌劑應(yīng)是未來研究的重點,且需對其復(fù)合菌劑中菌種的比例進行進一步優(yōu)化。

        3 結(jié) 論

        1)從溫度和CO2含量變化來看,3種微生物菌劑能夠加快堆體升溫,4個處理均能快速升溫并保持足夠長的高溫期從而使堆體達到無害化,結(jié)合腐熟度指標分析,微生物菌劑的加入可以在一定程度上加快堆肥進程和腐熟。

        2)添加菌劑對于CH4和N2O的排放規(guī)律沒有影響,可以有效減少累積排放量。各處理的CH4排放峰值均出現(xiàn)在17~21 d降溫期,其中VT1000處理的累積排放量最低;N2O具有2個排放峰值,分別均出現(xiàn)在3~4 d的堆肥初期和28~29 d腐熟期,其中枯草芽孢桿菌處理的累積排放量最低。

        3)根據(jù)溫室效應(yīng)分析,添加微生物菌劑可以不同程度降低溫室氣體排放當量,減排率為34.80%~56.15%,其中枯草芽孢桿菌的減排效果最好。

        [1] 盛維杰,靳晨曦,李光明,等. 廚余垃圾好氧堆肥技術(shù)研究進展[J]. 上海節(jié)能,2021(6):554-563.

        Sheng Weijie, Jin Chenxi, Li Guangming, et al.Research progress on aerobic composting technology of food waste[J]. Shanghai Energy Conversion, 2021(6): 554-563. (in Chinese with English abstract)

        [2] 郭顥,楊桂玲,虞軼俊,等. 廚余垃圾有機堆肥風險因子管控研究進展[J]. 浙江農(nóng)業(yè)科學(xué),2022,63(2):234-240,243.

        Guo Hao, Yang Guiling, Yu Yijun, et al. Research progress on risk factors control of kitchen waste composting[J]. Journal of Zhejiang Agricultural Sciences,2022, 63(2): 234-240, 243. (in Chinese with English abstract)

        [3] 歐蓓,薛映,肖可可,等. 添加秸稈堆肥處理廚余垃圾過程中蛋白類物質(zhì)轉(zhuǎn)化及微生物群落研究[J]. 華中科技大學(xué)學(xué)報(自然科學(xué)版),2022,50(10):83-96.

        Ou Bei, Xue Ying, Xiao Keke, et al. Study on proteinaceous components conversion and microbial communityduring composting of food waste added by straw bulking agents[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition): 2022, 50(10): 83-96. (in Chinese with English abstract)

        [4] Zhang B, Fan F, Guo C, et al. Evaluation of maturity and odor emissions in the process of combined composting of kitchen waste and garden waste[J]. Applied Sciences, 2021, 11(12).

        [5] 楊帆,歐陽喜輝,李國學(xué),等. 膨松劑對廚余垃圾堆肥CH4、N2O和NH3排放的影響[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(18):226-233.

        Yang Fan, Ouyang Xihui, Li Guoxue, et al. Effect of bulking agent on CH4, N2O and NH3emissions in kitchen waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 226-233. (in Chinese with English abstract)

        [6] Yang F, Li G, Yang Q, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere, 2013, 93(7): 1393-1399.

        [7] Xu Z, Xu W, Zhang L, et al. Bacterial dynamics and functions driven by bulking agents to mitigate gaseous emissions in kitchen waste composting[J]. Bioresource Technology, 2021, 332: 125028.

        [8] 楊帆,李國學(xué),江滔,等. 蚯蚓輔助堆肥處理蔬菜廢棄物及其溫室氣體減排效果[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(16):190-196.

        Yang Fan, Li Guoxue, Jiang Tao, et al. Vermicomposting treatment of vegetable waste and its greenhouse gas emissions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 190-196. (in Chinese with English abstract)

        [9] Hwang H Y, Kim S H, Shim J, et al. Composting process and gas emissions during food waste composting under the effect of different additives[J]. Sustainability, 2020, 12(18).

        [10] Li Y, Liu T, Song J, et al. Effects of chemical additives on emissions of ammonia and greenhouse gas during sewage sludge composting[J]. Process Safety and Environmental Protection, 2020, 143: 129-137.

        [11] Fan Y V, Kleme? J J, Lee C T, et al. Efficiency of microbial inoculation for a cleaner composting technology[J]. Clean Technologies and Environmental Policy, 2017, 20(3): 517-527.

        [12] 傅梓鋮,興虹,張煜,等. 微生物菌劑對廚余垃圾好氧堆肥影響[J]. 遼寧科技學(xué)院學(xué)報,2020,22(1):13-15.

        Fu Zicheng, Xing Hong, Zhang Yu, et al. Effect of microbial inoculation on aerobic composting of kitchen waste[J]. Journal of Liaoning Institute of Science and Technology, 2020, 22(1): 13-15. (in Chinese with English abstract)

        [13] 趙彬涵,孫憲昀,黃俊,等. 微生物在有機固廢堆肥中的作用與應(yīng)用[J]. 微生物學(xué)通報,2021,48(1):223-240.

        Zhao Binhan, Sun Xianyun, Huang Jun, et al. Application and effects of microbial additives in aerobic composting of organic solid wastes: A review[J]. Microbiology China, 2021, 48(1): 223-240. (in Chinese with English abstract)

        [14] SunX, Lu P, Jiang T, et al. Influence of bulking agents on CH4, N2O, and NH3emissions during rapid composting of pig manure from the Chinese Ganqinfen system[J]. Journal of Zhejiang University-Science B,2014, 15(4): 353-364.

        [15] Wang Y, Gao L, Xin S, et al. Greenhouse gas emission and its correlation with microbial in composting of waste packing and fungus chaff[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4662-4669.

        [16] 李舒清,張鏡丹,紀程,等. 接種復(fù)合菌劑對牛糞好氧堆肥進程及溫室氣體(CH4和N2O)排放的影響[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報,2017,40(6):1041-1050.

        Li Shuqing, Zhang Jingdan, Ji Cheng, et al. Effects of inoculation of complex microbial inoculants on the process andgreenhouse gas (CH4and N2O) emissions of cattle manure aerobic composting[J]. Journal of Nanjing Agricultural University, 2017, 40(6): 1041-1050. (in Chinese with English abstract)

        [17] Gu W, Sun W, Lu Y, et al. Effect of Thiobacillus thioparus 1904 and sulphur addition on odour emission during aerobic composting[J]. Bioresource Technology, 2018, 249: 254-260.

        [18] 盧彬,武肖媛. 復(fù)合微生物菌劑對高溫堆肥進程及有害氣體排放的影響[J]. 過程工程學(xué)報,2018,18(S1):122-128.

        Lu Bin, Wu Xiaoyuan. Effects of compound microbial agents on high-temperature composting process and harmful gas emissions[J]. The Chinese Journal of Process Engineering, 2018, 18(S1): 122-128. (in Chinese with English abstract)

        [19] 李赟,袁京,李國學(xué),等. 輔料添加對廚余垃圾快速堆肥腐熟度和臭氣排放的影響[J]. 中國環(huán)境科學(xué),2017,37(3):1031-1039.

        Li Yun, Yuan Jing, Li Guoxue, et al. Use of additive to control odors and promote maturity of municipal kitchen wasteduring aerobic composting[J]. China Environmental Science, 2017, 37(3): 1031-1039. (in Chinese with English abstract)

        [20] 張紅玉. 廚余垃圾、豬糞和秸稈聯(lián)合堆肥的腐熟度評價[J]. 環(huán)境工程,2013,31(Z1):470-474.

        Zhang Hongyu. Maturity evaluation of kitchen waste, pig manure and corn-straw co-composting[J]. Environmental Engineering, 2013, 31(Z1): 470-474. (in Chinese with English abstract)

        [21] 李文兵,畢江濤,劉鵬,等. 牛糞好氧堆肥發(fā)酵微生物群落結(jié)構(gòu)演替與環(huán)境因子和腐熟度的相關(guān)性[J]. 環(huán)境工程,2022,40(1):69-77.

        Li Wengbing, Bi Jiangtao, Liu Peng, et al. Correlation between the succession of microbial community structure and environmental factors and maturity of cattle manure aerobic composting[J]. Environmental Engineering, 2022, 40(1): 69-77. (in Chinese with English abstract)

        [22] 秦韓淼,譚志海,李世浩,等. 秸稈對廚余垃圾堆肥滲濾液減排的影響[J]. 西安工程大學(xué)學(xué)報,2021,35(2):9-14.

        Qin Hanmiao,Tan Zhihai, Li Shihao, et al.Effect of straw on emission reduction of kitchen waste compostingleachate[J]. Journal of Xi'an Polytechnic University, 2021, 35(2): 9-14. (in Chinese with English abstract)

        [23] Nair J, Okamitsu K, Microbial inoculants for small scale composting of putrescible kitchen wastes[J]. Waste Management, 2010, 30(6): 977-982.

        [24] 李春燕,張曦,沈玉君,等. 翻堆策略對豬糞沼渣好氧發(fā)酵特性的影響[J]. 環(huán)境工程,2021,39(1):130-135.

        Li Chungyan, Zhang Xi, Shen Yujun, et al. Effectsof turning strategy on aerobic fermentation property of pig biogas residue[J]. Environmental Engineering, 2021, 39(1): 130-135. (in Chinese with English abstract)

        [25] Manyapu V, Mandpe A, Kumar S.Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste[J]. Bioresour Technol, 2018, 251: 114-120.

        [26] 遲孟浩. 廚余垃圾與污泥聯(lián)合堆肥對腐熟度和氮素損失的影響研究[D]. 長春:吉林農(nóng)業(yè)大學(xué),2018.

        Chi Menghao. The Maturity and Nitrogen Loss during Kitchen Waste and Sewage Sluge Composting[D]. Changun: Jilin Agricultural University, 2018. (in Chinese with English abstract)

        [27] 方偉成,肖紅飛,田云麗. 園林廢棄物與廚余垃圾混合堆肥工藝綜合評價[J]. 湖北農(nóng)業(yè)科學(xué),2017,56(2):259-262.

        Fang Weicheng, Xiao Hongfei, Tian Yunli. Comprehensive evaluation of co-composting process with garben waste anb kitchen waste[J]. Hubei Agricultural Sciences, 2017, 56(2): 259-262. (in Chinese with English abstract)

        [28] 羅一鳴,李國學(xué),F(xiàn)rank Schuchardt,等. 過磷酸鈣添加劑對豬糞堆肥溫室氣體和氨氣減排的作用[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(22):235-242.

        Luo Yiming, Li Guoxue, Frank Schuchardt, et al. Effects of additive superphosphate on NH3, N2O and CH4emissions during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 235-242. (in Chinese with English abstract)

        [29] 陳輝,王巨媛,田曉飛,等. 含水率與C/N耦合對驢糞堆肥過程中溫室氣體排放的影響[J]. 生態(tài)環(huán)境學(xué)報,2019,28(2):341-347.

        Chen Hui, Wang Juyuan, Tian Xiaofei, et al. Effects of different water content and C/N coupling on greenhouse gas emissions during donkey dung composting[J]. Ecology and Environmental Sciences, 2019, 28(2): 341-347. (in Chinese with English abstract)

        [30] 閆召偉,楊菲宇,高興祖,等. 含硫添加劑對豬糞堆肥過程甲烷與臭氣排放的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2021,40(11):2448-2455.

        Yan Zhaowei, Yang Feiyu, Gao Xingzu, et al. Effect of sulfur-containing additives on methane and odor emissions during pig manure composting[J]. Journal of Agro-Environment Science, 2021, 40(11): 2448-2455. (in Chinese with English abstract)

        [31] 王義祥,葉菁,林怡,等. 花生殼生物炭用量對豬糞堆肥溫室氣體和NH3排放的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2021,26(6):114-125.

        Wang Yixiang, Ye Jing, Lin Yi, et al. Effects of peanut shell biochar on greenhouse gas and NH3emissions during swine manure composting[J]. Journal of China Agricultural University, 2021, 26(6): 114-125. (in Chinese with English abstract)

        [32] 李旺旺,劉燕,李國學(xué),等. 菌劑和含磷添加劑聯(lián)合添加對污泥堆肥污染氣體排放及堆肥品質(zhì)的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2022,41(4):878-887.

        Li Wangwang, Liu Yan, Li Guoxue, et al. The effect of microbial agent and phosphorus-containing additives on compost maturity and pollutant gas emissions during sewage sludge composting[J]. Journal of Agro-Environment Science, 2022, 41(4): 878-887. (in Chinese with English abstract)

        [33] 李丹陽,馬若男,亓傳仁,等. 含水率對羊糞堆肥腐熟度及污染氣體排放的影響[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(20):254-262.

        Li Danyang, Ma Ruonan, Qi Chuanren, et al. Effects of moisture content on maturity and pollution gas emissions during sheep manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 254-262. (in Chinese with English abstract)

        [34] Petersen S O, Linda A M, Sommer S G. Nitrogen and organic matter losses during storage of cattle and pig manure[J]. The Journal of Agricultural Science, 1998, 130(1): 69-79.

        [35] 楊佳,王國英,唐若蘭,等. 生物炭和菌劑對羊糞微好氧堆肥腐熟度和溫室氣體排放的影響[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(10):224-231.

        Yang Jia, Wang Guoying, Tang Ruolan, et al. Effects of biochar and microbial inoculum on maturity and greenhouse gas emissions during micro aerobic composting of sheep manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 224-231. (in Chinese with English abstract)

        [36] Mulbry W, Ahn H. Greenhouse gas emissions during composting of dairy manure: Influence of the timing of pile mixing on total emissions[J]. Biosystems Engineering, 2014, 126: 126.

        [37] He Y, Inamori Y, Mizuochi M, et al. Nitrous oxide emissions from aerated composting of organic waste[J]. Environmental science & technology 2001, 35(11): 2347-2351.

        [38] 王佳,谷潔,王小娟,等. 不同填充劑對農(nóng)村廚余垃圾堆肥氮轉(zhuǎn)化及相關(guān)功能基因的影響[J]. 西北農(nóng)業(yè)學(xué)報,2021,30(12):1879-1888.

        Wang Jia, Gu Jie, Wang Xiaojuan, et al. Effects of different bulking agents on nitrogen transformation and related functional genes of kitchen waste composting in rural area[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(12): 1879-1888. (in Chinese with English abstract)

        [39] Guo H, Gu J, Wang X, et al.Beneficial effects of bacterial agent/bentonite on nitrogen transformation and microbial community dynamics during aerobic composting of pig manure[J]. Bioresource Technology, 2020, 298, (C).

        [40] 周談龍,尚斌,董紅敏,等. 低碳氮比條件下豬糞堆肥氨氣和溫室氣體排放[J]. 中國農(nóng)業(yè)氣象,2017,38(11):689-698.

        Zhou Tanong, Shang Bin, Dong Hongmin, et al. Emission characteristics of ammonia and greenhouse gas during the low C/N ratio swine manure composting[J]. Chinese Journal of Agrometeorology, 2017, 38(11): 689-698. (in Chinese with English abstract)

        [41] 張國言,董元杰,孫桂陽,等. 復(fù)合菌劑對兔糞堆肥碳氮轉(zhuǎn)化與損失的影響[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2022,27(11):153-165.

        Zhang Guoyan, Dong Yuanjie, Sun Guiyang, et al. Effects of compound bacterial inoculant on the conversion and loss of carbon andnitrogen during rabbit manure composting[J]. Journal of China Agricultural University, 2022, 27(11): 153-165. (in Chinese with English abstract)

        [42] 陳賽男,鐘為章,牛建瑞,等. 復(fù)合菌劑對土霉素菌渣好氧堆肥腐熟及微生物群落結(jié)構(gòu)影響[J]. 環(huán)境工程學(xué)報,2022,16(8):2672-2681.

        Chen Sainan, Zhong Weizhang, Niu Jianrui, et al. Effect of compound bacterial agent on maturity and microbial community structure of oxytetracycline residue aerobic composting[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 2672-2681. (in Chinese with English abstract)

        [43] 胡菊,肖湘政,呂振宇,等. 接種VT菌劑堆肥過程中物理化學(xué)變化特征分析[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2005(5):140-144.

        Hu Ju, Xiao Xiangzheng, Lv Zhenyu, et al. Physical and chemical indexes of composting inoculated VT microbes[J]. Journal of Agro-Environment Science, 2005(5): 140-144. (in Chinese with English abstract)

        [44] 楊巖,孫欽平,李妮,等. 添加過磷酸鈣對蔬菜廢棄物堆肥中氨氣及溫室氣體排放的影響[J]. 應(yīng)用生態(tài)學(xué)報,2015,26(1):161-167.

        Yang Yan, Sun Qinping, Li Ni, et al. Effects of super phosphate addition on NH3and greenhouse gas emissions during vegetable waste composting[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 161-167. (in Chinese with English abstract)

        [45] Yang F, Li G, Shi H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36: 70-76.

        [46] Yang F, Li Y, Han Y, et al. Performance of mature compost to control gaseous emissions in kitchen waste composting[J]. Science of the Total Environment, 2019, 657: 262-269.

        [47] 高丹,張紅玉,李國學(xué),等. 余熱和菌劑對垃圾堆肥效率及溫室氣體減排的影響[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(10):264-271.

        Gao Dan, Zhang Hongyu, Li Guoxue, et al. Effects of waste heat and microbial agents on composting efficiency and greenhouse gas emissions reduction of municipal solid wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 264-271. (in Chinese with English abstract)

        [48] 林山杉,趙冰,喬美姣,等. 廚余垃圾好氧堆肥優(yōu)勢細菌的分離及處理效率研究[J]. 環(huán)境工程,2014,32(7):115-118,146.

        Lin Shanshan, Zhao Bing, Qiao Meijiao, et al. Predominant bacterias isolation and treatment efficiency during kitchen waste composting[J]. Environmental Engineering, 2014, 32(7): 115-118, 146. (in Chinese with English abstract)

        [49] 周營,朱能武,劉博文,等. 微生物菌劑復(fù)配及強化廚余垃圾好氧堆肥效果分析[J]. 環(huán)境工程學(xué)報,2018,12(1):294-303.

        Zhou Ying, Zhu Nengwu, Liu Bowen, et al. Effect analysis of compound microbial agents and enhancement on kitchen waste aerobic composting[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 294-303. (in Chinese with English abstract)

        [50] 曹玉博,張陸,王選,等. 畜禽廢棄物堆肥氨氣與溫室氣體協(xié)同減排研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2020,39(4):923-932.

        Cao Yubo, Zhang Lu, Wang Xuan, et al. Synergistic mitigation of ammonia and greenhouse gas emissions during livestock waste composting[J]. Journal of Agro-Environment Science, 2020, 39(4): 923-932. (in Chinese with English abstract)

        Mitigation effects of microbial agents on greenhouse gas emissions from kitchen waste composting

        Chen Wenxu1,2, Liu Yifei1, Jiang Sinan1, Wu Zeyue1, Wang Qianqi1, Li Guoxue1, Li Yanming1, Gong Xiaoyan1※

        (1.,,,100193,; 2.,266100,)

        High-temperature aerobic composting has been ever-increasing developed rapidly for the fastest way to make high quality compost without any foul odors. However, the greenhouse gas (GHG) can also be produced during composting, including CH4and N2O. In this study, a 35-day aerobic co-composting of kitchen waste and yard trimming (chipped stems) was carried out in 60 L forced aerated static composting reactors, in order to reduce the GHG emission during composting. Three commercial microbial agents were also added to compost materials, including the VT1000 compound consortia (VT), Bacillus subtilize (BS), and Bacillus licheniformis (BL). Among them, the addition of fungi was 1.5% of the dry weight of all raw materials. The treatment without bacterial agents was used as the control (CK). Furthermore, CH4and N2O emissions during composting were monitored to investigate the effect of the microbial agents on the GHG emission. The results showed that the microbial agents significantly accelerated the maturity of compost with the rise of temperature, whereas, relatively reduced the GHG emission in the varying degrees. The duration of high temperature in all treatments was fully met the harmless requirements, in terms of reactor heating. But the treatment with the microbial agents presented the better secondary heating. The fastest temperature recovery and the highest temperature were achieved in the VT, followed by the BS, and the BL was slower than the CK. In maturity, the electric conductivity and pH value in all treatments were met the industrial requirements of compost quality. Specifically, the uninoculated microbial agent failed to the rot standard in the CK treatment. A slightly better compost maturity was obtained in the BS treatment, compared with the VT and BL. Among the GHG emission reduction, the N2O emission was accounted by 76.83%-88.57% of the total as the CO2-C equivalent, indicating the much higher amount than that of CH4. The peaks of emission occurred at the initial and mature stage. The CH4emission peak occurred at the cooling stage, where the cumulative emissions reached 1.65%-2.40% of the total GHG emissions equivalent. The cumulative CH4emissions in the four treatments were ranked as CK, BL, BS, VT in the descending order. As such, the best performances (18.89%) of the CH4and N2O emission reduction were achieved in the VT and BS treatment, respectively. The reduction rates were 49.22%, 61.86%, and 35.32% in the BS, VT, and BL treatment, respectively. The total GHG emissions equivalent were 95.84 (CK), 52.31 (VT), 42.03 (BS), and 62.49 kg/t (BL). Compared with the CK, the best total GHG mitigation was obtained in the BS treatment, with the reduction rate of 56.15%, the BL treatment was the lowest of 34.80%, while the VT treatment was 45.42%. The N2O abatement was better performed than methane with the inoculants, ranging from 35.32% to 61.87%. Taken together, the best effect was achieved in the treatment with 1.5% BS. Therefore, the microbial agents can be expected to effectively mitigate the GHG for the better quality of composting products.

        aerobic; composting; greenhouse gases mitigation; microbial agents; kitchen waste

        10.11975/j.issn.1002-6819.2022.23.019

        X705

        A

        1002-6819(2022)-23-0181-07

        陳文旭,劉逸飛,蔣思楠,等. 微生物菌劑對廚余垃圾堆肥溫室氣體減排的影響[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(23):181-187.doi:10.11975/j.issn.1002-6819.2022.23.019 http://www.tcsae.org

        Chen Wenxu, Liu Yifei, Jiang Sinan, et al. Mitigation effects of microbial agents on greenhouse gas emissions from kitchen waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 181-187. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.23.019 http://www.tcsae.org

        2022-09-28

        2022-11-01

        中國農(nóng)業(yè)大學(xué)教授工作站-20210505(202105510310477);“十三五”國家重點研發(fā)計劃項目,易腐有機固廢多組份協(xié)同好氧降解轉(zhuǎn)化技術(shù)及裝備(2018YFC1901002)

        陳文旭,研究方向固體廢棄物處理與資源化。Email:cwx943364194i@163.com

        宮小燕,博士,副教授,研究方向固體廢棄物處理與資源化。Email:beixiaoxi@cau.edu.cn

        猜你喜歡
        堆體廚余菌劑
        發(fā)酵菌劑與堆體方式對菇渣發(fā)酵效果的影響
        不同碳氮比下豬糞高溫堆肥腐熟進程研究
        食用菌菌糠堆肥化發(fā)酵特性及腐熟進程
        廚余垃圾特性及預(yù)分選處理技術(shù)
        廈門科技(2021年4期)2021-11-05 06:50:30
        廚余垃圾變廢為寶 有機肥市場方興未艾
        復(fù)合微生物菌劑在農(nóng)業(yè)生產(chǎn)中的應(yīng)用
        外生菌根真菌菌劑的制備及保存研究
        園林科技(2020年2期)2020-01-18 03:28:26
        新型液體菌劑研制成功
        不同廚余垃圾發(fā)酵效果比較
        經(jīng)堆肥處理蠶沙可達到資源化利用的要求
        台湾佬娱乐中文22vvvv| 亚洲国产精品美女久久久| 日本一道本加勒比东京热| 黑人老外3p爽粗大免费看视频| 日本熟妇人妻xxxx| 日产学生妹在线观看| 国产精品熟妇视频国产偷人| 欧美精品AⅤ在线视频| 久久亚洲精品成人av观看| 白浆国产精品一区二区| 九九热线有精品视频86| 国产日韩在线播放观看| 久久久国产视频久久久| 精品国产三区在线观看| 国产av天堂亚洲国产av天堂| 无码人妻av一二区二区三区| 狼人国产精品亚洲| 99国产精品欲av麻豆在线观看| 国产人妻熟女高跟丝袜| 日韩国产精品无码一区二区三区| 99精品一区二区三区无码吞精| 四虎精品视频| 在线a人片免费观看国产| 少妇被躁到高潮和人狍大战| 国产熟女一区二区三区不卡| 日本免费a级毛一片| 女同久久精品国产99国产精品| 亚洲都市校园激情另类| 日本道免费一区日韩精品| 麻豆精品国产免费av影片| 亚洲成av人片乱码色午夜| 人人妻人人澡人人爽曰本| 精品久久久无码不卡| 中文有码人妻字幕在线| 欧美丰满熟妇bbb久久久 | 人妻无码一区二区三区四区| 亚洲 国产 韩国 欧美 在线| 女同另类专区精品女同| 国产精品美女久久久网站三级| 亚洲av无码专区首页| 日本久久久久|