羅明明,季懷松
(中國(guó)地質(zhì)大學(xué)(武漢)環(huán)境學(xué)院,湖北 武漢 430078)
中國(guó)南方巖溶含水層通常由孔隙、裂隙、管道等多重介質(zhì)組成,水流運(yùn)動(dòng)和溶質(zhì)運(yùn)移過(guò)程十分復(fù)雜,地下水流和溶質(zhì)運(yùn)移過(guò)程主要受裂隙和管道的控制[1]。由于地表巖溶洼地和落水洞等提供了通暢的補(bǔ)給通道,巖溶含水層對(duì)環(huán)境變化敏感,極易受到污染[2]。污染物在巖溶水系統(tǒng)中的運(yùn)移過(guò)程直接影響著巖溶水資源開(kāi)發(fā)利用和巖溶生態(tài)環(huán)境。
暫態(tài)存儲(chǔ)是溶質(zhì)或污染物運(yùn)移過(guò)程中一種十分普遍的現(xiàn)象。在強(qiáng)降雨條件下,管道-裂隙型巖溶水系統(tǒng)主要通過(guò)洼地匯流,落水洞呈集中灌入式補(bǔ)給,巖溶管道內(nèi)的水位迅速上升[3],水頭差驅(qū)使管道內(nèi)的水流及其攜帶的溶質(zhì)或污染物進(jìn)入到與管道連通的裂隙中[4 -5];待降雨結(jié)束后,管道水位快速衰退,管道成為周?chē)严兜呐潘ǖ?之前進(jìn)入裂隙中的溶質(zhì)則隨水流緩慢釋放并再次進(jìn)入管道中[6 -7]。隨著補(bǔ)給條件的變化,管道與裂隙介質(zhì)間的水力關(guān)系發(fā)生轉(zhuǎn)變,管道內(nèi)的部分水流與溶質(zhì)經(jīng)歷了一個(gè)存儲(chǔ)到再釋放的過(guò)程[8],增加了水流和溶質(zhì)在巖溶水系統(tǒng)中的滯留時(shí)間,影響著水流運(yùn)動(dòng)及溶質(zhì)運(yùn)移過(guò)程[9],這也是對(duì)巖溶區(qū)人工示蹤試驗(yàn)穿透曲線拖尾和雙峰現(xiàn)象的另一種解釋[10]。當(dāng)前,實(shí)驗(yàn)室尺度的物理模型被廣泛用于不同水力條件和污染物運(yùn)移條件下的模擬,為研究巖溶含水層中的水流運(yùn)動(dòng)和污染物運(yùn)移過(guò)程提供了許多新認(rèn)識(shí)[11]。針對(duì)巖溶含水層中的水流和溶質(zhì)運(yùn)移過(guò)程,前人通過(guò)室內(nèi)試驗(yàn)揭示了地下水流動(dòng)過(guò)程的影響因素和機(jī)理[12]、管道裂隙間的水力交換過(guò)程[13]以及穩(wěn)定流條件下溶潭、雙管道結(jié)構(gòu)和裂隙寬度等對(duì)溶質(zhì)暫態(tài)存儲(chǔ)的影響[14 -17],也有學(xué)者研究了水力梯度、管道彎曲半徑、流速等對(duì)穿透曲線的影響[18 -19]。目前關(guān)于集中補(bǔ)給條件下管道-裂隙型巖溶水系統(tǒng)中溶質(zhì)暫態(tài)存儲(chǔ)機(jī)制的室內(nèi)物理模型試驗(yàn)研究還很少見(jiàn)。
本研究通過(guò)建立管道-裂隙物理模型,實(shí)施不同集中補(bǔ)給量下的定量示蹤試驗(yàn),探討不同水動(dòng)力條件影響下的管道-裂隙間水量和溶質(zhì)的暫態(tài)存儲(chǔ)機(jī)制,可為南方巖溶地下水的污染防控和水資源合理開(kāi)發(fā)利用提供科學(xué)依據(jù),對(duì)豐富巖溶地下水溶質(zhì)運(yùn)移理論研究具有重要意義。
結(jié)合中國(guó)南方巖溶區(qū)的特點(diǎn),可將集中補(bǔ)給條件下溶質(zhì)在管道-裂隙型巖溶水系統(tǒng)中的運(yùn)移途徑概括為2種:① 僅在管道中運(yùn)移:從集中補(bǔ)給到排泄過(guò)程中,溶質(zhì)未進(jìn)入其他區(qū)域,僅途經(jīng)了從落水洞到地下河出口的連通管道;② 裂隙暫態(tài)存儲(chǔ):溶質(zhì)從落水洞口進(jìn)入管道后,在水頭差的驅(qū)使下先隨管道流進(jìn)入裂隙存儲(chǔ),后期再隨裂隙流釋放到管道,最終由地下河出口排泄,此時(shí)溶質(zhì)多經(jīng)歷了進(jìn)入裂隙存儲(chǔ)、再?gòu)牧严夺尫诺倪^(guò)程(圖1)。
圖1 集中補(bǔ)給條件下溶質(zhì)在管道-裂隙系統(tǒng)中的2種運(yùn)移途徑Fig.1 Two solute transport paths in the karst conduit-fissure system under concentrated recharge condition
根據(jù)對(duì)中國(guó)南方巖溶水系統(tǒng)結(jié)構(gòu)的概化,依據(jù)相似性原理建立室內(nèi)物理模型(圖2),該物理模型由3部分組成:集中補(bǔ)給系統(tǒng)、管道-裂隙系統(tǒng)、數(shù)據(jù)采集系統(tǒng)。
圖2 室內(nèi)管道-裂隙物理模型裝置Fig.2 Physical model of conduit-fissure system
集中補(bǔ)給系統(tǒng):供水裝置為一底部開(kāi)孔的立方體水箱,水箱底部開(kāi)孔與豎直圓管連通,模擬洼地匯水區(qū)和落水洞;示蹤劑注入裝置為一小型漏斗,漏斗下端連接的圓管與落水洞管道連通。
管道-裂隙系統(tǒng):由亞克力板制成頂部開(kāi)放的長(zhǎng)方體磚箱(長(zhǎng)100 cm×寬15 cm×高50 cm),箱底水平鋪設(shè)圓管(長(zhǎng)100 cm、直徑4 cm)模擬巖溶管道,圓管上部均勻開(kāi)孔(直徑0.3 cm、孔間距0.9 cm);采用磚塊堆疊后產(chǎn)生的裂縫模擬大小不同的裂隙。
數(shù)據(jù)采集系統(tǒng):供水裝置及管道總出口均安裝有水壓、電導(dǎo)率自動(dòng)監(jiān)測(cè)儀。磚箱背面均勻布設(shè)測(cè)壓管(間距10 cm),可在測(cè)壓板上觀測(cè)磚箱中裂隙水位的變化,電磁流量計(jì)可監(jiān)測(cè)輸入管道-裂隙系統(tǒng)中的流量。
試驗(yàn)采用NaCl作為保守型溶質(zhì),采用電導(dǎo)率相對(duì)穩(wěn)定的自來(lái)水作為背景溶液。
試驗(yàn)開(kāi)始之前,調(diào)節(jié)并固定進(jìn)出口閥門(mén)1和閥門(mén)5,以實(shí)現(xiàn)不同集中補(bǔ)給量(供水裝置中的初始水量)下管道內(nèi)的水流能在水頭差的驅(qū)使下進(jìn)入裂隙中,當(dāng)供水裝置中的水量自然衰減(非穩(wěn)定流)至一定量時(shí),水力關(guān)系便發(fā)生反轉(zhuǎn),之前進(jìn)入裂隙中的水流再次釋放進(jìn)入管道中。
閥門(mén)1和閥門(mén)5固定后,每組試驗(yàn)只改變供水裝置中的水量大小。正式試驗(yàn)前,在管道內(nèi)穩(wěn)定供給一定的基流,在供水裝置中一次性加入集中補(bǔ)給量之后,開(kāi)啟閥門(mén)2,瞬時(shí)注入250 mL質(zhì)量濃度為60 g/L的NaCl溶液。示蹤劑質(zhì)量濃度根據(jù)電導(dǎo)率自動(dòng)監(jiān)測(cè)數(shù)據(jù)通過(guò)校正曲線轉(zhuǎn)換為NaCl溶液質(zhì)量濃度。為確保重復(fù)試驗(yàn)數(shù)據(jù)的可靠性,每組試驗(yàn)重復(fù)3次。
為定量研究不同集中補(bǔ)給量下僅在管道中運(yùn)移和裂隙暫態(tài)存儲(chǔ)2條途徑中的水量大小,利用水量均衡原理,總補(bǔ)給量(Vin)等于總排泄量(Vout)(式1),其中總排泄量由僅在管道中運(yùn)移的水量(Vc)和裂隙暫態(tài)存儲(chǔ)的水量(Vf)組成(式2)。
Vin=Vout
(1)
Vout=Vc+Vf
(2)
為揭示管道與裂隙介質(zhì)間溶質(zhì)暫態(tài)存儲(chǔ)的機(jī)制,并定量刻畫(huà)該機(jī)制下產(chǎn)生的溶質(zhì)運(yùn)移過(guò)程,本文運(yùn)用雙區(qū)對(duì)流彌散模型(Dual Region Advection Dispersion,DRAD)對(duì)實(shí)測(cè)穿透曲線進(jìn)行模擬,該模型基于2個(gè)區(qū)域平行流動(dòng)的假設(shè),并因質(zhì)量濃度差異而進(jìn)行質(zhì)量交換,不考慮溶質(zhì)的降解或吸附解吸作用[14 -15,20]。具體控制方程如下:
(3)
(4)
式中:C1和C2分別為區(qū)域1和區(qū)域2中的溶質(zhì)質(zhì)量濃度;t和x分別為時(shí)間和空間坐標(biāo);vi、Di和φi(i=1,2)分別為對(duì)應(yīng)區(qū)域中的平均流速、對(duì)流彌散系數(shù)和空間體積分?jǐn)?shù);α為區(qū)域1和區(qū)域2之間的溶質(zhì)質(zhì)量傳輸系數(shù)。
本試驗(yàn)只考慮兩區(qū)域系統(tǒng),分別為快速區(qū)域(區(qū)域1)和慢速區(qū)域(區(qū)域2),即v1>v2,φ1+φ2=1。
采用粒子追蹤隨機(jī)游走方法對(duì)DRAD模型進(jìn)行求解,并計(jì)算溶質(zhì)運(yùn)移過(guò)程中的質(zhì)量通量[21]:
(5)
式中:Cf(x,τ)為t1至t2時(shí)間內(nèi)的質(zhì)量通量;δ為狄拉克delta函數(shù);Xp(t)為粒子p在t時(shí)刻的位置;Ntotal為域中的粒子總數(shù)。
選擇均方根誤差(ERMS)和相關(guān)系數(shù)(CC)對(duì)DRAD模型的模擬結(jié)果進(jìn)行評(píng)價(jià):
(6)
(7)
在每組試驗(yàn)中,可觀測(cè)到管道和裂隙中的水位及總出口流量的變化過(guò)程,根據(jù)水位和流量變化的時(shí)間轉(zhuǎn)折點(diǎn),可定量劃分出裂隙儲(chǔ)水和釋水的時(shí)間段。根據(jù)流量衰退時(shí)間(t1)、集中補(bǔ)給結(jié)束時(shí)間(t2)和裂隙釋水結(jié)束時(shí)間(t3)將4組試驗(yàn)的水文過(guò)程劃分為存儲(chǔ)、釋放和基流3個(gè)階段,見(jiàn)圖3。
圖3 總出口流量過(guò)程曲線Fig.3 Hydrographs at the total outlet
(1) 在水量存儲(chǔ)階段,管道快速充水,水流在管道水壓力的作用下進(jìn)入裂隙中存儲(chǔ)。集中補(bǔ)給量(V)由8.0 L 增加至13.0 L,水動(dòng)力條件增強(qiáng),出口最大流量由36.58 mL/s增至39.13 mL/s,水量在保證管口出流的同時(shí),還能繼續(xù)在水頭差作用下往裂隙中存儲(chǔ),使裂隙存儲(chǔ)時(shí)間延長(zhǎng),使更多管道水進(jìn)入裂隙中存儲(chǔ)。
(2) 在集中補(bǔ)給結(jié)束后,管道水壓力快速下降,致使裂隙水壓力大于管道水壓力,隨即管道周?chē)拇罅严犊焖籴屗?造成流量的快速衰退。待大裂隙釋水結(jié)束,轉(zhuǎn)化為小裂隙緩慢釋水,直至釋水結(jié)束。此階段裂隙釋水為管口出流的主要來(lái)源,由此在t2—t3時(shí)段內(nèi)呈現(xiàn)出先快后慢的流量衰減曲線。
(3) 隨著集中補(bǔ)給量的增加,釋水結(jié)束時(shí)間(t3)由690 s增加至860 s,釋水量和釋水時(shí)間均增加。隨著裂隙中的水流逐漸排出,出口流量逐漸減少至基流狀態(tài)。
水量計(jì)算結(jié)果表明,裂隙暫態(tài)存儲(chǔ)的水量(Vf)和僅在管道中運(yùn)移的水量(Vc)均隨集中補(bǔ)給量的增加而增加(表1),具有顯著的正相關(guān)關(guān)系(圖4),表明水動(dòng)力條件的增強(qiáng)促使僅在管道中運(yùn)移水量和裂隙暫態(tài)存儲(chǔ)水量的同步增長(zhǎng),但兩者增長(zhǎng)率不同,裂隙暫態(tài)存儲(chǔ)的水量增長(zhǎng)相對(duì)較緩。此外,兩者占總補(bǔ)給量的比例基本穩(wěn)定,裂隙暫態(tài)存儲(chǔ)的水量平均約占總補(bǔ)給量的23%,而僅在管道中運(yùn)移的水量約占總補(bǔ)給量的近77%,表明水流在管道中的輸運(yùn)占主導(dǎo)。
圖4 2種徑流途徑中的水量與集中補(bǔ)給量的關(guān)系Fig.4 Relationship between water volumes of the two flow paths and concentrated recharge water volume
表1 定量示蹤試驗(yàn)結(jié)果
隨著集中補(bǔ)給量的變化,試驗(yàn)獲得了3種穿透曲線類(lèi)型:單峰曲線、單峰-雙峰過(guò)渡型曲線、雙峰曲線(圖5)。3種穿透曲線類(lèi)型的主峰曲線形態(tài)均為“尖瘦”型,示蹤劑質(zhì)量濃度在到達(dá)主峰峰值后迅速衰退,并在衰退過(guò)程中表現(xiàn)出明顯差異。集中補(bǔ)給量為8.0 L的穿透曲線在衰退過(guò)程中僅出現(xiàn)拖尾,8.5 L的穿透曲線出現(xiàn)了局部次峰疊加拖尾,9.0 L和13.0 L的穿透曲線出現(xiàn)了完整的次峰再疊加拖尾的現(xiàn)象。隨著集中補(bǔ)給量的增加,主峰曲線形態(tài)的對(duì)稱(chēng)性增強(qiáng),峰值濃度逐漸降低,且次峰峰值出現(xiàn)時(shí)間逐漸滯后。
圖5 不同集中補(bǔ)給量下的示蹤劑穿透曲線Fig.5 Breakthrough curves of tracer under different concentrated recharge conditions
對(duì)于僅在管道中運(yùn)移的溶質(zhì),由于管道流的流速大、運(yùn)移距離短,導(dǎo)致溶質(zhì)滯留時(shí)間短、峰值濃度高,因而主峰曲線形態(tài)均為“尖瘦”型。對(duì)于裂隙暫態(tài)存儲(chǔ)途徑中的溶質(zhì),增加了從管道進(jìn)入裂隙、再?gòu)牧严夺尫诺焦艿赖倪^(guò)程,運(yùn)移途徑和滯留時(shí)間增長(zhǎng)。由于不同水動(dòng)力條件下能進(jìn)入裂隙中的水量和溶質(zhì)均是有限的,且裂隙釋水速度較慢,因此次峰峰值濃度較低,穿透曲線形態(tài)為“矮胖”型。
集中補(bǔ)給量的大小決定水動(dòng)力條件的強(qiáng)弱,影響著溶質(zhì)暫態(tài)存儲(chǔ)過(guò)程,決定總穿透曲線的形態(tài)。當(dāng)集中補(bǔ)給量較小時(shí)(8.0~8.5 L),水動(dòng)力條件較弱,此時(shí)2條運(yùn)移途徑的溶質(zhì)滯留時(shí)間差較小,僅在管道中運(yùn)移的溶質(zhì)在集中補(bǔ)給結(jié)束時(shí)未能全部通過(guò)總出口完成釋放,與裂隙釋放的部分溶質(zhì)產(chǎn)生疊加與混合,從而產(chǎn)生了單峰或局部次峰疊加拖尾的穿透曲線類(lèi)型。當(dāng)集中補(bǔ)給量較大時(shí)(9.0 L以上),水動(dòng)力條件增強(qiáng),使2條運(yùn)移途徑的溶質(zhì)滯留時(shí)間差增大,僅在管道中運(yùn)移的溶質(zhì)在集中補(bǔ)給結(jié)束前已通過(guò)總出口完成釋放;待集中補(bǔ)給結(jié)束后,裂隙中的溶質(zhì)才能釋放,由此裂隙中的溶質(zhì)釋放過(guò)程向后推移,造成總穿透曲線的主峰與次峰完全分離。大裂隙和小裂隙釋放溶質(zhì)的速度差異又造成次峰局部波動(dòng)以及拖尾現(xiàn)象的出現(xiàn),引發(fā)了總穿透曲線呈現(xiàn)雙峰并伴有拖尾的現(xiàn)象,前人也曾證實(shí)不同流速通道中溶質(zhì)的運(yùn)移及2次釋放會(huì)引起雙峰和拖尾現(xiàn)象[22]。
在本試驗(yàn)條件下,溶質(zhì)經(jīng)歷了僅在管道中運(yùn)移和裂隙暫態(tài)存儲(chǔ)2條運(yùn)移途徑,可分別將其刻畫(huà)為快速區(qū)域和慢速區(qū)域的溶質(zhì)運(yùn)移過(guò)程,本文采用DRAD模型進(jìn)行溶質(zhì)運(yùn)移過(guò)程的定量模擬。模擬結(jié)果顯示,DRAD模型能夠較好地?cái)M合實(shí)測(cè)穿透曲線(圖6、表2),擬合效果的CC達(dá)到0.9以上,且ERMS接近0,有效地表征了該試驗(yàn)條件下溶質(zhì)運(yùn)移穿透曲線的變化特征。
圖6 實(shí)測(cè)穿透曲線與DRAD模型模擬結(jié)果Fig.6 Observed breakthrough curves and simulated results by DRAD model
表2 DRAD模擬的最佳擬合參數(shù)及擬合結(jié)果評(píng)價(jià)
當(dāng)集中補(bǔ)給量從8.0 L增加到13.0 L時(shí),DRAD模擬的管道平均流速(v1)由1.00 m/s逐漸增加至1.10 m/s,與實(shí)測(cè)總出口平均流速的變化趨勢(shì)(1.27~1.40 m/s)相吻合;裂隙平均流速(v2)由0.45 m/s逐漸減小至0.32 m/s,模擬的管道和裂隙平均流速之間的差異逐漸增大(表2),且穿透曲線上2個(gè)濃度峰值逐漸分離。
當(dāng)溶質(zhì)在2個(gè)區(qū)域中的傳輸均由對(duì)流主導(dǎo)時(shí),速度之間較大的差異將會(huì)進(jìn)一步分離2個(gè)濃度峰值。隨著集中補(bǔ)給量的增加,管道中的水流壓力增大且持續(xù)時(shí)間變長(zhǎng),導(dǎo)致裂隙中的溶質(zhì)可以在裂隙中滯留更長(zhǎng)的時(shí)間,使得裂隙釋放溶質(zhì)的時(shí)間向后推移,且平均釋放速度減小,由此造成次峰出現(xiàn)得越來(lái)越晚,最終導(dǎo)致穿透曲線由單峰形態(tài)向雙峰形態(tài)轉(zhuǎn)變,且雙峰形態(tài)變得更加明顯。利用DRAD模型刻畫(huà)2個(gè)區(qū)域系統(tǒng)得出的模擬結(jié)果,驗(yàn)證了前文水動(dòng)力條件變化分析得出的管道與裂隙介質(zhì)間溶質(zhì)暫態(tài)存儲(chǔ)機(jī)制。
由于管道具有更大的流速,管道中的水動(dòng)力彌散系數(shù)明顯大于裂隙,D1約為D2的10倍。管道的空間體積分?jǐn)?shù)(φ1)隨集中補(bǔ)給量增大而減小(表2),即管道中直接運(yùn)移的溶質(zhì)所占的比例逐漸降低,主要是因?yàn)樗畡?dòng)力條件增強(qiáng)導(dǎo)致更多的溶質(zhì)在初期被存儲(chǔ)到裂隙中。模擬過(guò)程中還發(fā)現(xiàn),只有當(dāng)溶質(zhì)質(zhì)量傳輸系數(shù)接近或等于0時(shí),才能取得較好的擬合效果,表明管道和裂隙之間的質(zhì)量交換作用極其微弱,因此,將溶質(zhì)在裂隙中暫態(tài)存儲(chǔ)的途徑刻畫(huà)為一條相對(duì)獨(dú)立的慢速區(qū)域運(yùn)移途徑是相對(duì)可行的。
本文通過(guò)室內(nèi)管道-裂隙物理模型開(kāi)展了集中補(bǔ)給條件下的定量示蹤試驗(yàn),運(yùn)用雙區(qū)對(duì)流彌散模型實(shí)現(xiàn)了溶質(zhì)運(yùn)移過(guò)程的模擬,得出如下結(jié)論:
(1) 集中補(bǔ)給水動(dòng)力條件越強(qiáng),僅在管道中運(yùn)移的水量和裂隙暫態(tài)存儲(chǔ)的水量越大,但兩者占總補(bǔ)給量的比值基本恒定。
(2) 隨著集中補(bǔ)給水動(dòng)力條件的增強(qiáng),溶質(zhì)穿透曲線由單峰型向雙峰型轉(zhuǎn)變,溶質(zhì)暫態(tài)存儲(chǔ)引發(fā)了穿透曲線的拖尾和雙峰現(xiàn)象。
(3) 雙區(qū)對(duì)流彌散模型模擬結(jié)果揭示,管道和裂隙平均流速的差異隨著水動(dòng)力條件的增強(qiáng)而增大,穿透曲線的主峰和次峰分離度增大,管道和裂隙之間的質(zhì)量交換作用極其微弱。
(4) 雙區(qū)對(duì)流彌散模型有效表征了穿透曲線由單峰型向雙峰型的演變過(guò)程,但刻畫(huà)雙重介質(zhì)中非穩(wěn)定流條件下的溶質(zhì)暫態(tài)存儲(chǔ)模型仍值得不斷探索。