張小玲,張 萌,陳紫薇,張 卓
內(nèi)碳源短程反硝化啟動及EPD-ANAMMOX耦合工藝性能
張小玲1,2*,張 萌1,陳紫薇1,張 卓1
(1.長安大學(xué)水利與環(huán)境學(xué)院,陜西 西安 710064;2.長安大學(xué),旱區(qū)地下水與生態(tài)效應(yīng)教育部重點實驗室,陜西 西安 710064)
接種普通活性污泥,以乙酸鹽為碳源,控制進(jìn)水COD/P為150:1,在A/O SBR反應(yīng)器內(nèi)富集培養(yǎng)了聚糖菌;采用逐漸提高SBR厭氧末硝酸鹽投加濃度的方法,將聚糖菌馴化誘導(dǎo)為反硝化聚糖菌結(jié)果.SBR厭氧末排水中COD與缺氧末排水基本相同,COD平均去除率達(dá)到86.74%,總氮去除率達(dá)到98%以上.然后縮短SBR的厭氧及缺氧時間,即可啟動內(nèi)碳源短程反硝化(EPD)系統(tǒng),缺氧末亞硝酸鹽轉(zhuǎn)化率(NTR)平均值為65.96%;表明內(nèi)碳源短程反硝化與厭氧氨氧化(EPD-ANAMMOX)耦合工藝運行的30d內(nèi),COD去除負(fù)荷及去除率分別為0.337kgCOD/(kgMLSS·d)及87.21%;總氮去除負(fù)荷及去除率分別為0.222kgN/(m3·d)及86.12%,出水中NO3--N濃度低至4.2mg/L,NO2--N和NH4+-N濃度接近于零.通過高通量測序,EPD-SBR穩(wěn)定運行期的污泥與接種污泥相比,具有反硝化功能的聚糖菌屬豐度從0.001%增加至25.06%,其它聚糖菌屬以及的總豐度從0.14%增加至0.431%,表明是SBR反應(yīng)器內(nèi)內(nèi)碳源短程反硝過程的主要功能菌屬.
內(nèi)碳源短程反硝化;亞硝酸鹽轉(zhuǎn)化率;反硝化聚糖菌;厭氧氨氧化
厭氧氨氧化(ANAMMOX)工藝是利用厭氧氨氧化菌(AnAOB)以亞硝酸鹽為電子受體將氨轉(zhuǎn)化為氮氣實現(xiàn)污水脫氮的過程,因AnAOB菌的自養(yǎng)及基質(zhì)利用特性,以ANAMMOX為基礎(chǔ)的脫氮工藝具有不消耗有機(jī)碳源、節(jié)省曝氣量,污泥產(chǎn)量低等優(yōu)點,目前主要用于處理高氨氮廢水[1-2],但NO2-供應(yīng)不穩(wěn)定是限制其在城市生活污水主流工藝應(yīng)用的瓶頸問題之一.目前NO2-主要由短程硝化(PN)和短程反硝化(PD)2種途徑產(chǎn)生,而PN中亞硝酸鹽氧化細(xì)菌(NOB)難以完全淘汰,在低溫低氨環(huán)境下活性難以完全抑制,是造成PN+ANAMMOX工藝脫氮效能不穩(wěn)定的主要原因,而且短程硝化也是自養(yǎng)過程,不能降解有機(jī)物,污水中的有機(jī)物造成異養(yǎng)菌大量繁殖,降低氨氧化菌(AOB)及AnAOB菌在污泥系統(tǒng)中的豐度,因此在實際工程應(yīng)用時,需要先降低有機(jī)物濃度,再進(jìn)入?yún)捬醢毖趸摰到y(tǒng)[3].PD是通過控制反應(yīng)器運行條件,利用異養(yǎng)反硝化菌以硫或有機(jī)物為電子供體,將硝酸鹽還原過程控制到以亞硝酸鹽為主要的終產(chǎn)物,不僅可為ANAMMOX提供NO2-,而且可降解污水中的有機(jī)物,降低有機(jī)物對AnAOB菌的不利影響.近年來,學(xué)者們對外碳源驅(qū)動的PD工藝的啟動及控制策略、亞硝酸鹽積累的影響因素及機(jī)制等進(jìn)行了大量的實驗研究[4-8],通過控制進(jìn)水C/N、缺氧反應(yīng)時間、pH值等條件,能實現(xiàn)較高的亞硝酸鹽積累率,而且短程反硝化一旦啟動便可長期穩(wěn)定[9],為PD-ANAMMOX工藝的實際應(yīng)用奠定了基礎(chǔ).
研究發(fā)現(xiàn),SBR以厭氧/缺氧或厭氧/缺氧/好氧方式運行,微生物利用內(nèi)碳源也能實現(xiàn)短程反硝化及短程反硝化聚磷過程.內(nèi)碳源驅(qū)動的部分反硝化(EPD)實現(xiàn)87%左右的亞硝酸鹽轉(zhuǎn)化率,EPD與ANAMMOX工結(jié)合,系統(tǒng)總氮去除率高達(dá)90%,即使在低溫主流條件下內(nèi)源部分反硝化顆粒污泥系統(tǒng)仍具有較高的亞硝酸鹽積累率[10-12].內(nèi)碳源短程反硝化脫氮除磷(EPDPR)和ANAMMOX工藝結(jié)合可實現(xiàn)同步脫氮除磷,硝酸鹽-亞硝酸鹽轉(zhuǎn)化率的高效性為厭氧氨氧化提供了穩(wěn)定的亞硝酸鹽,磷酸鹽主要是利用硝酸鹽通過DPR作為電子受體去除的[13-14].厭氧氨氧化、內(nèi)源短程反硝化和反硝化除磷可集成在一個序批式顆粒污泥反應(yīng)器(SNPR)中完成同步脫氮除磷過程[15].
反應(yīng)器內(nèi)微生物菌種鑒定表明,反硝化聚糖菌(DGAOs)是將硝酸鹽轉(zhuǎn)化為亞硝酸鹽的功能菌[11,14,16-18].聚糖菌(GAOs)是生物除磷系統(tǒng)中普遍存在的一類菌,其代謝行為與聚磷菌(PAOs)相似,在厭氧階段消耗糖原并將吸收的有機(jī)物以PHAs等形式儲存在體內(nèi),但不釋磷;在好氧階段分解PHAs并合成糖原,但不吸磷[19-20].而內(nèi)碳源短程反硝化就是控制反應(yīng)器運行條件實現(xiàn)利用DGAO將硝酸鹽轉(zhuǎn)化為亞硝酸鹽.
EPD反應(yīng)器獲得穩(wěn)定、高效的亞硝酸鹽積累是ANAMMOX反應(yīng)器實現(xiàn)良好脫氮性能的保證.目前EPD-ANAMMOX工藝仍處于實驗室小試階段, EPD工藝的關(guān)鍵是培養(yǎng)將硝酸鹽轉(zhuǎn)化為亞硝酸鹽的功能菌,研究者大多是接種現(xiàn)有的EPD污泥,進(jìn)行EPD及EPD-ANAMMOX耦合工藝性能的研究.本文接種普通活性污泥,采用先抑制PAOs菌再培養(yǎng)DGAOs菌,控制缺氧時間,而后將EPD-SBR和ANAMMOX-SBBR反應(yīng)器連接,考察EPD- ANAMMOX工藝脫氮除碳性能,通過基于化學(xué)計量學(xué)的功能性微生物在C和N去除中的活性定量計算分析耦合工藝的脫氮機(jī)理,并基于高通量測序分析污泥馴化前后微生物菌群結(jié)構(gòu)的演變規(guī)律.
表1 EPD-SBR反應(yīng)器運行參數(shù)
注:階段Ⅱ厭氧末排水是為了置換厭氧上清液,以抑制聚磷菌生長.
采用2個反應(yīng)器:一個是EPD-SBR反應(yīng)器,進(jìn)水為模擬實際生活污水和硝酸鹽廢水;另一個為ANAMMOX-SBBR反應(yīng)器,進(jìn)水為EPD-SBR出水及氨氮廢水.EPD-SBR反應(yīng)器運行參數(shù)見表1.EPD-SBR反應(yīng)器在厭氧階段的前5min內(nèi),向反應(yīng)器中添加了1.75L模擬廢水,而在缺氧階段的前1min內(nèi),向反應(yīng)器內(nèi)添加了100mL硝酸鹽廢水(將一定量的硝酸鈉溶于100mL蒸餾水中).在缺氧階段的最后2min,排出200mL混合液,以控制混合液懸浮固體(MLSS)濃度為(3.5± 0.5)g/L,SRT為18d.
如圖1所示,左邊為EPD-SBR反應(yīng)器(有效容積3.6L,排水比為51.4%),右邊為ANAMMOX-SBBR反應(yīng)器(有效容積2L,排水比為100%).首先將1.75L模擬生活污水引入EPD-SBR反應(yīng)器,經(jīng)過90min厭氧反應(yīng)后,將100mL硝酸鹽廢水引入EPD-SBR反應(yīng)器中進(jìn)行30min缺氧攪拌,然后將1.85L出水泵入ANAMMOX-SBBR反應(yīng)器中,同時泵入150mL人工配置的氨氮廢水,經(jīng)過160min反應(yīng)后,耦合工藝最終出水由潛水泵排出.
圖1 EPD-ANAMMOX耦合工藝裝置示意
1.硝酸鹽進(jìn)水桶 2.模擬實際生活污水進(jìn)水桶 3.氨氮進(jìn)水桶 4.出水桶 5.蠕動泵
EPD-SBR反應(yīng)器的進(jìn)水為模擬生活污水,污水主要特征如下:COD:300mg/L,NH4+-N:7mg/L, PO43--P:2.5mg/L,NO3--N濃度按需配置.調(diào)節(jié)反應(yīng)器內(nèi)pH值為7.2±0.2,溫度為(28±1)℃,接種污泥取自西安市北石橋污水處理廠回流污泥.
ANAMMOX-SBBR反應(yīng)器的進(jìn)水為兩部分,廢水Ⅰ為EPD-SBR反應(yīng)器出水(1.85L),廢水Ⅱ為合成氨氮廢水(0.15L),主要包括NH4+-N:15mg/L (ANAMMOX反應(yīng)器內(nèi)初始濃度),PO43--P:5mg/L (ANAMMOX反應(yīng)器內(nèi)初始濃度).調(diào)節(jié)反應(yīng)器內(nèi)pH值為7.8±0.2,溫度為(28±1)℃,接種污泥取自實驗室成熟的生物膜厭氧氨氧化污泥.
水樣經(jīng)45μm濾紙過濾后,采用納氏試劑分光光度法測定氨氮[21];N-(1-萘基)-乙二胺分光光度法測定亞硝酸鹽氮[21];紫外分光光度法測定硝酸鹽氮[21];COD快速測定儀測定COD;硫酸-蒽酮比色法測定糖原[21];紫外分光光度計法測定PHB[22];重量法測定MLSS及MLVSS[21];哈希-HQ30D型便攜式溶氧儀測定DO;pHS 10便攜式酸度計測定pH值;微生物菌群測定采用16sRNA擴(kuò)增子高通量測序.
1.4.1 糖原的測定方法 樣品預(yù)處理:1.取反應(yīng)器內(nèi)30mL攪拌均勻的污泥樣品放置在50mL干凈的離心管中,首先放入超聲波細(xì)胞破碎機(jī)(25W, 5min),以減少胞外聚合物(EPS)EPS的影響;2.隨后在離心機(jī)內(nèi)重復(fù)3次離心(4000r/min, 5min,4℃),并將每次離心完的樣品倒掉上清液,加入超純水至30mL后搖勻;3.將離心后的污泥樣品置入干凈的超聲管中,用超純水定容至10mL,在超聲波細(xì)胞破碎機(jī)中進(jìn)行破胞(450W,5min);4.取1mL破碎后的污泥樣品置于新的離心管中,超純水定容至20mL;5.取定容后的樣品2mL置于干凈的消解管中,依次加入3mL超純水和1mL 1:1HCl,在消解儀中消解(100℃,h),隨后對樣品進(jìn)行離心(4000r/min, 5min,4℃).
測定方法:蒽酮試劑:精密稱取0.1g蒽酮,加80%濃硫酸使其溶解,搖勻(當(dāng)日配當(dāng)日用).取1mL樣品于消解管,加4mL蒽酮,冷水浴冷卻; 100℃條件下消解10min,取出后冷水浴降至室溫; 620nm下測吸光度.
1.4.2 PHB的測定方法 PHB標(biāo)準(zhǔn)曲線繪制:1.準(zhǔn)確稱取0.01gPHB標(biāo)準(zhǔn)樣品于100mL燒杯中,加入20mL氯仿,在60℃下水浴加熱溶解,冷卻后轉(zhuǎn)移至500mL容量瓶中,用氯仿定容,制備成20mg/mL的PHB使用液;2.再分別取0.25, 0.75, 1, 1.25, 1.5, 2mL該溶液于帶塞的試管中,每個梯度平行重復(fù)3次,70℃下水浴加熱1h使氯仿溶液完全揮發(fā);3.水浴晾涼后,在每個標(biāo)準(zhǔn)系列樣品中加入10mL濃硫酸,塞緊試管后充分混勻,100℃水浴加熱10min,制成0.5, 1, 2, 2.5, 3, 4μg/mL的溶液;4.冷卻后,以濃硫酸做空白對照,在波長235nm下測定吸光度,以PHB濃度為縱坐標(biāo),以吸光度為橫坐標(biāo)繪制標(biāo)準(zhǔn)曲線.
PHB提取測定:實驗中NaClO溶液的配制:30mL原NaClO溶液+70mL蒸餾水.1.取10mL活性污泥定容至30mL,8000r/min離心10min,洗滌并重復(fù)3次;2.濾紙吸干污泥中水分,加入15mL NaClO、5mLCCl4,用力搖晃離心管;3.40℃水浴搖床條件下150r/min振蕩150min;4.用移液槍從下層氯仿相中吸取2mL混有PHB的氯仿于25mL比色管中,105℃烘干去除氯仿(約30min);5.晾涼后加入10mL濃硫酸,密封后搖勻,100℃加熱10min;6.冷卻并混勻,吸取1mL,用蒸餾水稀釋10倍;7.以濃硫酸為空白在235nm處測吸光度.
1.4.3 16srRNA擴(kuò)增子高通量測序方法 將采集的污泥樣品裝入離心管中并立即放入液氮中速凍,交予上海生工公司測序.采用Illumina MiSeq測序平臺對群落DNA片段進(jìn)行雙端測序,得到的PE reads首先根據(jù)overlap關(guān)系進(jìn)行拼接,區(qū)分樣本后對序列質(zhì)量進(jìn)行質(zhì)控和過濾,然后進(jìn)行OTU聚類分析和物種分類學(xué)分析.基于OTU聚類分析結(jié)果,可以對OTU進(jìn)行多種多樣性指數(shù)分析,以及對測序深度的檢測;基于分類學(xué)信息,可以在各個分類水平上進(jìn)行群落結(jié)構(gòu)的統(tǒng)計分析.
EPD反應(yīng)器硝酸鹽轉(zhuǎn)化為亞硝酸鹽的比率(NTR)[13]:
ANAMMOX反應(yīng)器厭氧氨氧化對總氮去除所占的貢獻(xiàn)率[13]:
ANAMMOX反應(yīng)器反硝化對總氮去除所占的貢獻(xiàn)率[13]:
EPD反應(yīng)器中儲存為細(xì)胞內(nèi)碳源的COD (CODintra)[16]:
階段Ⅰ~Ⅲ(1~47d)SBR反應(yīng)器以A/O模式運行,進(jìn)水主要基質(zhì)有機(jī)物及磷酸鹽濃度理論值分別為:300mgCOD/L及2mgPO43--P/L,用來富集培養(yǎng)GAOs菌.
由圖2A可知,Ⅰ~Ⅲ階段SBR進(jìn)水COD為252.1~313.5mg/L,厭氧末和出水COD濃度基本一致(22.61~48.13mg/L),說明在厭氧階段已經(jīng)完成有機(jī)物儲存的過程,幾乎沒有剩余有機(jī)物進(jìn)入好氧段.
(A):SBR進(jìn)出水及厭氧末COD、去除率;(B):PO43--P濃度及去除率
由圖2B可知,在第Ⅰ階段(1~13d),反應(yīng)器內(nèi)有明顯的厭氧釋磷和好氧吸磷現(xiàn)象,系統(tǒng)除磷效果較好.為了抑制反應(yīng)器內(nèi)PAOs菌的活性,在第Ⅱ階段(14~35d)采取厭氧末換水的方式,第16d明顯觀察到厭氧末釋磷量下降.原因是厭氧末將富磷廢水排出后,導(dǎo)致好氧段PAOs菌胞內(nèi)Poly-P積累降低,糖原合成不足,影響下一周期厭氧段儲存PHB的過程,最終導(dǎo)致PAOs菌活性下降[23].第Ⅲ階段(36~47d)取消SBR周期的厭氧末排水,厭氧末PO43--P濃度在3mg/L以下.階段Ⅲ厭氧釋磷量和好氧吸磷量明顯下降,但有機(jī)物去除不受影響,說明COD主要依靠GAOs菌轉(zhuǎn)化為PHB而去除,并且所消耗的能量來源于糖原酵解而不是胞內(nèi)Poly-P水解[24];另外,整個富集培養(yǎng)階段反應(yīng)器中沒有添加硝酸鹽和亞硝酸鹽,不存在普通反硝化菌(DNB)消耗COD的情況.因此,可以認(rèn)為在限磷條件下,通過采用特殊的厭氧/好氧交替運行方式成功富集了GAOs菌.
階段Ⅳ~Ⅴ(48~129d)SBR以A/A/O模式運行, SBR厭氧末投加硝酸鹽(采用蠕動泵投加硝酸鹽,投加時間為1min),硝酸鹽的投加量逐漸增加,缺氧時間由150min延長到180min,階段Ⅵ(130~160d)取消好氧段,SBR以A/A模式運行,從階段Ⅳ到階段Ⅵ,反應(yīng)器的反硝化能力逐漸加強,因此階段Ⅳ~Ⅵ為DGAOs菌的馴化誘導(dǎo)期.
(A)進(jìn)出水、厭氧末COD、COD去除率;(B)缺氧初NO3--N、缺氧末NO2--N及出水NO3--N和NO2--N濃度
由圖3A可知,整個DGAOs菌誘導(dǎo)階段(Ⅳ~Ⅴ), SBR進(jìn)水COD為266.6~311.4mg/L,出水COD為21.26~43.93mg/L,有機(jī)物去除保持穩(wěn)定(平均87.69%).由圖3B可知,第Ⅳ階段(48~101d),反應(yīng)器內(nèi)初始NO3--N濃度由5mg/L逐漸增加至20mg/L,缺氧末NO3--N和NO2--N濃度均接近零.第Ⅴ階段(102~129d),初始NO3--N濃度提高至25mg/L,缺氧末和出水NO2-均有剩余,因此第104d(階段Ⅴ)延長缺氧時間至3h,縮短好氧時間至1h.2周后,出水NO3-和NO2-均無殘留.第Ⅵ(130~ 160d)階段為了進(jìn)一步馴化誘導(dǎo)DGAOs菌,取消好氧段,以厭氧/缺氧交替的模式運行,并增加初始NO3--N濃度至30mg/L,同時延長缺氧時間至4h.第Ⅵ階段前10d出水NO3--N濃度最高為4.57mg/L,缺氧末NO2--N最高為15.22mg/L.但隨著DGAOs菌持續(xù)馴化誘導(dǎo),出水NO3-、NO2-濃度下降,1個月后出水NO3-和NO2-均無殘留,總氮去除率達(dá)到98%以上.結(jié)合COD去除情況,可以認(rèn)為系統(tǒng)中DGAOs菌已經(jīng)馴化誘導(dǎo)成功,并且主導(dǎo)代謝模式為:在厭氧階段,DGAOs菌利用胞內(nèi)糖原酵解產(chǎn)生的能量及還原力(NADH2)吸收COD并轉(zhuǎn)化為PHB儲存在細(xì)胞內(nèi);在缺氧階段,DGAOs菌消耗PHB并還原硝酸鹽,剩余的能量一方面用于微生物生長,另一方面合成糖原為下一周期厭氧階段提供能量儲備[19,25].
圖4 第Ⅵ階段SBR反應(yīng)器典型周期中COD、NO3--N、NO2--N、PO43--P、PHB及糖原變化(第150d)
由圖4可見,在厭氧階段,COD在前30min迅速下降,由139.7mg/L下降至39.75mg/L,而后保持基本不變; PHB由65.91mg/g增加至133.2mg/g,糖原由227.6mg/g下降至139.2mg/g.COD去除和磷釋放基本在厭氧階段前30min內(nèi)完成,后60min主要進(jìn)行PHB合成和糖原降解,代謝規(guī)律與賈淑媛等[26]對GAOs菌的研究基本一致.在厭氧階段釋磷量僅為4.31mg/L,根據(jù)式(8)計算,DPAOs菌對COD去除貢獻(xiàn)為8.04%,說明有機(jī)物快速吸收及胞內(nèi)儲存所需的能量并非來自于胞內(nèi)聚磷水解,而是來自糖原酵解.
在缺氧階段,COD無明顯變化,外碳源的消耗在厭氧段已經(jīng)完成;PHB下降至55.74mg/g,糖原增加至230.5mg/g;NO3--N濃度在前30min內(nèi)由29.04mg/L下降至0.22mg/L, NO2--N濃度隨之增長至最高,為20.12mg/L,隨后NO2--N濃度逐漸降低至0.08mg/L,內(nèi)碳源反硝化過程已經(jīng)完成.在反硝化過程中出現(xiàn)NO2--N先積累后下降情況,原因可能是硝酸鹽還原酶相比亞硝酸鹽還原酶競爭電子能力更強[27],DGAOs菌優(yōu)先利用NO3-作為電子受體進(jìn)行反硝化,利用還原速率差值造成NO2-積累;當(dāng)NO3-消耗殆盡時,DGAOs菌會利用NO2-進(jìn)行反硝化.缺氧磷吸收量為5.73mg/L,根據(jù)DPAOs菌模型(PUA/ NaRA=2.1),DPAOs菌對硝酸鹽去除所做的貢獻(xiàn)為9.47%,表明反應(yīng)器內(nèi)存在少量的DPAOs菌,但COD去除和亞硝酸鹽積累主要是DGAOs菌代謝作用的結(jié)果.
在DGAOs菌馴化誘導(dǎo)成熟后進(jìn)行EPD工藝的脫氮性能研究,整個研究過程共經(jīng)歷60d(第Ⅶ階段(161~220d)).由實驗可知,SBR運行周期內(nèi)COD去除以及內(nèi)碳源儲存在厭氧90min內(nèi)基本完成;并且經(jīng)過30min內(nèi)碳源反硝化,硝酸鹽消耗殆盡,亞硝酸鹽積累達(dá)到頂峰,因此在進(jìn)行EPD工藝的脫氮性能研究過程中將反應(yīng)器周期縮短至3h,厭氧時間和缺氧時間分別縮短至90, 30min.
如圖5所示,在EPD-SBR反應(yīng)器運行期間進(jìn)水COD為269.6~305.9mg/L,厭氧末和出水COD為25.69~42.73mg/L,COD去除率平均為86.74%,說明縮短時間后有機(jī)物去除不受影響,90min厭氧時間足以進(jìn)行有機(jī)物去除和內(nèi)碳源儲存,而且?guī)缀鯖]有易于生物降解的有機(jī)物被DNB菌進(jìn)行外碳源反硝化,而縮短缺氧時間后,SBR反應(yīng)器的NTR立即達(dá)到69.73%,在隨后的60d內(nèi)均保持在60.65%~70.61%,平均65.96%,但與文獻(xiàn)[10-12,16]相比,NTR轉(zhuǎn)化率較低.其原因可能有2方面:本實驗富集培養(yǎng)的DGAOs菌與他們不同,本實驗僅控制了缺氧時間,未對COD/NO3--N及pH值等影響因素進(jìn)行優(yōu)化.
(A)進(jìn)水、厭氧末及出水COD變化情況;(B)缺氧進(jìn)水NO3--N、出水NO3--N、NO3--N及NTR的變化情況
與EPD-SBR耦合的ANAMMOX反應(yīng)器為實驗室內(nèi)運行2a的SBBR反應(yīng)器,進(jìn)水中總氮平均濃度為52.28mg/L,總氮平均去除率達(dá)到79.27%,出水中ΔNO2--N/ΔNH4+-N及ΔNO3--N/ΔNH4+-N分別維持在1.34和0.3左右,通過厭氧氨氧化氮去除量占總無機(jī)氮去除量的比值平均為90.03%,并且觀察到生物膜污泥顏色為淺紅褐色,這是因為AnAOB菌含有大量的細(xì)胞色素C,表明反應(yīng)器內(nèi)AnAOB菌占優(yōu)勢,并且活性較高.
由圖6A可知,耦合工藝中EPD-SBR反應(yīng)器進(jìn)水COD為在285.4~305.8mg/L,有機(jī)物去除保持穩(wěn)定(87.21%),有機(jī)物在EPD-SBR反應(yīng)器中已經(jīng)被DGAOs菌吸收利用,避免外碳源進(jìn)入后續(xù)的ANAMMOX-SBBR反應(yīng)器內(nèi).圖6B表明,耦合工藝中EPD-SBR反應(yīng)器缺氧初始NO3--N平均濃度為28.64mg/L,30min后NO3-消耗殆盡,NO2--N濃度達(dá)到最大值,平均為18.82mg/L,NTR平均為66.49%.該研究表明,EPD工藝可以穩(wěn)定地為ANAMMOX反應(yīng)提供NO2-,同時充分利用進(jìn)水COD并降低能耗.
ANAMMOX-SBBR反應(yīng)器進(jìn)水中的NH4+-N (人工配水)和NO2--N濃度(EPD-SBR的出水)分別平均為13.79,18.92mgN/L,進(jìn)水TN濃度平均為32.71mgN/L(圖6C),總氮去除率(NRE)平均為85.71%.在耦合階段運行的30d內(nèi),ΔNO2--N/ ΔNH4+-N、ΔNO3--N/ΔNH4+-N平均值分別為1.33、0.24,出水NH4+--N濃度接近于零,這與理論值基本一致.其中通過厭氧氨氧化氮去除量占總無機(jī)氮去除量的96.2%(圖6D),進(jìn)一步說明ANAMMOX反應(yīng)是ANAMMOX-SBBR系統(tǒng)內(nèi)主導(dǎo)的生化反應(yīng),說明EPD-ANAMMOX耦合工藝成功啟動.耦合工藝運行的30d內(nèi),COD去除負(fù)荷及去除率的平均值分別為0.337kgCOD/(kgMLSS·d)及87.21%;總氮去除負(fù)荷及去除率的平均值分別為0.222kgN/(m3·d)及86.12%.
圖6 EPD-ANAMMOX耦合工藝運行特性
(A)EPD-SBR反應(yīng)器進(jìn)、出水COD及去除率;(B)EPD-SBR反應(yīng)器進(jìn)出水硝酸鹽氮及出水中NTR;(C)ANAMMOX-SBBR反應(yīng)器進(jìn)、出水TN濃度及去除率(NRE);(D)ANAMMOX-SBBR反應(yīng)器內(nèi)各種途徑脫氮貢獻(xiàn)率
在耦合工藝運行第25d研究了典型周期中EPD系統(tǒng)和ANAMMOX系統(tǒng)中的化學(xué)計量(圖7),揭示了不同功能微生物(例如DNB, DPAOs、DGAOs和AnAOB)在COD、N去除方面的活性.在EPD-SBR反應(yīng)器中,厭氧段COD和NO2--N的變化量分別為97.48,2.25mg/L,釋磷量為6.25mg/L,即DNB菌去除了3.85mg/L (3.95%)外碳源, DPAOs菌和DGAOs菌分別將12.5mg/L (12.82%)、82.13mg/L(83.23%)的外碳源轉(zhuǎn)化為內(nèi)碳源儲存在體內(nèi).EPD-SBR中的磷去除是通過DPAOs菌反硝化除磷來實現(xiàn)的,而NO3-的還原是通過DPAOs菌和DGAOs菌的內(nèi)碳源反硝化來實現(xiàn)的,其中DGAOs菌發(fā)揮了主要作用(99.08%),并且NO2-積累(NTR為66.54%)主要歸因于DGAOs菌的活性.
在ANAMMOX-SBBR反應(yīng)器中,殘留的NO2-(來自EPD-SBR出水)和NH4+(人工配水)的去除主要是通過AnAOB菌的厭氧氨氧化(分別占95.32%和96.98%)完成的.其中DNB菌進(jìn)一步還原了ANAMMOX反應(yīng)產(chǎn)生NO3--N的2.93%,使得總氮去除率達(dá)到81.74%,可見各種菌的協(xié)同作用實現(xiàn)了深度脫氮,出水中NO3--N濃度低至4.2mg/L, NO2-- N和NH4+-N濃度接近于零.因此, EPD-SBR和ANAMMOX-SBBR中功能性微生物的活動闡明了深度脫氮機(jī)理:EPD通過控制厭氧/缺氧時間利用DGAOs菌將NO3-轉(zhuǎn)化為NO2-,既充分利用了碳源又消除了有機(jī)物對AnAOB菌的抑制;ANAMMOX利用EPD穩(wěn)定提供的NO2-實現(xiàn)了深度脫氮的目的.
圖7 在穩(wěn)定的EPD-ANAMMOX過程中,基于化學(xué)計量學(xué)的功能性微生物在C和N去除中的活性定量
圖8A表明,污泥馴化前后Proteobacteria(變形菌門)從41.4%增加至71.24%,Bacteroidetes(擬桿菌門)從21.14%減少至5.75%,Verrucomicrobia(疣微菌門)從3.36%增加至4.29%,Planctomycetes(浮霉菌門)從5.32%減少至4.04%,Chloroflexi(綠彎菌門)從6.61%減少至1.95%,這些都是污水處理廠常見的細(xì)菌門[28].除此之外,Acidobacteria(酸桿菌門)、Firmicutes(厚壁菌門)、Candidatus Saccharibacteria等消失不見.從數(shù)據(jù)來看,污泥馴化后微生物多樣性減少,是因為人工配水水質(zhì)單一,環(huán)境簡單造成的,而變形菌門豐度增加是由于本實驗進(jìn)水及運行條件下培養(yǎng)的優(yōu)勢菌GAOs菌、DNB菌及PAOs菌都屬于變形菌門. Bacteroidetes(擬桿菌門)[29]和Firmicutes(厚壁菌門)[30]豐度減少,這是因為這兩種菌屬于厭氧消化產(chǎn)甲烷過程中的優(yōu)勢菌群,在污水廠較為常見,在EPD-SBR反應(yīng)器馴化過程中逐漸被淘汰掉.
A.門水平,B.屬水平
圖8B表明,γ-變形菌綱(γ-Proteobacteria)的屬,其豐度從0.001%增加至25.06%,它是GAOs菌的優(yōu)勢菌屬.其他GAOs菌包括以及的總豐度從0.14%增加至0.431%.可以還原硝酸鹽或亞硝酸鹽,而僅能還原硝酸鹽[31]為亞硝酸鹽,豐度增加有利于反應(yīng)器內(nèi)NO2-積累.本實驗中EPD-SBR反應(yīng)器以乙酸鈉為單一碳源,對乙酸鈉吸收速率較低,而對丙酸鈉吸收速率較高,則與之相反[32],所以在本實驗反應(yīng)器內(nèi)所占比例較低(0.0513%),這可能是導(dǎo)致本實驗NO2-積累率不高的原因之一.Wang等[17]對EPDPR-SBR反應(yīng)器進(jìn)行微生物群落分析后觀察到,經(jīng)市政廢水馴化后GAOs豐度增加了6%,缺氧段硝酸鹽向亞硝酸鹽的轉(zhuǎn)化率從32.4%顯著提高到77.8%,表明高NTR是由GAOs主導(dǎo)的.
反應(yīng)器內(nèi)的PAOs菌種類較多,其中β-變形菌綱(β-Proteobacteria)的[33]和[34],是豐度較高的PAOs菌屬,其豐度分別從0.09%、0.001%增加至0.259%、0.54%.這表明SBR內(nèi)PAOs菌屬豐度較低,因為在厭氧-換水-好氧交替運行模式下,PAOs菌胞內(nèi)聚磷積累量下降,糖原合成量不足,影響下一周期厭氧階段吸收有機(jī)物,導(dǎo)致PAOs菌生長繁殖受限.在磷限制水平下, GAOs菌豐度(25.49%)遠(yuǎn)遠(yuǎn)高于PAOs菌豐度(2.78%),證明反應(yīng)器內(nèi)內(nèi)碳源反硝化過程主要依靠GAOs菌進(jìn)行.其它菌屬包括以及等總豐度從1.46%增加至2.77%.另外還檢測出了豐度為0.05%的氨氧化菌屬[35],豐度為0.516%的硝化菌屬[36]以及豐度為5.048%的反硝化菌屬[37]等.因為EPD反應(yīng)器上一周期殘留的NO2-會進(jìn)入下一周期作為DNB菌的電子受體,為DNB菌生長提供了條件,所以反應(yīng)器內(nèi)存在一定比例的DNB菌.另外還檢測了豐度為26%的[38],這是因為絲狀菌在反應(yīng)器中要作為污泥骨架存在,與菌膠團(tuán)協(xié)同作用形成顆粒污泥.綜上所述,本實驗EPD-SBR系統(tǒng)中,優(yōu)勢菌屬為,與反應(yīng)器內(nèi)碳源反硝化能力增強的實驗結(jié)果相互印證.
3.1 EPD-SBR反應(yīng)器接種普通活性污泥,以乙酸鈉為碳源,控制進(jìn)水C/P為150:1,并采用厭氧末排水的方式成功實現(xiàn)了GAOs菌的富集;以NO3-為電子受體,成功誘導(dǎo)了DGAOs菌,總氮去除率達(dá)到98%以上.通過縮短SBR周期為3h(厭氧90min/缺氧30min),COD去除率平均為86.74%,NTR平均為65.96%,EPD-SBR反應(yīng)器成功啟動并且EPD出水可作為ANAMMOX反應(yīng)器穩(wěn)定的NO2-來源.
3.2 EPD-ANAMMOX耦合工藝,COD去除負(fù)荷及去除率的平均值分別為0.337kgCOD/(kgMLSS·d)及87.21%;總氮去除負(fù)荷及去除率的平均值分別為0.222kgN/(m3·d)及86.12%.
3.3 EPD-SBR污泥馴化成功后,微生物多樣性下降,數(shù)量增加且豐度最高,為71.24%;從屬水平上講,GAOs豐度最高,為25.06%,是EPD-SBR反應(yīng)器中進(jìn)行內(nèi)碳源短程反硝化的主要功能屬.并且在磷限制水平下,PAOs菌活性受到限制,GAOs菌豐度(25.49%)遠(yuǎn)遠(yuǎn)高于PAOs菌豐度(2.78%),證明反應(yīng)器內(nèi)內(nèi)碳源短程反硝化過程主要依靠GAOs菌進(jìn)行.
[1] 楊延棟,黃 京,韓曉宇,等一體式厭氧氨氧化工藝處理高氨氮污泥消化液的啟動[J]. 中國環(huán)境科學(xué), 2015,35(4):1082-1087.
Yang Y D, Huang J, Han X Y, et al. Start-up of one-stage partial nitrification/anammox process treating ammonium-rich reject water [J]. China Environmental Science, 2015,35(4):1082-1087.
[2] Jiang H, Yang P, Wang Z, et al. Efficient and advanced nitrogen removal from mature landfill leachate via combining nitritation and denitritation with Anammox in a single sequencing batch biofilm reactor [J]. Bioresource Technology, 2021,333:125138.
[3] Cao Y S, van Loosdrecht M C M, Daigger G T. Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies [J]. Applied Microbiology and Biotechnology, 2017,101(4):1365–1383.
[4] Du R, Cao S B, Li B K, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters [J]. Water Research, 2017,108:46-56.
[5] 毛佩玥,付 雪,趙鑫磊,等.短程反硝化的啟動及多參數(shù)優(yōu)化下NO2--N積累特性[J]. 中國環(huán)境科學(xué), 2021,41(3):1189-1198.
Mao P Y, Fu X, Zhao X L, et al, Start-up of partial denitrification and characteristics of nitrite accumulation by multiple factors [J]. China Environmental Science, 2021,41(3):1189-1198.
[6] 牛 萌,王淑瑩,杜 睿,等.甲醇為碳源短程反硝化亞硝酸鹽積累特性[J]. 中國環(huán)境科學(xué), 2017,37(9):3301-3308.
Niu M, Wang S Y, Du R, et al. Nitrite accumulation properties of partial denitrification with methanol as carbon source [J]. China Environmental Science, 2017,37(9):3301-3308.
[7] 董曉瑩,彭黨聰.不同碳氮比下污水反硝化過程中亞硝氮積累的特性研究[J]. 環(huán)境科學(xué)學(xué)報, 2017,37(9):3349-3355.
Dong X Y, Peng D C, Nitrite accumulation in denitrification with different C/N ratios [J]. Acta Scientiae Circumstantiae, 2017,37(9): 3349-3355.
[8] 杜曉娜.反硝化過程中亞硝酸鹽積累影響因素與穩(wěn)定運行[D]. 天津:天津大學(xué), 2016.
Du X N, Factors affecting nitrite accumulation and operation stability during biological denitrification [D]. Tian Jin: Tianjin University, 2016.
[9] 田夏迪,茹臨鋒,呂心濤,等.短程反硝化工藝的研究進(jìn)展與展望[J]. 中國給水排水, 2020,36(2):7-15.
Tian X D, Ru L F, Lv X T, et al. Research progresses and prospect of partial denitrification process [J]. China Water & Wastewater, 2020, 36(2):7-15.
[10] Ji J T, Peng Y Z, Wang B, et al. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD) [J]. Bioresource Technology, 2017,224:140-146.
[11] Ji J T, Peng Y Z, Mai W K, et al. Achieving advanced nitrogen removal from low C/N wastewater by combining endogenous partial denitrification with anammox in mainstream treatment [J]. Bioresource Technology, 2018,270:570-579.
[12] Ji J T, Peng Y Z, Li X Y, et al. Stable long-term operation and high nitrite accumulation of an endogenous partial-denitrification (EPD) granular sludge system under mainstream conditions at low temperature [J]. Bioresource Technology, 2019,289:121634.
[13] Wang X X, Zhao J, Yu D S, et al. Evaluating the potential for sustaining mainstream anammox by endogenous partial denitrification and phosphorus removal for energy-efficient wastewater treatment [J]. Bioresource Technology, 2019,284:302-314.
[14] Ji J T, Peng Y Z, Wang B, et al. A novel SNPR process for advanced nitrogen and phosphorus removal from mainstream wastewater based on anammox, endogenous partial-denitrification and denitrifying dephosphatation [J]. Water Research, 2020,170:115363.
[15] Wu P, Zhang X X, Wang Y G, et al. Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPR + PDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters [J]. Bioresource Technology, 2021,327:124795.
[16] Wang X X, Zhao J, Yu D S, et al. Stable nitrite accumulation and phosphorous removal from nitrate and municipal wastewaters in a combined process of endogenous partial denitrification and denitrifying phosphorus removal (EPDPR) [J]. Chemical Engineering Journal, 2019,355:560-571.
[17] Chu G Y, Yu D S, Wang X X, et al. Comparison of nitrite accumulation performance and microbial community structure in endogenous partial denitrification process with acetate and glucose served as carbon source [J]. Bioresource Technology, 2021,320:124405.
[18] Ji J T, Peng Y Z, Li X Y, et al, A novel partial nitrification- synchronous anammox and endogenous partial denitrification (PN-SAEPD process for advanced nitrogen removal from municipal wastewater at ambient temperatures [J]. Water Research, 2020,175: 115690.
[19] 張 超,陳銀廣.聚糖菌的代謝機(jī)制及生物學(xué)特性研究進(jìn)展[J]. 環(huán)境污染與防治, 2008,30(8):78-81.
Zhang C, Chen Y G, Research advances in the metabolic mechanisms and the microbial characterization of glycogen-accumulating organisms [J]. Environmental Pollution & Control, 2008,30(8):78-81.
[20] 張志劍,周林強,李 慧,等.市政污水處理廠生物除磷運行效能與機(jī)理分析[J]. 中國環(huán)境科學(xué), 2010,30(12):1614-1621.
Zhang Z J, Zhou L Q, Li H, et al, Effectivenesses and mechanism of enhanced biological phosphorus removal (EBPR) of municipal wastewater treatment plants [J]. China Environmental Science, 2010, 3030(12):1614-1621.
[21] 國家環(huán)境保護(hù)總局.水和廢水監(jiān)測分析方法[M]. 北京:中國環(huán)境科學(xué)出版社, 2002:252-354.
State Environmental Protection Administration. Monitoring and analysis methods of water and wastewater [M]. Beijing: China Environmental Science Press, 2002:252-354.
[22] 孫藝萍.聚磷菌的篩選及其體內(nèi)聚磷酸鹽推動PHB積累的研究 [D]. 哈爾濱:東北林業(yè)大學(xué), 2009.
Sun Y P, Screening of phosphate-accumulating organisms and study of Polypho sphate promote the PHB accumulation [D]. Haerbin: Northeast Forestry University, 2009.
[23] 鞠洪海.不同電子受體馴化聚糖菌反硝化過程及N2O釋放特性[J]. 環(huán)境工程, 2020,38(9):113-118.
JV H H. Characterics of denitrification and N2O emission of acclimated glycogen accumulating organisms using diferent electron acceptor [J]. Environmental Engineering, 2020,38(9):113-118.
[24] 王景峰,王 暄,季 民,等.聚糖菌顆粒污泥基于胞內(nèi)儲存物質(zhì)的同步硝化反硝化[J]. 環(huán)境科學(xué), 2006,27(3):473-477.
Wang J F, Wang X, Ji M, et al. Intracellular storage polymer driven simultaneous nitrification and denitrification of GAOs granular sludge [J]. Chinese journal of environmental science, 2006,27(3):473-477.
[25] 韋佳敏,劉文如,程潔紅,等.反硝化除磷的影響因素及聚磷菌與聚糖菌耦合新工藝的研究進(jìn)展[J]. 化工進(jìn)展, 2020,39(11):4608-4618.
Wei J M, Liu W R, Cheng J H, et al. Influencing factors of denitrifying phosphorus removal and advance research on novel process of coupling PAOs and GAOs [J]. Chemical Industry and Engineering Progress, 2020,39(11):4608-4618.
[26] 賈淑媛,王淑瑩,趙 驥,等.馴化后的聚糖菌對NO2--N和NO3--N內(nèi)源反硝化速率的影響[J]. 化工學(xué)報, 2017,68(12):4731-4738.
Jia S Y, Wang S Y, Zhao J, et al. Effect of endogenous denitrification rate of domesticated GAOs on NO2--N and NO3--N [J]. CIESC Journal, 2017,68(12):4731-4738.
[27] Ribera-Guardia A, Marques R, Arangio C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms [J]. Bioresource Technology, 2016, 219:106-113.
[28] Liu W L, Peng Y Z, Ma B, et al. Dynamics of microbial activities and community structures in activated sludge under aerobic starvation [J]. Bioresource Technology, 2017,244:588-596.
[29] 李葉青,景張牧,江 皓,等.微生物組學(xué)及其在厭氧消化中的研究進(jìn)展[J]. 生物技術(shù)通報, 2021,37(1):90-101.
Li Y Q, Jing Z M, Jiang H, et al. Microbiome and its research progress of anaerobic digestion [J]. Biotechnology Bulletin, 2021,37(1):90- 101.
[30] 李 蕾,何 琴,馬 垚,等.厭氧消化過程穩(wěn)定性與微生物群落的相關(guān)性 [J]. 中國環(huán)境科學(xué), 2016,36(11):3397-3404.
Li L, He Q, Ma Y, et al. Investigation on the relationship between process stability and microbial community in anaerobic digestion [J]. China Environmental Science, 2016,36(11):3397-3404.
[31] Oehmen A, Carvalho G, Lopez-Vazquez C M, et al. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms [J]. Water Research, 2010,44(17):4992-5004.
[32] 常 爍,曾 薇.EBPR系統(tǒng)中聚糖菌及其反硝化代謝機(jī)理的研究進(jìn)展[J]. 工業(yè)水處理, 2019,39(9):8-13.
Chang S, Zeng W. Glycogen accumulating organisms and its denitrifying metabolic mechanism in enhanced biological phosphorus removal systems:a review [J]. Industrial Water Treatment, 2019,39(9):8-13.
[33] Zhao W H, Peng Y Z, Wang M X, et al. Nutrient removal and microbial community structure variation in the two-sludge system treating low carbon/nitrogen domestic wastewater [J]. Bioresource Technology, 2019,294:122161.
[34] Roy S, Nirakar P, Yong N G H, et al. Denitrification kinetics indicates nitrous oxide uptake is unaffected by electron competition in Accumulibacter [J]. Water Research, 2021,189:116557.
[35] 于莉芳,汪 宇,滑思思,等.城市污水處理廠進(jìn)水氨氧化菌對活性污泥系統(tǒng)的季節(jié)性影響[J]. 環(huán)境科學(xué), 2021,42(4):1923-1929.
Yu L F, Wang Y, Hua S S, et al. Seasonal effects of influent ammonia oxidizing bacteria of municipal wastewater treatment plants on activated sludge system [J]. Environmental Science, 2021,42(4): 1923-1929.
[36] 史文燕,張 健.硝化桿菌(Nitrobacte)和硝化螺菌(Nitrospira)在脫氮系統(tǒng)中的研究進(jìn)展[J]. 應(yīng)用化工, 2020,49(10):2581-2585.
Shi W Y, Zhang J. Research progress of nitrobacter and nitrospira in the nitrogen removal system [J]. Applied Chemical Industry, 2020, 49(10):2581-2585.
[37] 成 敏.高效除磷活性污泥中功能菌解析及其除磷基因組學(xué)基礎(chǔ)研究 [D]. 西安:西安建筑科技大學(xué), 2018.
Cheng M. Metagenomic analysis of functional bacteria and their phosphorus-removing function of activated sludge in enhanced biological phosphorus removal [D]. Xi'an: XI'AN University of Architecture and Technology, 2018.
[38] 高大文,辛?xí)詵|.MBR膜污染過程中微生物群落結(jié)構(gòu)與代謝產(chǎn)物分析[J]. 哈爾濱工業(yè)大學(xué)學(xué)報, 2014,46(2):26-32.
Gao D W, Xin X D. Analysis of microbial community structure and metabolites during the MBR membrane fouling process [J]. Journal of Harbin Institute of Technology, 2014,46(2):26-32.
Start-up of endogenous partial denitrification and performance of EPD-ANAMMOX coupling process.
ZHANG Xiao-ling1,2*, ZHANG Meng1, CHEN Zi-wei1, ZHANG Zhuo1
(1.School of Water and Environment, Chang’an University, Xi’an 710064, China;2.Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang’an University, Xi’an 710064, China)., 2022,42(2):601~611
This study was designed to evaluate performances of the start-up of endogenous partial denitrification and EPD-ANAMMOX process. The glycogen accumulation bacteria (GAO) were enriched in the anaerobic/aerobic sequence batch reactor (SBR) using the activated sludge as inoculum sludge and the acetate acted as carbon source by regulating the influent COD/P ratio as 150: 1. Then, the GAOs were induced into denitrifying glycogen accumulation bacteria (DGAO) by means of gradually boosting the concentration of added nitrate at the end of anaerobic phase in SBR. Correspondingly, the level of chemical oxygen demand (COD) at the end of anoxic period was almost the same as that at the distal end of anaerobic stage, the total nitrogen removal efficiency and the average COD removal efficiency were over 98% and 86.74% at the end of anaerobic period of SBR, respectively. Furthermore, the endogenous partial denitrification system was successfully formed by shortening the anaerobic and anoxic time, the ratio of nitrite translated from nitrate (NTR) at the end of anoxic period was up to 65.96%. The average total nitrogen and COD removal load in the 30days operation of the coupled process were 0.222kgN/(m3×d) and 0.337kgCOD/(kgMLVSS.d) with an efficiency of 86.12% and 87.21%, respectively. Typically, the effluent NO3--N concentration was lower than 4.2mg/L and both NO2--N and NH4+-N levels were near to 0mg/L in the same phase. Compared with inoculated sludge, the relative abundance ofr increased from 0.001% to 25.06% in the sludge of EPD-SBR during the stable operation period, and the total abundance of,,,andincreased from 0.14% to 0.431%, implying that thewas the dominated functional bacteria for the endogenous partial denitrification system.
endogenous partial denitrification (EPD);the ratio of nitrite translated from nitrate;denitrifying glycogen accumulation bacteria;ANAMMOX
X703.5
A
1000-6923(2022)02-0601-11
張小玲(1976-),女,安徽亳州人,教授,博士,主要研究方向為污水及污泥資源化利用.
2021-05-25
國家自然科學(xué)基金資助項目(51408041)
* 責(zé)任作者, 教授, zhangxiaoling101@126.com