張翊玻,胡萬(wàn)玲,2,王 靜,管 勇,2,林源山,趙盛英
溫室冷卻除濕用翅片管換熱器空氣側(cè)的性能
張翊玻1,胡萬(wàn)玲1,2※,王靜1,管勇1,2,林源山1,趙盛英1
(1.蘭州交通大學(xué)環(huán)境與市政工程學(xué)院,蘭州 730070;2.甘肅省黃河水環(huán)境重點(diǎn)實(shí)驗(yàn)室,蘭州 730070)
為探究溫室環(huán)境對(duì)冷卻除濕系統(tǒng)中親水翅片管換熱器空氣側(cè)性能的影響機(jī)理,在風(fēng)洞營(yíng)造的溫室環(huán)境下(溫濕度分別為285~308 K和60%~90%),對(duì)帶有厚度為0.8m親水涂層的鋁翅片管換熱器進(jìn)行了空氣側(cè)性能試驗(yàn),與無(wú)親水涂層翅片管換熱器空氣側(cè)的性能對(duì)比;分析了進(jìn)口條件對(duì)翅片管換熱器熱質(zhì)傳遞及阻力特性的影響,并對(duì)現(xiàn)有無(wú)親水涂層翅片的性能預(yù)測(cè)關(guān)聯(lián)式進(jìn)行了修正,確保修正后的關(guān)聯(lián)式適用于溫室及相似環(huán)境下帶親水涂層的翅片管換熱器。試驗(yàn)結(jié)果表明,帶親水涂層翅片的傳熱因子、傳質(zhì)因子及摩擦因子均小于無(wú)親水涂層翅片;帶親水涂層翅片的傳熱因子、傳質(zhì)因子及摩擦因子隨空氣側(cè)雷諾數(shù)和制冷劑進(jìn)口溫度的增加而減小,隨相對(duì)濕度的增加而增加;修正后傳熱因子、傳質(zhì)因子和摩擦因子的關(guān)聯(lián)式能夠在±10%的誤差范圍內(nèi)涵蓋92.9%、96.4%和96.4%的試驗(yàn)數(shù)據(jù),3種因子的平均誤差分別為5.1%、5.9%、4.7%。該研究可為溫室及相似環(huán)境下冷卻除濕系統(tǒng)中親水翅片管換熱器的設(shè)計(jì)與應(yīng)用提供參考。
溫室;溫度;濕度;試驗(yàn);冷卻除濕;翅片管換熱器;親水涂層;空氣側(cè)性能
溫室作為中國(guó)重要的農(nóng)業(yè)設(shè)施建筑,為提升居民生活水平做出了巨大貢獻(xiàn)[1-2]。隨著鄉(xiāng)村振興戰(zhàn)略的全面推進(jìn),溫室產(chǎn)業(yè)也得到了長(zhǎng)足的發(fā)展,現(xiàn)有溫室不僅要滿足生產(chǎn)需求,還要針對(duì)溫室作物的特殊生長(zhǎng)需求對(duì)溫室內(nèi)的微氣候熱濕環(huán)境進(jìn)行調(diào)控,以保障作物的產(chǎn)量和品質(zhì)。特別是濕度調(diào)控對(duì)作物的影響極為重要,當(dāng)相對(duì)濕度超出作物適應(yīng)的生長(zhǎng)范圍時(shí)會(huì)導(dǎo)致減產(chǎn)以及催生病害[3-4]。由于溫室特殊的結(jié)構(gòu)和功能使其室內(nèi)濕度普遍較高,高效除濕需求已經(jīng)成為制約溫室產(chǎn)業(yè)發(fā)展的重要技術(shù)難題,諸多學(xué)者為此展開(kāi)了一系列探索。冷卻除濕作為最常用的除濕技術(shù),使得制冷除濕產(chǎn)品在溫室中逐步得到了應(yīng)用。如:袁月明等[5-8]對(duì)除濕機(jī)在溫室應(yīng)用的可行性進(jìn)行了研究分析,并評(píng)價(jià)了其除濕性能。
翅片管換熱器作為冷卻除濕系統(tǒng)的核心組件,空氣側(cè)的熱工性能直接影響到制冷除濕產(chǎn)品的性能。當(dāng)翅片管換熱器除濕時(shí),其翅片表面溫度會(huì)低于濕空氣的露點(diǎn)溫度,濕空氣中水蒸氣在翅片表面被冷卻后析出凝結(jié)液,此時(shí)熱量傳遞和質(zhì)量傳遞同時(shí)發(fā)生[9-10],凝結(jié)液會(huì)阻塞空氣流道增大壓降,也會(huì)占據(jù)翅片換熱面積惡化換熱,而凝結(jié)液流動(dòng)又增加空氣擾動(dòng)強(qiáng)化了換熱,導(dǎo)致凝結(jié)液對(duì)翅片管換熱器的換熱過(guò)程影響較為復(fù)雜[11-12]。當(dāng)前研究人員從換熱器幾何結(jié)構(gòu)和運(yùn)行工況等因素對(duì)濕工況下的翅片管換熱器空氣側(cè)性能展開(kāi)了大量研究,并開(kāi)發(fā)了可預(yù)測(cè)空氣側(cè)性能的關(guān)聯(lián)式[13-15]。濕潤(rùn)性不同的翅片表面凝結(jié)液的形態(tài)不同也會(huì)對(duì)翅片管換熱器空氣側(cè)性能產(chǎn)生影響。Ganesan等[16]對(duì)疏水、親水及無(wú)親水涂層翅片進(jìn)行了對(duì)比,發(fā)現(xiàn)帶親水翅片能促使翅片表面的凝結(jié)液排出并對(duì)換熱性能的影響較小。在溫室高濕環(huán)境下,除濕換熱器內(nèi)凝結(jié)水較多,直接影響了換熱器的傳熱傳質(zhì)及阻力性能,且易滋生細(xì)菌污染被處理的空氣,給溫室作物生長(zhǎng)帶來(lái)病患。然而現(xiàn)有翅片管換熱器空氣側(cè)性能的研究大都是應(yīng)用于人居環(huán)境,針對(duì)溫室環(huán)境的研究相對(duì)較少,并且大多是基于無(wú)親水涂層翅片,對(duì)于親水翅片的相關(guān)研究較為薄弱。
雖然,國(guó)內(nèi)外學(xué)者針對(duì)冷卻除濕技術(shù)在溫室中的應(yīng)用開(kāi)展了大量研究,但是對(duì)于溫室環(huán)境下冷卻除濕系統(tǒng)中翅片管換熱器空氣側(cè)性能影響機(jī)理的基礎(chǔ)研究較為薄弱,特別是帶親水涂層的翅片管換熱器。為此本文通過(guò)風(fēng)洞營(yíng)造了溫室環(huán)境(溫濕度分別為285~308 K和60%~90%),對(duì)帶親水涂層翅片管換熱器在除濕工況下空氣側(cè)的性能展開(kāi)研究,并與無(wú)親水涂層翅片的進(jìn)行對(duì)比。分析不同進(jìn)口條件對(duì)帶親水涂層翅片管換熱器空氣側(cè)熱質(zhì)傳遞及阻力特性的影響,并對(duì)現(xiàn)有無(wú)親水涂層翅片換熱器的傳熱因子、傳質(zhì)因子和摩擦因子的關(guān)聯(lián)式進(jìn)行修正,使其適用于溫室及相似環(huán)境下的親水翅片管換熱器,為溫室及相似環(huán)境下冷卻除濕系統(tǒng)中親水翅片管換熱器的設(shè)計(jì)與應(yīng)用提供參考。
本試驗(yàn)系統(tǒng)如圖1所示,該系統(tǒng)由空氣流量測(cè)量段、空氣溫濕度處理段、換熱器測(cè)試段、制冷劑循環(huán)回路組成??諝饬髁繙y(cè)量段由變頻風(fēng)機(jī)為空氣流動(dòng)提供動(dòng)力,空氣流量根據(jù)標(biāo)準(zhǔn)ASHRAE 41.2[17]通過(guò)壓差測(cè)量?jī)x測(cè)量流量噴嘴前后的壓差計(jì)算得到??諝馓幚矶卧O(shè)有電加熱器、加濕器以及由恒溫槽和換熱器組成的冷卻裝置共同調(diào)節(jié)空氣的溫濕度,為測(cè)試段提供恒溫恒濕的空氣。預(yù)先校準(zhǔn)的8個(gè)T型熱電偶分別置于測(cè)試段的進(jìn)出口,測(cè)量空氣的干球溫度;濕度傳感器用于測(cè)量測(cè)試段進(jìn)出口的相對(duì)濕度;換熱器空氣側(cè)的壓降則通過(guò)壓差測(cè)量?jī)x測(cè)得。為保證氣流的均勻性,在系統(tǒng)內(nèi)的氣流通道上布置了均流板。
1.變頻風(fēng)機(jī) 2.均流板 3.噴嘴 4.壓差測(cè)量?jī)x 5.測(cè)壓環(huán) 6.電加熱器 7.電極式加濕器 8.恒溫槽 9.冷卻換熱器 10.混合器 11.濕度傳感器 12.熱電偶 13.泵 14.流量計(jì) 15.測(cè)試翅片管換熱器
制冷劑循環(huán)回路由恒溫槽、泵和流量計(jì)組成。制冷劑(體積濃度比為40%的乙二醇溶液)在恒溫槽中達(dá)到設(shè)定溫度后由水泵送入測(cè)試換熱器中換熱后再經(jīng)流量計(jì)流回恒溫槽。測(cè)試換熱器制冷劑側(cè)的進(jìn)出口布置有T型熱電偶用于測(cè)量制冷劑進(jìn)出口溫度。在整個(gè)換熱過(guò)程中,濕空氣在翅片間的空氣通道內(nèi)遇冷凝結(jié)發(fā)生相變,制冷劑在管內(nèi)流動(dòng)參與換熱未發(fā)生相變。試驗(yàn)系統(tǒng)均采用保溫處理,以確保熱量損失和試驗(yàn)數(shù)據(jù)滿足標(biāo)準(zhǔn)ASHRAE 33[18]的要求。
本試驗(yàn)測(cè)試段為平翅片管換熱器88 mm×106 mm×151 mm (××),見(jiàn)圖2,詳細(xì)參數(shù)如表1所示。翅片為帶親水涂層和無(wú)親水涂層的鋁翅片,親水層的厚度為0.8m,具體結(jié)構(gòu)和工藝可參考文獻(xiàn)[19]。通過(guò)光學(xué)接觸角測(cè)量?jī)x測(cè)得帶親水涂層和無(wú)親水涂層鋁翅片的表面接觸角分別為25°和70°。結(jié)合不同種類(lèi)溫室作物各生長(zhǎng)階段適宜的溫濕度范圍[20],試驗(yàn)選取了具有代表性的環(huán)境溫濕度和換熱器運(yùn)行工況,具體試驗(yàn)工況如表2所示。
注:L、W和H分別為長(zhǎng)、寬、高,mm;Pt和Pl分別為橫向和縱向管間距,mm;Do為管外徑,mm; δ為翅片厚度, mm; Sp為翅片間距, mm.
表1 測(cè)試翅片管換熱器結(jié)構(gòu)參數(shù)
表2 試驗(yàn)工況
空氣側(cè)換熱量a和制冷劑側(cè)換熱量r由式(1)和式(2)求得。
平均換熱量avg為:
式中a和r分別為空氣側(cè)和制冷劑側(cè)的換熱量,W;a和r分別為空氣側(cè)和制冷劑側(cè)的質(zhì)量流量,kg/s;a,in和a,out為濕空氣進(jìn)出口的焓值,J/kg;r,in和r,out為制冷劑進(jìn)出口溫度,K;c,r為制冷劑的比熱容,J/(kg·K)。
傳熱因子h、傳質(zhì)因子m和摩擦因子是量化翅片管換熱器熱質(zhì)傳遞和壓降特性最常用的無(wú)量綱參數(shù)[19]。
其中
采用凱斯法[21]計(jì)算空氣側(cè)摩擦因子為
式中s為顯熱換熱系數(shù),W/(m2·K);m為傳質(zhì)系數(shù),kg/(m2·s);a,max為空氣側(cè)換熱通道最小截面處的流量,kg/(m2·s);o、min和fr分別為翅片與管外壁的總面積、空氣側(cè)換熱通道的最小截面積和迎風(fēng)面積,m2;Δ為空氣側(cè)壓降,Pa;a,in、a,out和a,m分別為濕空氣進(jìn)口、出口及其平均密度,kg/m3;c,a為空氣的比熱容,J/(kg·K);為普朗特?cái)?shù);為施密特?cái)?shù)。
公式(4)和(5)中空氣側(cè)的顯熱換熱系數(shù)s和傳質(zhì)系數(shù)m是計(jì)算h和m的關(guān)鍵,具體求解過(guò)程見(jiàn)文獻(xiàn)[19,22],求解過(guò)程中主要公式如下:
基于焓差的空氣側(cè)換熱方程為
基于焓的總傳熱系數(shù)o,w計(jì)算式為
空氣側(cè)總傳熱系數(shù)o,w根據(jù)下式計(jì)算:
式中Δm為平均焓差,J/kg;o,w為空氣側(cè)總傳熱系數(shù),W/(m2·K);c和i分別為基于翅根的管外徑和管內(nèi)徑,m;p為管長(zhǎng),m;p為導(dǎo)熱率,W/(m·K);p,i和p,o分別為管內(nèi)外表面積,m2;f為翅片面積,m2;f,wet為濕翅片效率;r為制冷劑側(cè)換熱系數(shù),W/(m2·K);'p、'r、'w,p、'w,m分別為管內(nèi)壁與管外壁溫度之間、制冷劑溫度和管內(nèi)壁溫度之間、管外壁水膜平均溫度、水膜平均溫度的空氣飽和曲線斜率,J/(kg×K)。
當(dāng)濕空氣流經(jīng)換熱器空氣通道時(shí)同時(shí)發(fā)生傳熱和傳質(zhì),可由方程(11)描述。
式中a和a,m分別為濕空氣的含濕量和平均含濕量,kg/kg;s,p,o,m和s,w,m分別為管外壁面溫度和水膜平均溫度的飽和空氣含濕量,kg/kg;a和a,m分別為濕空氣的焓值和平均焓值,J/kg;s,p,o,m和s,w,m分別為管外壁溫度和水膜平均溫度下的飽和空氣焓,J/kg;為翅片因子。
根據(jù)Kline-McClintock法[23]計(jì)算試驗(yàn)不確定度。主要參數(shù)的不確定度如表3所示。
表3 試驗(yàn)參數(shù)的不確定度
當(dāng)空氣進(jìn)口相對(duì)濕度為60%~90%,進(jìn)口空氣流速和溫度分別為2.0 m/s和300 K,制冷劑進(jìn)口溫度為285 K時(shí),親水涂層對(duì)h、m及的影響如圖3所示。由圖3可知,在試驗(yàn)的相對(duì)濕度范圍內(nèi),帶親水涂層翅片的h、m及均小于無(wú)親水涂層翅片。其中親水涂層對(duì)的影響最大,m次之,h最小,帶親水涂層和無(wú)親水涂層的翅片管換熱器、m及h最大相差分別為53.9%、24.8%、16.6%。因?yàn)樵诔凉窆r下凝結(jié)液在2種表面上的存在形式不同,無(wú)親水涂層表面的凝結(jié)液以珠狀形式存在,在一定程度上使得翅片表面粗糙化,空氣側(cè)換熱被增強(qiáng),而帶親水涂層的表面會(huì)形成一層較薄的液膜,相當(dāng)于增加一層熱阻,所以帶親水涂層的翅片管式換熱器空氣側(cè)熱質(zhì)傳遞性能比無(wú)親水涂層的弱。親水涂層對(duì)阻力性能的影響要大于對(duì)熱質(zhì)傳遞性能的影響,這是因?yàn)橐灾闋钚问酱嬖诘哪Y(jié)液會(huì)堵塞空氣通道,而帶親水涂層翅片表面的凝結(jié)液會(huì)聚集成液膜并在重力的作用下加速流出空氣通道,能有效降低空氣側(cè)阻力。
圖3 親水涂層對(duì)jh、jm及f的影響
從圖3中還可發(fā)現(xiàn),隨著相對(duì)濕度的增加,2種翅片表面下的h、m及均呈增長(zhǎng)趨勢(shì)。其中,m的變化最為明顯,相對(duì)濕度從60%增長(zhǎng)到90%時(shí),帶親水涂層和無(wú)親水涂層的m分別增長(zhǎng)了2.3倍和1.9倍。這是由于濕空氣相對(duì)濕度越大,含濕量越大,空氣側(cè)質(zhì)量傳遞增強(qiáng)的緣故。而對(duì)進(jìn)口相對(duì)濕度的變化并不敏感。
上述對(duì)比表明:帶親水涂層對(duì)翅片管換熱器空氣側(cè)熱質(zhì)傳遞及阻力特性的影響較大,現(xiàn)有的無(wú)親水翅片管換熱器的研究結(jié)論已不適用于帶親水涂層翅片管換熱器。
為研究典型溫室環(huán)境下進(jìn)口條件對(duì)帶親水涂層翅片管換熱器空氣側(cè)性能的影響,選擇換熱器空氣進(jìn)口相對(duì)濕度為80%時(shí),分析不同空氣進(jìn)口溫度與制冷劑進(jìn)口溫度下h、m及隨空氣側(cè)雷諾數(shù)的變化規(guī)律。如圖4所示,三者均與雷諾數(shù)呈反比,該趨勢(shì)與無(wú)親水涂層的研究結(jié)果一致[24-25]。在圖4a中h、m及隨著制冷劑進(jìn)口溫度的減小而逐漸增大,m的增大趨勢(shì)最明顯。制冷劑溫度從291 K降至280 K時(shí),m從4.75×10-3增至7.09×10-3,增長(zhǎng)了0.5倍,h從6.99×10-3增至8.34×10-3,增長(zhǎng)了0.2倍。相比之下,幾乎不受制冷劑進(jìn)口溫度的影響。當(dāng)制冷劑進(jìn)口溫度越低時(shí),翅片表面溫度與空氣露點(diǎn)溫度相差越大,此時(shí),翅片表面溫度下的飽和空氣含濕量越小,空氣側(cè)質(zhì)量傳遞的驅(qū)動(dòng)力越大,所以m變大。翅片表面析出的凝結(jié)液增多后,在重力的作用下加速流出空氣通道,凝結(jié)液的擾動(dòng)在一定程度上增強(qiáng)了空氣側(cè)的傳熱使得h也變大。
圖4 進(jìn)口條件對(duì)jh、jm及f的影響 (RHa,in=80%)
圖4b中,在相同的制冷劑溫度下,隨空氣進(jìn)口溫度的增大而略有增長(zhǎng)。當(dāng)空氣進(jìn)口相對(duì)濕度為80%,制冷劑進(jìn)口溫度為285 K,空氣進(jìn)口溫度增至300 K時(shí),h達(dá)到最大,這表明在測(cè)試進(jìn)口空氣溫度范圍內(nèi),該進(jìn)口條件下?lián)Q熱器空氣側(cè)傳熱最大,傳熱性能最優(yōu),此時(shí)再提高空氣進(jìn)口溫度并不能增強(qiáng)空氣側(cè)的傳熱性能。從圖4中還可知,當(dāng)空氣進(jìn)口溫度與制冷劑進(jìn)口溫度相差過(guò)小時(shí),傳熱因子h與傳質(zhì)因子m明顯減小,這是因?yàn)榭諝鈧?cè)的熱質(zhì)傳遞驅(qū)動(dòng)力較小,導(dǎo)致熱量傳遞和質(zhì)量傳遞能力下降。
研究人員在分析影響換熱器空氣側(cè)熱質(zhì)傳遞及阻力特性因素的同時(shí),還致力于開(kāi)發(fā)大量關(guān)聯(lián)式來(lái)預(yù)測(cè)其性能[26-32],他們提出的關(guān)聯(lián)式被廣泛的應(yīng)用在換熱器的熱工設(shè)計(jì)和科學(xué)研究中。本文通過(guò)對(duì)現(xiàn)有的關(guān)聯(lián)式計(jì)算分析,選用了與試驗(yàn)數(shù)據(jù)相對(duì)誤差較小的關(guān)聯(lián)式。Wang等[31]一直致力于翅片管換熱器空氣側(cè)特性的研究,通過(guò)大量的試驗(yàn)獲得了豐富的試驗(yàn)數(shù)據(jù)。Pirompugd等[32]提出了2種評(píng)估濕工況下翅片管換熱器空氣側(cè)性能的方法,并開(kāi)發(fā)了與試驗(yàn)數(shù)據(jù)吻合良好的關(guān)聯(lián)式。其表達(dá)式如下:
傳熱因子h的關(guān)聯(lián)式[32]為
傳質(zhì)因子m的關(guān)聯(lián)式[32]為
摩擦因子的關(guān)聯(lián)式[31]為
式中Dc為基于翅根管外徑的空氣側(cè)雷諾數(shù);p為包含翅片厚度的翅片間距,mm。式(12)~式(14)關(guān)聯(lián)式適用范圍為:1≤≤6,300≤Dc≤5 500,6.93 mm≤c≤10.34 mm,13.6 mm≤l≤22.0 mm,17.7 mm≤t≤25.4 mm,1.19 mm≤p≤3.20 mm,0.115 mm≤≤0.130 mm。
為驗(yàn)證關(guān)聯(lián)式對(duì)本研究試驗(yàn)方法和數(shù)據(jù)的適用性,在關(guān)聯(lián)式適用的工況內(nèi)采用無(wú)親水涂層的翅片換熱器進(jìn)行了試驗(yàn)驗(yàn)證,結(jié)果如圖5所示。
圖5 試驗(yàn)結(jié)果與關(guān)聯(lián)式預(yù)測(cè)值的誤差
由圖5可知,無(wú)涂層情況下h、m及的試驗(yàn)值與相關(guān)預(yù)測(cè)的平均誤差分別為7.54%、7.79%、8.85%,均小于10%,表明在關(guān)聯(lián)式的適用范圍內(nèi),本文試驗(yàn)方法和數(shù)據(jù)是適用的。圖5中不同工況下帶親水涂層翅片管換熱器試驗(yàn)數(shù)據(jù)與文獻(xiàn)[31-32]中關(guān)聯(lián)式預(yù)測(cè)值的誤差對(duì)比結(jié)果表明:文獻(xiàn)中的預(yù)測(cè)值均比試驗(yàn)數(shù)據(jù)大,傳熱因子h、傳質(zhì)因子m、摩擦因子的最大誤差分別達(dá)到52.5%、219.6%、71.1%,平均誤差分別為30.8%、78.5%、29.6%。由此可知,親水涂層改變了凝結(jié)液在翅片表面的存在形態(tài)進(jìn)而影響了換熱器空氣側(cè)的性能,并且空氣進(jìn)口溫度、相對(duì)濕度以及制冷劑進(jìn)口溫度的改變也對(duì)其產(chǎn)生了較大的影響。由于現(xiàn)有的關(guān)聯(lián)式僅考慮了換熱器幾何尺寸和雷諾數(shù)對(duì)無(wú)親水涂層翅片管換熱器空氣側(cè)熱質(zhì)傳遞及阻力特性的影響,導(dǎo)致其不能精準(zhǔn)的預(yù)測(cè)溫室環(huán)境下帶親水涂層翅片管換熱器空氣側(cè)熱質(zhì)傳遞及阻力特性。所以,本文將對(duì)所選關(guān)聯(lián)式進(jìn)行修正使其適用于溫室及相似環(huán)境下的親水翅片管換熱器。
本文根據(jù)試驗(yàn)數(shù)據(jù)運(yùn)用多元非線性回歸方法在所選關(guān)聯(lián)式的基礎(chǔ)上,添加涉及溫度和相對(duì)濕度修正因子的多項(xiàng)式,得到了帶親水涂層翅片管換熱器熱質(zhì)傳遞及阻力特性的關(guān)聯(lián)式,如式(15)~式(17)所示。
修正后的傳熱因子h的關(guān)聯(lián)式為
修正后的傳質(zhì)因子m的關(guān)聯(lián)式為
修正后的摩擦因子的關(guān)聯(lián)式為
對(duì)于帶親水涂層的翅片管換熱器,式(15)~式(17)中關(guān)聯(lián)式修正項(xiàng)的適用范圍為:285 K≤a,in≤308 K,270 K≤r,in≤291 K,60%≤RHa,in≤90%,1 000≤Dc≤4 500。
圖6為修正后關(guān)聯(lián)式預(yù)測(cè)值與所有試驗(yàn)測(cè)試數(shù)據(jù)的對(duì)比。修正后傳熱因子h和傳質(zhì)因子m的關(guān)聯(lián)式在±15%的誤差范圍內(nèi)分別能涵蓋96.4%、100%的試驗(yàn)數(shù)據(jù),在±10%的誤差范圍內(nèi)涵蓋92.9%、96.4%的試驗(yàn)數(shù)據(jù),平均誤差分別為5.1%和5.9%。修正后的摩擦因子的關(guān)聯(lián)式在±10%的誤差范圍內(nèi)能涵蓋96.4%的試驗(yàn)數(shù)據(jù),修正后平均誤差為4.7%。
本文在風(fēng)洞營(yíng)造的溫室環(huán)境下(溫濕度分別為285~308 K和60%~90%),對(duì)比帶親水涂層和無(wú)親水涂層翅片管換熱器空氣側(cè)的性能。研究帶親水涂層翅片管換熱器空氣側(cè)熱質(zhì)傳遞及阻力特性,討論現(xiàn)有無(wú)親水涂層翅片性能預(yù)測(cè)關(guān)聯(lián)式對(duì)親水翅片的適用性并進(jìn)行修正,使修正后的關(guān)聯(lián)式適用于溫室及相似環(huán)境下的親水翅片管換熱器。研究的主要結(jié)論如下:
1)親水涂層會(huì)影響翅片管換熱器空氣側(cè)的性能,帶親水涂層翅片的傳熱因子(h)、傳質(zhì)因子(m)及摩擦因子()均小于無(wú)親水涂層翅片,其中,親水涂層對(duì)的影響最大,表明親水涂層可以加速凝結(jié)水的排出,有效降低空氣側(cè)阻力。
2)在溫室除濕環(huán)境下,帶親水涂層翅片的h、m及均隨著相對(duì)濕度的增加而增加,m的變化最為顯著,而對(duì)進(jìn)口相對(duì)濕度的變化并不敏感。
3)帶親水涂層翅片的h、m及隨空氣側(cè)雷諾數(shù)和制冷劑進(jìn)口溫度的增加而減小,空氣進(jìn)口溫度與制冷劑進(jìn)口溫度相差過(guò)小時(shí),m顯著減小。并且當(dāng)空氣進(jìn)口相對(duì)濕度為80%,制冷劑進(jìn)口溫度為285 K,空氣進(jìn)口溫度增至300 K時(shí),再提高空氣進(jìn)口溫度并不能增強(qiáng)空氣側(cè)的傳熱性能。
4)修正后h、m和的關(guān)聯(lián)式在±10%的誤差范圍內(nèi)分別能涵蓋92.9%、96.4%和96.4%的試驗(yàn)數(shù)據(jù),3種因子的平均誤差分別為5.1%、5.9%、4.7%。
上述結(jié)論可為溫室及相似環(huán)境下冷卻除濕系統(tǒng)中親水翅片管換熱器的設(shè)計(jì)與應(yīng)用提供參考。在后續(xù)研究中筆者還將致力于開(kāi)展更多的試驗(yàn)以進(jìn)一步探索影響機(jī)理和開(kāi)發(fā)出應(yīng)用范圍更廣的關(guān)聯(lián)式。
[1] 李天來(lái). 我國(guó)設(shè)施蔬菜科技與產(chǎn)業(yè)發(fā)展現(xiàn)狀及趨勢(shì)[J]. 中國(guó)農(nóng)村科技,2016(5):75-77.
[2] 齊飛,魏曉明,張躍峰. 中國(guó)設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀與未來(lái)研究方向[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):1-9.
Qi Fei, Wei Xiaoming, Zhang Yuefeng. Development status and future research emphase on greenhouse horticultural equipment and its relative technology in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 1-9. (in Chinese with English abstract)
[3] Amani M, Foroushani S, Sultan M, et al. Comprehensive review on dehumidification strategies for agricultural greenhouse applications[J]. Applied Thermal Engineering, 2020, 181: 115979.
[4] Kempkes F, De Z, Munoz P, et al. Heating and dehumidification in production greenhouses at northern latitudes: Energy use[J]. Acta Horticulturae, 2017(1164): 445-452.
[5] 袁月明,王春野,劉海枝,等. 北方日光溫室的冬季除濕技術(shù)[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,38(1):122-126.
Yuan Yueming, Wang Chunye, Liu Haizhi, et al. Dehumidification technology of solar greenhouse in winter of the northern area[J]. Journal of Jilin Agricultural University, 2016, 38(1): 122-126. (in Chinese with English abstract)
[6] Chantoiseau E, Migeon C, Chasseriaux G, et al. Heat-pump dehumidifier as an efficient device to prevent condensation in horticultural greenhouses[J]. Biosystems Engineering, 2016, 142: 27-41.
[7] Cámara-Zapata J M, Sánchez-Molina J A, Rodríguez F, et al. Evaluation of a dehumidifier in a mild weather greenhouse[J]. Applied Thermal Engineering, 2018, 146: 92-103.
[8] 張?jiān)? 基于日光溫室冬季除濕需求的除濕機(jī)除濕性能實(shí)驗(yàn)研究[D]. 蘭州:蘭州交通大學(xué),2021.
Zhang Yun. Experimental Study on Dehumidification Performance of Dehumidifier Based on Winter Dehumidification Demand For Solar Greenhouse[D]. Lanzhou: Lanzhou Jiaotong University, 2021. (in Chinese with English abstract)
[9] 胡萬(wàn)玲,姜林秀,張程,等. 析濕工況下翅片材質(zhì)對(duì)管翅式換熱器性能影響的實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報(bào),2019,40(7):1642-1647.
Hu Wanling, Jiang Linxiu, Zhang Cheng, et al. The effect of fin material on the airside performance of tube-fin heat exchanger under dehumidifying conditions[J]. Journal of Engineering Thermophysics, 2019, 40(7): 1642-1647. (in Chinese with English abstract)
[10] 胡萬(wàn)玲,張程,唐睿,等. 日光溫室冷凝除濕蒸發(fā)器強(qiáng)化傳熱傳質(zhì)的數(shù)值分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):221-228.
Hu Wanling, Zhang Cheng, Tang Rui, et al. Numerical analysis of enhanced heat-mass transfer in evaporator for condensing dehumidification in solar greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2020, 36(9): 221-228. (in Chinese with English abstract)
[11] 莊大偉. 析濕工況下?lián)Q熱器翅片表面冷凝液滴行為的數(shù)值模擬與實(shí)驗(yàn)驗(yàn)證[D]. 上海:上海交通大學(xué),2015.
Zhang Dawei. Simulation and Experimental Validation of Condensing Droplet Behaviors on Fin Surfaces in Heat Exchangers under Wet Conditions[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese with English abstract)
[12] Kim N H, Kim C H, Han H S. An airside performance of the wavy fin-and-tube heat exchangers having oval tubes[J]. Applied Thermal Engineering, 2021, 190(9/10): 116807.
[13] Zhang G H, Wang B L, Li X T, et al. Review of experimentation and modeling of heat and mass transfer performance of fin-and-tube heat exchangers with dehumidification[J]. Applied Thermal Engineering, 2019, 146: 701-717.
[14] Sadeghianjahromi A, Wang C C. Heat transfer enhancement in fin-and-tube heat exchangers-A review on different mechanisms[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110470.
[15] Hu W L, Ma A J, Guan Y, et al. Experimental study of the air side performance of fin-and-tube heat exchanger with different fin material in dehumidifying conditions[J]. Energies, 2021, 14(21): 7030.
[16] Ganesan P, Vanaki S M, Thoo K K, et al. Air-side heat transfer characteristics of hydrophobic and super-hydrophobic fin surfaces in heat exchangers: A review[J]. International Communications in Heat and Mass Transfer, 2016, 74: 27-35.
[17] US-ASHRAE.Standard methods for laboratory air-flow measurement: ASHRAE standard 41.2-2022 [S]. Atlanta: American Society ofHeating, Refrigerating and Air-Conditioning Engineers, 2022.
[18] US-ASHRAE. Method of testing forced circulation air cooling and air heating coils: ASHRAE Standard 33-2016 [S]. Atlanta: AmericanSociety of Heating, Refrigerating and Air-Conditioning Engineers,2016.
[19] 馬小魁. 空調(diào)蒸發(fā)器空氣側(cè)特性及系統(tǒng)制冷劑分布[D]. 上海:上海交通大學(xué),2008.
Ma Xiaokui. Airside Characteristics of Evaporator and Refrigerant Distribution of Air-conditioner[D]. Shanghai: Shanghai Jiaotong University, 2008. (in Chinese with English abstract)
[20] 李天來(lái). 日光溫室蔬菜栽培理論與實(shí)踐[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2013:163-208.
[21] 凱斯 W M,倫敦 A L.緊湊式換熱器 [M]. 宣益民,張后雷,譯. 北京:科學(xué)出版社, 1997:39-53.
[22] Pirompugd W, Wongwises S, Wang C C. Simultaneous heat and mass transfer characteristics for wavy fin-and-tube heat exchangers under dehumidifying conditions[J]. International Journal of Heat and Mass Transfer, 2006, 49(1/2): 132-143.
[23] Altun A H, Nacak H, Canli E. Effects of trapezoidal and twisted trapezoidal tapes on turbulent heat transfer in tubes[J]. Applied Thermal Engineering, 2022, 211: 118386.
[24] 李曉宇,陶文銓. 干濕工況平直翅片傳熱傳質(zhì)特性數(shù)值模擬[J]. 工程熱物理學(xué)報(bào),2022,43(4):1034-1040.
Li Xiaoyu, Tao Wengquan, Numerical investigation of heat and mass transfer characteristics of plain fin under both dry and wet condition[J]. Journal of Engineering Thermophysics, 2022, 43(4): 1034-1040. (in Chinese with English abstract)
[25] Liu Y C, Wongwises S, Chang W J, et al. Airside performance of fin-and-tube heat exchangers in dehumidifying conditions - Data with larger diameter[J]. International Journal of Heat and Mass Transfer, 2010, 53(7/8): 1603-1608.
[26] Pirompugd W, Wang C C, Wongwises S. Finite circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under fully and partially wet surface conditions[J]. International Journal of Heat and Mass Transfer, 2007, 50(3/4): 552-565.
[27] Wang C C, Lin Y T, Lee C J. An airside correlation for plain fin-and-tube heat exchangers in wet conditions[J]. International Journal of Heat and Mass Transfer, 2000, 43(10): 1869-1872.
[28] Kim N H, Youn B, Webb R L. Air-side heat transfer and friction correlations for plain fin-and-tube heat exchangers with staggered tube arrangements[J]. Journal of Heat Transfer, 1999, 121(3): 662-667.
[29] Kim Y, Kim Y. Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch[J]. International Journal of Refrigeration, 2005, 28(6): 851-858.
[30] Pirompugd W, Wang C C, Wongwises S. A fully wet and fully dry tiny circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under dehumidifying conditions[J]. Journal of Heat Transfer, 2007, 129(9): 1256-1267.
[31] Wang C C, Hsieh Y C, Lin Y T. Performance of plate finned tube heat exchangers under dehumidifyingconditions [J]. Journal of Heat Transfer, 1997,119(1): 109-117.
[32] Pirompugd W, Wang C C, Wongwises S. The new mathematical models for plain fin-and-tube heat exchangers with dehumidification[J]. Journal of Heat Transfer, 2015, 137(3): 031801.
Airside performance of fin-tube heat exchangers for cooling dehumidification in greenhouses
Zhang Yibo1, Hu Wanling1,2※, Wang Jing1, Guan Yong1,2, Lin Yuanshan1, Zhao Shengying1
(1.,,730070,; 2.,730070,)
Cooling-dehumidification technology is gradually applied to the semi-closed structure of the greenhouse. The reason can be that the indoor air humidity is usually higher than the suitable growth range of the planted crops. Among them, the airside performance of the fin-tube heat exchangers directly dominates the efficiency of the cooling-dehumidification system. In this study, a systematic investigation was made to clarify the influence mechanism of the greenhouse environment on the airside performance of the aluminum fin-tube heat exchangers with the hydrophilic coating (thickness 0.8m). An airside performance experiment was then conducted on the greenhouse environment created by a wind tunnel, in which the air temperature was 285 to 308 K and the relative humidity was 60% to 90%. The experimental platform of the wind tunnel consisted of the airflow rate measurement, the air temperature and humidity treatment, the fin-tube heat exchanger test, and the refrigerant circulation circuit, according to the American Society of Heating Refrigerating and Air conditioning Engineer (ASHRAE) standards. A comparison was made on the airside performance of the exchanger with and without hydrophilic coating. The correlation analysis was carried out between the predicted and experimental data, in terms of the heat transfer, mass transfer, and friction factor for those without hydrophilic fins. It was found that the predicted values deviated significantly from the experimental data. By contrast, multiple nonlinear regression was utilized to add the correction factors of temperature and relative humidity into the correlations of the fin-tube heat exchanger without hydrophilic coating. The new correlation was then applied to the fin-tube heat exchangers with the hydrophilic coating in the greenhouse environment. The results showed that the hydrophilic coating dominated the airside performance of the fin-tube heat exchanger in the greenhouse environment. The heat transfer factor, mass transfer factor, and friction factor of the fins with the hydrophilic coating were smaller than that of those without hydrophilic coating, in which the hydrophilic coating posed the most significant effect on the friction factor. The maximum difference in the friction factor of fin-tube heat exchangers with and without hydrophilic coating was 53.9%, indicating that the fins with the hydrophilic coating effectively promoted the discharge of condensate. The heat transfer factor, mass transfer factor, and friction factors of the fins with the hydrophilic coating decreased with the increase of airside Reynolds number and refrigerant inlet temperature, but increased with the rise of relative humidity. The mass transfer factor was more sensitive to the inlet relative humidity. Once the inlet temperature of refrigerant was 285 K, the inlet air relative humidity was 80%, and the air inlet temperature increased to 300 K, indicating the maximum heat transfer factor. There was no influence of the air inlet temperature on the heat transfer performance of the airside in this case. The predicted values of the selected correlation of the smallest deviation were larger than the experimental data. The maximum deviation reached 52.5%, 219.6%, and 71.1% for the heat transfer factor, mass transfer factor, and friction factor, respectively. The new correlations for the corrected heat transfer factor, mass transfer factor, and friction factor were 92.9%, 96.4%, and 96.4% of the experimental data within ±10%, after the correction factors were introduced for the temperature and relative humidity into the selected correlations. The mean deviation of the heat transfer factor, mass transfer factor, and friction factor were 5.1%, 5.9%, and 4.7%, respectively. The finding can provide a strong reference for the thermal design and application of fin-tube heat exchangers with the hydrophilic coating in the cooling-dehumidification systems of the greenhouse.
greenhouses; temperature; humidity; experiment; cooling-dehumidification; fin-tube heat exchangers; hydrophilic coating; airside performance
10.11975/j.issn.1002-6819.2022.21.024
TK124
A
1002-6819(2022)-21-0205-07
張翊玻,胡萬(wàn)玲,王靜,等. 溫室冷卻除濕用翅片管換熱器空氣側(cè)的性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(21):205-211.doi:10.11975/j.issn.1002-6819.2022.21.024 http://www.tcsae.org
Zhang Yibo, Hu Wanling, Wang Jing, et al. Airside performance of fin-tube heat exchangers for cooling dehumidification in greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 205-211. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.21.024 http://www.tcsae.org
2022-08-24
2022-10-28
國(guó)家自然科學(xué)基金項(xiàng)目(51868035,51866006);甘肅省優(yōu)秀研究生創(chuàng)新之星項(xiàng)目(2022CXZX-562);蘭州交通大學(xué)百名青年優(yōu)秀人才培養(yǎng)計(jì)劃基金資助項(xiàng)目(2018[103])
張翊玻,研究方向?yàn)閾Q熱器強(qiáng)化傳熱傳質(zhì)研究。Email:12201123@stu.lzjtu.edu.cn
胡萬(wàn)玲,博士,教授,碩士導(dǎo)師,研究方向?yàn)閺?qiáng)化傳熱傳質(zhì)與溫室熱濕環(huán)境調(diào)控技術(shù)。Email:huwanlling@mail.lzjtu.cn