段雅婕 郭志祥 曾莉 李舒 劉立娜 胡會(huì)剛 李偉明 白亭亭
摘 ?要:香蕉生產(chǎn)受多種病蟲害和逆境脅迫的影響,由真菌病原引起的香蕉枯萎病、葉斑病和黑星病,細(xì)菌性病害軟腐病和鞘腐病,以及非生物脅迫寒害等,是阻礙香蕉綠色可持續(xù)生產(chǎn)的嚴(yán)重問題。為探索香蕉生產(chǎn)上多種病害和寒害逆境的有效防控措施,本研究從外源水楊酸(SA)誘導(dǎo)植物系統(tǒng)抗性機(jī)理出發(fā),通過實(shí)時(shí)熒光定量PCR(RT-qPCR)方法,分析外源水楊酸對(duì)香蕉系統(tǒng)抗性相關(guān)基因的誘導(dǎo)表達(dá)情況。結(jié)果顯示,外源水楊酸能誘導(dǎo)感病品種‘巴西蕉’和抗病品種‘農(nóng)科1號(hào)’香蕉植株內(nèi)水楊酸合成途徑關(guān)鍵基因顯著上調(diào)表達(dá),‘巴西蕉’中SK基因的相對(duì)表達(dá)量為對(duì)照的1.5倍以上,而‘農(nóng)科1號(hào)’中該基因的相對(duì)表達(dá)量為對(duì)照的30倍以上;PAL基因在施用SA的‘巴西蕉’和‘農(nóng)科1號(hào)’中整體表現(xiàn)出顯著上調(diào)的趨勢(shì),在SA處理的‘農(nóng)科1號(hào)’中,最高顯著上調(diào)表達(dá)12.5倍,最低顯著上調(diào)表達(dá)1.4倍,而在‘巴西蕉’中,最高顯著上調(diào)表達(dá)3.1倍,最低顯著上調(diào)表達(dá)1.7倍,SK和PAL 2個(gè)基因在抗病品種‘農(nóng)科1號(hào)’中的上調(diào)幅度遠(yuǎn)遠(yuǎn)高于感病品種‘巴西蕉’;SA對(duì)CS和ICS基因的誘導(dǎo)上調(diào)幅度低于3倍,但在抗病品種‘農(nóng)科1號(hào)’中的上調(diào)幅度仍高于感病品種‘巴西蕉’。信號(hào)傳導(dǎo)途徑轉(zhuǎn)錄因子NPR1和TGA、PR1基因顯著上調(diào)表達(dá),并且‘農(nóng)科1號(hào)’比‘巴西蕉’誘導(dǎo)效果更明顯。通過測(cè)定水楊酸處理的香蕉抗病相關(guān)基因?qū)怄哏牭毒虐蛯;蜔釒?號(hào)生理小種(Fusarium oxysporum f. sp. cubense tropical race 4, TR4)的響應(yīng)情況,結(jié)果表明,TR4接種3 d可抑制‘巴西蕉’中多數(shù)PAL、NPR1和PR1基因的表達(dá),但不會(huì)抑制‘農(nóng)科1號(hào)’中多數(shù)PAL、NPR1和PR1基因的表達(dá);在SA和TR4雙重作用時(shí),2個(gè)香蕉品種中的PAL、NPR1和PR1抗病相關(guān)基因被強(qiáng)烈誘導(dǎo)上調(diào)表達(dá),PAL和POD防御酶活性顯著增強(qiáng)。表明外源水楊酸具有誘導(dǎo)香蕉系統(tǒng)抗性抵御多種生物和非生物脅迫的潛在作用。本研究為香蕉生產(chǎn)上綜合防控各種病害及提高香蕉抗逆性提供理論基礎(chǔ)。
關(guān)鍵詞:香蕉;誘導(dǎo)抗性;抗性基因;生物與非生物脅迫
中圖分類號(hào):S668.1 ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A
Analysis of Expression of Systemic Acquired Resistance-related Genes in Banana Induced by Exogenous Salicylic Acid
DUAN Yajie1, GUO Zhixiang2, ZENG Li2, LI Shu2, LIU Lina2, HU Huigang1, LI Weiming1, BAI Tingting2*
1. South Asia Tropical Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences / Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs / Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong 524091, China; 2. Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, China
Abstract: Banana production is affected by a variety of diseases, pests and abiotic stresses. Banana Fusarium wilt, sigatoka and black spot caused by fungal pathogens, soft rot and sheath rot caused by bacteria, abiotic stresses such as cold damage, are serious problems hindering banana green sustainable production. In order to explore effective prevention and control measures for a cultivar of diseases and cold stress in banana production, this study started from the mechanism of exogenous salicylic acid inducing plant system resistance, and analyzed the induced expression of exogenous salicylic acid (SA) on banana systemic resistance-related genes by the real-time fluorescent quantitative PCR (RT-qPCR) method. Results showed that exogenous SA could induce significant up-regulation of key genes in the SA synthesis pathway in banana plants. The relative expression level of SK gene in SA-treated susceptible ‘Brazilian’ was more than 1.5 folds than that in the control ‘Brazilian’, while the relative expression level of this gene in SA-treated tolerant ‘Nongke No. 1’ was more than 30 folds than that in the control ‘Nongke No. 1’. The PAL genes showed a significant up-regulation trend in both of SA-treated ‘Brazilian’ and ‘Nongke No. 1’. In the SA-treated ‘Nongke No. 1’, the highest significantly up-regulated expression of PAL was 12.5 folds, and the lowest significantly up-regulated expression was 1.4 folds. While in SA-treated ‘Brazilian’, the highest significantly up-regulated expression of PAL was 3.1 folds and the lowest significantly up-regulated expression was 1.7 folds. The up-regulation of SK and PAL genes in the tolerant cultivar ‘Nongke No. 1’ treated with SA was much higher than that in the susceptible cultivar ‘Brazilian’ treated with SA. SA induced up-regulation of CS and ICS genes by no more than 3 folds, but it still showed that the up-regulation in the tolerant cultivar ‘Nongke No. 1’ was higher than that in the susceptible cultivar ‘Brazilian’. NPR1, TGA, and PR1 genes were induced significantly up-regulated in both two cultivars. And ‘Nongke No. 1’ had a more obvious induction effect than ‘Brazilian’. The response of TR4-resistance genes in SA-treated bananas was also determined. Results showed that TR4 inoculation for 3 days could inhibit the expression of most PAL, NPR1 and PR1 genes in ‘Brazilian’, but not in ‘Nongke No. 1’. Under the dual treatment of SA and TR4, the TR4-resistance genes of PAL, NPR1 and PR1 in the two banana cultivars were strongly induced to be up-regulated. The activities of PAL and POD defense enzymes were significantly enhanced. This indicated that exogenous SA has the potential to induce systemic resistance in bananas against a variety of biotic and abiotic stresses. This research provides a theoretical basis for the comprehensive prevention and control of various diseases in banana production and the improvement of banana resistance.
Keywords: banana; induced resistance; resistant gene; biotic and abiotic stresses
DOI: 10.3969/j.issn.1000-2561.2022.01.002
香蕉是世界上貿(mào)易量最大的水果,也是非洲和南美洲等地?cái)?shù)億人賴以為生的糧食作物,我國是世界香蕉生產(chǎn)第二大國,也是世界香蕉消費(fèi)第一大國[1-2]。香蕉生產(chǎn)上受多種限制因素的影響,目前全球香蕉產(chǎn)業(yè)首要面臨的最嚴(yán)重威脅是香蕉枯萎病,該病由尖孢鐮刀菌古巴?;蜔釒?號(hào)生理小種(Fusarium oxysporum f. sp. cubense tropical race 4, TR4)引起,到2019年5月,香蕉枯萎病在我國廣東、海南、廣西、福建和云南的香蕉主產(chǎn)區(qū)均有發(fā)生,生產(chǎn)上缺乏理想的防控技術(shù),主要原因是目前未發(fā)現(xiàn)對(duì)枯萎病完全免疫的香蕉品種;化學(xué)農(nóng)藥和土壤消毒劑應(yīng)用于大田的防治效果不明顯,并且對(duì)土壤生態(tài)系統(tǒng)破壞較大;生物拮抗菌的應(yīng)用可以直接抑制土壤中病原菌的生長蔓延,延緩香蕉枯萎病的發(fā)病時(shí)間,但拮抗菌在土壤中不易定殖的問題限制了其對(duì)枯萎病的防控效果;近年研發(fā)的香蕉枯萎病綜合防控措施在香蕉枯萎病防控中取得了初步的效果[1],但也因防控技術(shù)復(fù)雜而未完全解決香蕉枯萎病的問題。
除香蕉枯萎病外,由真菌病原菌侵染引起的香蕉葉斑病和黑星病、細(xì)菌性軟腐病和鞘腐病、非生物脅迫如寒害等,也是阻礙香蕉綠色生產(chǎn)的嚴(yán)重問題,尤其我國絕大部分香蕉產(chǎn)區(qū)都易受冬春寒流的侵襲,往往致使大規(guī)模蕉園遭受寒害影響[3],而輕微的寒害致使香蕉組織破裂,又增加了病害的發(fā)生,面對(duì)上述諸多問題,在香蕉生產(chǎn)上尚無統(tǒng)一有效的解決方法。誘導(dǎo)抗病性和抗逆性是植物潛在的免疫機(jī)制,可提高對(duì)各種脅迫的抵抗能力,是一種更為主動(dòng)、經(jīng)濟(jì)、有效的抗性反應(yīng)方式,具有重要的理論研究意義和實(shí)際應(yīng)用價(jià)值[4]。
植物內(nèi)源水楊酸(SA)是誘導(dǎo)植物產(chǎn)生系統(tǒng)獲得抗性(SAR)的信號(hào)物質(zhì),它在植物體內(nèi)具有多種生理調(diào)節(jié)作用,外施SA可誘導(dǎo)植物體內(nèi)SA的積累,提高植物對(duì)多種生物和非生物脅迫的抵抗力[5-13]。SA在植物中具有2種合成途徑:一種是異分支酸合酶(ICS)途徑,分支酸經(jīng)由ICS催化形成異分支酸,然后再由異分支酸丙酮酸裂解酶催化轉(zhuǎn)變?yōu)樗畻钏醄14];另一種是苯丙氨酸解氨酶(PAL)途徑,苯丙氨酸被PAL催化產(chǎn)生肉桂酸,肉桂酸經(jīng)由幾步催化轉(zhuǎn)化成水楊酸[15]。病程相關(guān)基因非表達(dá)子(NPR1)是植物SAR信號(hào)傳導(dǎo)過程關(guān)鍵的轉(zhuǎn)錄因子,位于SA合成途徑的下游,NPR1與TGA等轉(zhuǎn)錄因子相互作用激活包括病程相關(guān)蛋白(PR)在內(nèi)的許多抗病相關(guān)蛋白的產(chǎn)生[16];NPR1同時(shí)在植物低溫脅迫應(yīng)答中,通過與其他轉(zhuǎn)錄因子作用,促進(jìn)低溫誘導(dǎo)的熱脅迫應(yīng)答基因的表達(dá),從而提高植物的低溫適應(yīng)能力[17-18]。因此,NPR1是介導(dǎo)植物生物脅迫與非生物脅迫的重要調(diào)控因子。
SA誘導(dǎo)抗性機(jī)制對(duì)農(nóng)作物具有重要的保護(hù)作用,且SA具有高效、廣譜、對(duì)環(huán)境無害、使用簡單、成本低廉等優(yōu)點(diǎn)。但是,國內(nèi)外研究往往把SA對(duì)植物的保護(hù)作用局限于對(duì)某一種病害的抗性研究或非生物脅迫的抗逆性研究,尚未從整體水平研究SA對(duì)多種生物與非生物脅迫的系統(tǒng)誘導(dǎo)抗性。本研究基于前期轉(zhuǎn)錄組數(shù)據(jù),獲得香蕉水楊酸合成途徑和誘導(dǎo)抗性相關(guān)的關(guān)鍵基因序列,在此基礎(chǔ)上,對(duì)香蕉幼苗外施水楊酸,掌握香蕉水楊酸途徑相關(guān)基因誘導(dǎo)表達(dá)變化情況,為系統(tǒng)提高香蕉同時(shí)對(duì)多種生物與非生物脅迫的抗性提供理論基礎(chǔ)。
1 ?材料與方法
1.1 ?材料
‘巴西蕉’(Musa acuminate L. AAA group, ‘Brazilian’)和‘農(nóng)科1號(hào)’(Musa acuminate L. AAA group, ‘Nongke No.1’)組培苗購于中國科學(xué)院華南植物研究所香蕉組培中心,將上述組培苗栽種于盛有無菌泥炭土和椰糠(比例為1∶1)的直徑10 cm的盆缽內(nèi),置于溫室中培養(yǎng)約80 d,選擇6~7片葉且長勢(shì)一致的香蕉幼苗用于SA處理,實(shí)驗(yàn)期間溫室的氣溫為25~37℃,每月施用1次復(fù)合肥,保障香蕉生長所需的營養(yǎng)。
1.2 ?方法
1.2.1 ?實(shí)驗(yàn)設(shè)計(jì)及樣品收集 ?稱取SA(酷來搏CS9641)10 g溶于甲醇配成300 mmol/L母液,再將母液溶于單蒸水中配成300 μmol/L的工作液。對(duì)‘巴西蕉’和‘農(nóng)科1號(hào)’香蕉幼苗采用300 μmol/L的SA進(jìn)行灌根處理,每株植株直接澆灌50 mL水楊酸溶液,每2 d處理1次,連續(xù)處理5次,SA未處理的對(duì)照每盆澆灌等量的清水,共計(jì)2個(gè)處理:SA處理的‘巴西蕉’和SA處理的‘農(nóng)科1號(hào)’;2個(gè)對(duì)照:清水處理的‘巴西蕉’和清水處理的‘農(nóng)科1號(hào)’,每個(gè)處理和對(duì)照均設(shè)5個(gè)生物重復(fù)。共重復(fù)3次。分別在處理3次(SA-3)和5次(SA-5)1 d后,采集根組織樣品,樣品置于–80℃冰箱,保存?zhèn)溆谩?/p>
SA連續(xù)處理5次后間隔1 d,采用傷根灌根法接種TR4于‘巴西蕉’和‘農(nóng)科1號(hào)’香蕉幼苗,接種濃度為5×106 CFU/mL。分別采集清水處理的對(duì)照(CK)、接種TR4后3 d(TR4)、SA處理加TR4接種3 d(SA+TR4)的根組織樣品。每個(gè)處理和對(duì)照均設(shè)5個(gè)生物重復(fù),樣品置于–80℃冰箱,保存?zhèn)溆谩?/p>
1.2.2 ?酶活測(cè)定 ?參照過氧化物酶(POD)和多酚氧化酶(PPO)粗酶液的抽提方法[19-21]:取0.5 g植物材料,加入5 mL的0.05 mol/L磷酸鹽緩沖液(pH 7.0,含1%聚乙烯吡咯烷酮),冰浴條件下充分研磨后轉(zhuǎn)移至離心管中,4℃在12 000 r/min條件下離心20 min,上清液即為防御酶粗提取液。苯丙氨酸解氨酶(PAL)粗酶液的抽提方法:取0.5 g植物材料,加入5 mL的0.1 mol/L硼酸緩沖液(pH 8.8,含0.3 g/L巰基乙醇),冰浴條件下充分研磨后轉(zhuǎn)移至離心管中,4℃在12 000 r/min條件下離心20 min,上清液即為PAL酶粗提取液。
POD酶活測(cè)定參照SCHAFFRATH等[19]的方法,在反應(yīng)體系中加有0.1 mL粗酶液、2.8 mL 0.05 mol/L磷酸鹽緩沖液(pH 7.0,含18 μmol/L愈傷木酚),再加入0.1 mL 0.1%(V/V)的過氧化氫啟動(dòng)反應(yīng),在470 nm波長下測(cè)定△OD值30 s內(nèi)的變化。以每30 s增加0.01為1個(gè)酶活力單位(U),酶活性以U/mg表示。每個(gè)樣品重復(fù)測(cè)定3次。
PAL酶活性測(cè)定參照KOUKOL等[20]的方法進(jìn)行,在反應(yīng)體系中加入1 mL酶粗提取液、2 mL硼酸緩沖液、1 mL濃度為0.02 mol/L的苯丙氨酸溶液,于30℃水浴30 min,隨后加入0.2 mL的濃度為6 mol/L的鹽酸終止反應(yīng),用不含有酶液的混合液作為參照,290 nm下測(cè)定吸光光度。以每分鐘增加0.01為1個(gè)酶活力單位(U),酶活性以U/mg表示,每個(gè)樣品重復(fù)測(cè)定3次。
PPO酶活性測(cè)定參照J(rèn)IANG等[21]的方法進(jìn)行,將0.2 mL的酶粗提液加入到3 mL濃度為100 mmol/L的鄰苯二酚溶液,在398 nm下測(cè)定吸光度的增加值,每30 s記錄1次OD值,以每30 s增加0.01為1個(gè)酶活力單位(U),酶活性以U/mg表示。每個(gè)樣品重復(fù)測(cè)定3次。
1.2.3 ?RNA抽提及cDNA合成 ?根組織總RNA采用德國QIAGEN公司生產(chǎn)的植物總RNA提取試劑盒(Code No. 74903)提取,用Thermo核酸蛋白測(cè)定儀(NanoDrop 2000c)進(jìn)行RNA濃度檢測(cè),質(zhì)量合格的RNA用于下一步cDNA合成。以RNA為模板,采用TaKaRa反轉(zhuǎn)錄試劑盒(Code No. RR047A)反轉(zhuǎn)錄成cDNA鏈。
1.2.4 ?引物設(shè)計(jì)與基因相對(duì)表達(dá)量檢測(cè) ?根據(jù)本實(shí)驗(yàn)室獲得的轉(zhuǎn)錄組測(cè)序結(jié)果(SRA accession number SRP026137),獲得水楊酸信號(hào)傳導(dǎo)途徑關(guān)鍵基因和病程相關(guān)蛋白基因,以Primer 5.0軟件設(shè)計(jì)特異性熒光定量引物(表1),實(shí)時(shí)熒光定量反應(yīng)中內(nèi)參基因選用香蕉RPS2基因[22]。以擴(kuò)增效率95%<E<105%、相關(guān)性R2≥0.99、溶解曲線為單峰曲線為引物篩選標(biāo)準(zhǔn),引物序列和退火溫度見表1。使用熒光定量PCR儀(TaKaRa公司Thermal Cycler Dice Real Time System, TP700)對(duì)基因進(jìn)行定量分析,熒光定量試劑盒為SYBRP remix Ex TaqTM(TaKaRa公司)。每個(gè)測(cè)定樣品中的每個(gè)基因設(shè)置3個(gè)技術(shù)重復(fù),以2-??CT法計(jì)算各基因的表達(dá)量。
1.3 ?數(shù)據(jù)處理
使用SPSS 20.0軟件單因素方差分析法對(duì)不同處理間各基因的相對(duì)表達(dá)量進(jìn)行分析,在5%水平(P<0.05)上計(jì)算顯著差異,使用Excel 2010軟件進(jìn)行制表和作圖。
2 ?結(jié)果與分析
2.1 ?SA生物合成途徑關(guān)鍵基因的表達(dá)分析
外源SA能誘導(dǎo)植物體內(nèi)SA信號(hào)途徑中正調(diào)控基因的表達(dá),而這些基因的表達(dá)又會(huì)導(dǎo)致SA的迅速積累,從而形成一個(gè)SA信號(hào)的反饋放大回路[23]。植物體內(nèi)SA生物合成是經(jīng)莽草酸途徑來完成的,莽草酸在莽草酸激酶(shikimate kinase, SK)和分支酸合成酶(CS)等酶的作用下轉(zhuǎn)變?yōu)榉种?,再?jīng)異分支酸合酶(ICS)途徑和苯丙氨酸解氨酶(PAL)途徑合成SA。研究結(jié)果如圖1所示,‘巴西蕉’和‘農(nóng)科1號(hào)’香蕉幼苗施用SA 3次和5次時(shí),2個(gè)SK基因均表現(xiàn)出顯著上調(diào)表達(dá),‘巴西蕉’中的SK-1基因相對(duì)表達(dá)量為對(duì)
照的1.5倍以上,而‘農(nóng)科1號(hào)’中該基因的相對(duì)表達(dá)量為對(duì)照的30倍以上,上調(diào)幅度遠(yuǎn)遠(yuǎn)高于感病品種‘巴西蕉’;SK-2基因的相對(duì)表達(dá)量在‘巴西蕉’被SA處理3次和5次時(shí)均顯著上調(diào)表達(dá),為對(duì)照的1.6倍以上,在SA處理5次的‘農(nóng)科1號(hào)’中,該基因相對(duì)表達(dá)量為對(duì)照的4.6倍?!臀鹘丁?個(gè)CS基因在SA處理3次時(shí)表現(xiàn)出顯著上調(diào)表達(dá),相對(duì)表達(dá)量是對(duì)照的2.1倍以上;而‘農(nóng)科1號(hào)’中2個(gè)CS基因在SA處理5次時(shí)表現(xiàn)出顯著上調(diào)表達(dá),相對(duì)表達(dá)量是對(duì)照的2.8倍以上。SA處理的‘農(nóng)科1號(hào)’中,ICS-1和ICS-3的相對(duì)表達(dá)量顯著上調(diào)表達(dá),是對(duì)照的2.1倍以上,而ICS-2顯著下調(diào)表達(dá);SA處理的‘巴西蕉’中,只有ICS-1表現(xiàn)為顯著上調(diào)表達(dá)。PAL基因在施用SA的‘巴西蕉’和‘農(nóng)科1號(hào)’中整體表現(xiàn)出了顯著上調(diào)的趨勢(shì),5個(gè)PAL基因在SA處理的‘農(nóng)科1號(hào)’中,最高顯著上調(diào)表達(dá)12.5倍,最低顯著上調(diào)表達(dá)1.4倍,而在‘巴西蕉’中,最高顯著上調(diào)表達(dá)3.1倍,最低顯著上調(diào)表達(dá)1.7倍。這些結(jié)果說明SA生物合成途徑關(guān)鍵基因在外源SA處理的2個(gè)香蕉品種中表達(dá)差異較大,在抗病品種‘農(nóng)科1號(hào)’中相對(duì)表達(dá)量要高于感病品種‘巴西蕉’。
2.2 ?SA對(duì)SA信號(hào)傳導(dǎo)中關(guān)鍵轉(zhuǎn)錄因子表達(dá)水平的影響
NPR1位于SA的下游,與TGA等轉(zhuǎn)錄因子相互作用,調(diào)控很多抗病相關(guān)基因的表達(dá)[16, 24]。研究測(cè)定外源SA處理后香蕉幼苗中SA信號(hào)傳導(dǎo)中關(guān)鍵調(diào)控因子相關(guān)基因的表達(dá)變化情況(圖2),結(jié)果顯示3個(gè)NPR1基因,即NPR1-1、NPR1-2和NPR1-4在SA處理3次和5次的‘巴西蕉’中均顯著上調(diào)表達(dá),最高上調(diào)表達(dá)2.1倍,最低上調(diào)表達(dá)1.4倍,NPR1-3基因在SA處理3次的‘巴西蕉’中下調(diào)表達(dá),但在SA處理5次的‘巴西蕉’中顯著上調(diào)表達(dá);NPR1在SA處理的‘農(nóng)科1號(hào)’中整體表現(xiàn)為顯著上調(diào)表達(dá),最高上調(diào)表達(dá)7.4倍,最低上調(diào)表達(dá)1.5倍,但NPR1-1、NPR1-3和NPR1-4在‘農(nóng)科1號(hào)’中的上調(diào)表達(dá)幅度要高于‘巴西蕉’,說明外源SA更易誘導(dǎo)抗病品種‘農(nóng)科1號(hào)’中NPR1基因的上調(diào)表達(dá)。SA處理后,TGA-1在‘農(nóng)科1號(hào)’中表現(xiàn)為顯著上調(diào)表達(dá),上調(diào)表達(dá)為對(duì)照的2.8倍以上,在‘巴西蕉’中無顯著差異變化;TGA-2在‘巴西蕉’中表現(xiàn)為顯著下調(diào)表達(dá);TGA-3在SA處理的‘巴西蕉’中表現(xiàn)為顯著上調(diào)表達(dá),上調(diào)表達(dá)為對(duì)照的1.4倍,說明2個(gè)香蕉品種中,TGA轉(zhuǎn)錄因子對(duì)外源SA誘導(dǎo)具有不同的應(yīng)答響應(yīng)。
2.3 ?SA對(duì)病程相關(guān)蛋白1基因(PR1)表達(dá)的影響
最初發(fā)現(xiàn)病程相關(guān)蛋白是由于其在抗病過程中起著關(guān)鍵作用,但大量研究表明PR1基因廣泛參與高鹽、干旱和低溫等逆境脅迫應(yīng)答反應(yīng)[25-26]。對(duì)水楊酸處理后的2個(gè)香蕉品種PR1基因的相對(duì)表達(dá)量進(jìn)行檢測(cè)(圖2),結(jié)果發(fā)現(xiàn)2個(gè)PR1基因在SA處理3次的‘農(nóng)科1號(hào)’中較對(duì)照顯著上調(diào)表達(dá),最高上調(diào)表達(dá)8.6倍,最低上調(diào)表達(dá)5.0倍;在SA處理5次的‘農(nóng)科1號(hào)’中相對(duì)表達(dá)量降低或無差異表達(dá)。然而,‘巴西蕉’在SA處理3次和5次時(shí)幾乎無顯著表達(dá)變化,甚至PR1-3在SA處理5次時(shí)相對(duì)表達(dá)量降低,表明相對(duì)于‘巴西蕉’,‘農(nóng)科1號(hào)’的PR1基因更易受外源SA誘導(dǎo)顯著上調(diào)表達(dá)。
2.4 ?SA預(yù)處理誘導(dǎo)TR4侵染下香蕉抗病相關(guān)基因表達(dá)情況
對(duì)SA預(yù)處理后接種TR4的香蕉植株內(nèi)抗病相關(guān)基因PAL、NPR1和PR1進(jìn)行定量分析(圖3),‘巴西蕉’受TR4侵染后大部分PAL、NPR1和PR1基因表現(xiàn)為下調(diào)表達(dá),具體為3個(gè)PAL基因、3個(gè)NPR1基因和2個(gè)PR1基因顯示出下調(diào)表達(dá),其他基因PAL-2、PAL-5、NPR1-3和PR1-2為上調(diào)表達(dá),上調(diào)表達(dá)倍數(shù)均不超過2;SA預(yù)處理的‘巴西蕉’受TR4侵染,多數(shù)基因表現(xiàn)為上調(diào)表達(dá),PAL-2、PAL-5、NPR1-2、NPR1-4、PR1-1和PR1-2共6個(gè)基因的上調(diào)表達(dá)倍數(shù)均高于2倍,其中2個(gè)基因上調(diào)表達(dá)倍數(shù)高于4倍,說明TR4侵染‘巴西蕉’抑制多數(shù)抗病相關(guān)基因的表達(dá),而SA則能激活抗病相關(guān)基因,使其在TR4侵染時(shí)上調(diào)表達(dá)。相比‘巴西蕉’,只接種TR4的‘農(nóng)科1號(hào)’香蕉中抗病相關(guān)基因整體表現(xiàn)為輕微上調(diào)或無差異表達(dá),SA預(yù)處理再接種TR4的香蕉中,PAL-1、NPR1-1、NPR1-3、NPR1-4、PR1-1、PR1-2和PR1-3共7個(gè)基因上調(diào)表達(dá)倍數(shù)均高于2倍,其中6個(gè)基因上調(diào)表達(dá)倍數(shù)高于4倍,說明‘農(nóng)科1號(hào)’經(jīng)SA預(yù)處理,再受TR4侵染時(shí)植株中的抗病相關(guān)基因也能被誘導(dǎo)上調(diào)表達(dá),且誘導(dǎo)效果優(yōu)于‘巴西蕉’。
2.5 ?SA預(yù)處理對(duì)TR4侵染下香蕉PAL和POD酶活性的影響
對(duì)SA預(yù)處理后接種TR4的香蕉植株防御酶POD、PPO和PAL進(jìn)行酶活性測(cè)定(圖4),接種TR4的‘巴西蕉’和‘農(nóng)科1號(hào)’植株中PAL和POD酶活性與對(duì)照相比略有上升,而先用SA處理再接種TR4的2個(gè)香蕉品種中PAL和POD酶
活顯著升高;‘農(nóng)科1號(hào)’對(duì)照植株中PPO酶活性高于‘巴西蕉’對(duì)照,但TR4接種和SA處理后接種TR4兩個(gè)處理中‘農(nóng)科1號(hào)’植株內(nèi)PPO酶活性與對(duì)照相比無顯著差異,TR4接種或SA處理后接種TR4的‘巴西蕉’植株內(nèi)PPO活性比對(duì)照顯著增高,說明SA預(yù)處理增強(qiáng)TR4侵染下香蕉的PAL和POD酶活性。
3 ?討論
水楊酸(SA)作為一種信號(hào)分子在植物免疫反應(yīng)中發(fā)揮著重要作用。研究表明SA參與植物抗病、抗寒等生物和非生物脅迫應(yīng)答反應(yīng),對(duì)保護(hù)農(nóng)作物具有重要意義。本研究通過實(shí)時(shí)熒光定量PCR方法測(cè)定外源水楊酸處理后2個(gè)香蕉品種‘巴西蕉’和‘農(nóng)科1號(hào)’中水楊酸合成代謝途徑關(guān)鍵基因的表達(dá)變化情況,結(jié)果顯示外源水楊酸能誘導(dǎo)香蕉植株內(nèi)水楊酸合成途徑關(guān)鍵基因、轉(zhuǎn)錄因子NPR1和TGA、PR1基因顯著上調(diào)表達(dá),ENDAH等[27]將5 mmol/L的水楊酸噴施于香蕉葉部,能夠誘導(dǎo)抗病品種‘GCTCV-218’和感病品種‘威廉姆斯’植株中NPR1基因上調(diào)表達(dá),同
時(shí)檢測(cè)到PR基因的表達(dá)量增加,NPR1在傳導(dǎo)植物系統(tǒng)獲得抗性和促進(jìn)低溫誘導(dǎo)的熱脅迫從而提高植物的抗病和抗逆能力中具有重要作用[17, 23],PR1基因編碼的PR1蛋白廣泛存在于寄主植物中,具有限制真菌病原入侵和保護(hù)植物抵御逆境脅迫的功能[28]。因此,推測(cè)外源水楊酸能夠激活香蕉根系水楊酸信號(hào)途徑,誘導(dǎo)香蕉產(chǎn)生系統(tǒng)抗性,可在一定程度上保護(hù)香蕉免受多種病原菌的侵染和寒害等脅迫的影響。我國香蕉生產(chǎn)上面臨枯萎病、黑星病、葉斑病、軟腐病和寒害等諸多限制因素,黑星病和葉斑病以化學(xué)防治為主,然而,大量化學(xué)農(nóng)藥的使用會(huì)導(dǎo)致農(nóng)田面源污染;香蕉枯萎病和軟腐病屬土傳病害,尤其是香蕉枯萎病為香蕉生產(chǎn)上最主要的限制因子,只有極少數(shù)蕉園通過抗枯萎病品種和使用綜合防控措施將香蕉枯萎病的發(fā)病率降低到可接受的水平,但同時(shí)又出現(xiàn)了其他問題,即控制住枯萎病,細(xì)菌性軟腐病又上升成為嚴(yán)重威脅,已有研究報(bào)道外源水楊酸可誘導(dǎo)香蕉對(duì)枯萎病的系統(tǒng)抗性[29],也能誘導(dǎo)寄主植物對(duì)大斑病、黑星病、稻瘟病、軟腐病等的抗性[30-33];低溫脅迫下低濃度的SA預(yù)處理能提高香蕉幼苗保護(hù)酶如SOD、CAT和APX的活性,降低活性氧的積累,對(duì)香蕉幼苗細(xì)胞結(jié)構(gòu)也具有一定的保護(hù)作用,從而提高了香蕉的抗寒性[34]。這些結(jié)果表明,水楊酸具有保護(hù)香蕉防控多種生物和非生物脅迫的潛在作用。
‘農(nóng)科1號(hào)’香蕉是選育出的對(duì)香蕉枯萎病具有一定抗性的品種,該品種對(duì)香蕉細(xì)菌性軟腐病也有中等抗性[35],本研究中,相比‘巴西蕉’,SA處理的‘農(nóng)科1號(hào)’中水楊酸合成及抗病相關(guān)基因誘導(dǎo)表達(dá)程度更高。香蕉枯萎病是我國香蕉生產(chǎn)上最為嚴(yán)重、最難防治的一種毀滅性病害,測(cè)試水楊酸處理的香蕉抗病相關(guān)基因?qū)R4的響應(yīng)情況,結(jié)果表明,TR4接種3 d后可抑制‘巴西蕉’中多數(shù)PAL、NPR1和PR1基因的表達(dá),但不會(huì)抑制‘農(nóng)科1號(hào)’中多數(shù)PAL、NPR1和PR1基因的表達(dá);在水楊酸和TR4雙重作用時(shí),2個(gè)香蕉品種中的PAL、NPR1和PR1抗病相關(guān)基因被強(qiáng)烈誘導(dǎo)上調(diào)表達(dá),PAL和POD防御酶活性顯著增強(qiáng),與WANG等[29]報(bào)道的水楊酸預(yù)處理降低病情指數(shù)的結(jié)果相符,這些結(jié)果說明病原菌侵染前水楊酸預(yù)處理對(duì)提高香蕉抗病性具有重要的作用,而抗病品種‘農(nóng)科1號(hào)’系統(tǒng)抗病性相關(guān)基因更強(qiáng)烈地被誘導(dǎo)表達(dá),推測(cè)其系統(tǒng)誘導(dǎo)抗病能力優(yōu)于‘巴西蕉’。本研究從系統(tǒng)獲得抗性出發(fā),掌握水楊酸對(duì)香蕉的系統(tǒng)誘導(dǎo)抗性相關(guān)基因表達(dá)情況,為香蕉生產(chǎn)上綜合防控技術(shù)的研發(fā)提供理論基礎(chǔ),但水楊酸誘導(dǎo)香蕉抵抗多種病害侵染和逆境脅迫的綜合能力,需在溫室和田間進(jìn)一步驗(yàn)證,明確不同香蕉品種及不同生育期激發(fā)系統(tǒng)抗性誘導(dǎo)所需的水楊酸濃度,以期綜合不同防控措施達(dá)到最優(yōu)的抵抗多種病害侵染及逆境脅迫的效果。
參考文獻(xiàn)
[1] 李華平, 李云鋒, 聶燕芳. 香蕉枯萎病的發(fā)生及防控研究現(xiàn)狀[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2019, 40(5): 128-136.
LI H P, LI Y F, NIE Y F. Research status of occurrence and control of Fusarium wilt of banana[J]. Journal of South China Agricultural University, 2019, 40(5): 1-9. (in Chinese)
[2] NAYAR N M. The bananas: botany, origin, dispersal[M]. In: JANICK J. Horticultural Reviews: Volume 36. Hoboken, New Jersey: John Wiley and Sons, 2010.
[3] 王安邦, 金志強(qiáng), 劉菊華, 賈彩虹, 張建斌, 苗紅霞, 徐碧玉. 香蕉寒害研究現(xiàn)狀及展望[J]. 生物技術(shù)通報(bào), 2014(8): 28-33.
WANG A B, JIN Z Q, LIU J H, JIA C H, ZHANG J B, MIAO H X, XU B Y. The current situation and prospects of banana chilling stress[J]. Biotechnology Bulletin, 2014(8): 28-33. (in Chinese)
[4] 李琳琳, 李天來, 姜國斌, 金 ?華, 鄒吉祥. 外源Ca2+對(duì)水楊酸誘導(dǎo)番茄抗灰霉病的增效機(jī)制[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(11): 3497-3502.
LI L L, LI T L, JIANG G B, JIN H, ZOU J X. Synergistion mechanism of exogenous Ca2+ to SA-induced resistance to Botrytis cinerea in tomato[J]. Chinese Journal of Applied Ecology, 2015, 26(11): 3497-3502. (in Chinese)
[5] VLOT A C, DEMPSEY D A, KLESSIG D F. Salicylic acid, a multifaceted hormone to combat disease[J]. Annual Review of Phytopathology, 2009, 47: 177-206.
[6] FU Z Q, DONG X. Systemic acquired resistance: turning local infection into global defense[J]. Annual Review of Plant Biology, 2013, 64: 839-863.
[7] SENARATNA T, TOUCHELL D, BUNN E, DIXON K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants[J]. Plant Growth Regulation, 2000, 30(2): 157-161.
[8] DAT J F, LOPEZ-DELGADO H, FOYER C H, SCOTT I M. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J]. Plant Physiology, 1998, 116(4): 1351-1357.
[9] MISHRA A, CHOUDHURI M A. Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice[J]. Biologia Plantarum, 1999, 42(3): 409-415.
[10] 蔡新忠, 鄭 ?重, 宋鳳鳴. 水楊酸對(duì)水稻幼苗抗瘟性的誘導(dǎo)作用[J]. 植物病理學(xué)報(bào), 1996(1): 9-12, 14.
CAI X Z, ZHENG Z, SONG F M. Effect of salicylic acid on the inductions of resistance to rice seedling blast[J]. Acta Phytopathologica Sinica, 1996(1): 9-12, 14. (in Chinese)
[11] 劉鳳權(quán), 王金生. 水楊酸誘導(dǎo)水稻幼苗抗白葉枯病研究[J]. 植物保護(hù)學(xué)報(bào), 2000(1): 47-52.
LIU F Q, WANG J S. Preliminary study on resistance of rice seedling to leaf blight induced by salicylic acid[J]. Journal of Plant Protection, 2000(1): 47-52. (in Chinese)
[12] 王 ?錚, 顧毓敏, 潘義宏, 李興勇, 李 ?彪, 鄭 ?武, 邵小東. 水楊酸不同施用方式對(duì)誘導(dǎo)煙草抗病性的影響[J]. 植物保護(hù), 2016, 42(4): 236-241.
WANG Z, GU Y M, PAN Y H, LI Y X, LI B, ZHENG W, SHAO X D. Effects of salicylic acid on the induced disease resistance of tobacco under different ways of application[J]. Plant Protection, 2016, 42(4): 236-241. (in Chinese)
[13] 金曉弟. 水楊酸浸種對(duì)低溫脅迫下二葉期冬小麥生理的影響[J]. 山西農(nóng)業(yè)科學(xué), 2019, 47(10): 1687-1690, 1708.
JIN X D. Effects of salicylic acid soaking seeds on physiology of winter wheat in two-leaf stage under low temperature stress[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(10): 1687-1690, 1708. (in Chinese)
[14] WILDERMUTH M C, DEWDNEY J, WU G, AUSUBEL F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature, 2001, 414(6863): 562-565.
[15] LEE H I, LEON J, RASKIN I. Biosynthesis and metabolism of salicylic acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4076-4079.
[16] KINKEMA M. Nuclear localization of NPR1 is required for activation of PR gene expression[J]. Plant Cell, 2000, 12(12): 2339-2350.
[17] 田 ?云. 水楊酸受體NPR1在植物低溫脅迫應(yīng)答中的新功能[J]. 生物學(xué)雜志, 2018, 35(6): 9-10.
TIAN Y. The novel function of SA receptor NPR1 in cold response in plant[J]. Journal of Biology, 2018, 35(6): 9-10. (in Chinese)
[18] OLATE E, JIMéNEZ-GóMEZ J M, HOLUIGUE L, SALINAS J. NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with Hsfa1 factors[J]. Nature Plants, 2018, 4: 811-823.
[19] SCHAFFRATH U, SCHEINPFLUG H, REISENDR H J. An elicitor from Pyricularia oryzae induces resistance responses in rice: Isolation, characterization and physiological properties[J]. Physiology and Molecular Pathology, 1995(46): 293-307.
[20] KOUKOL J, CONN E E. The metabolism of aromatic compounds in higher plants IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare[J]. Journal of Biological Chemistry, 1961, 236(10): 2692-2698.
[21] JIANG A L, TIAN S P, XU Y. Effects of controlled atmospheres with high-O2 or high-CO2 concentrations on postharvest physiology and storability of “napoleon” sweet cherry[J]. Acta Botanica Sinica, 2002, 44(8): 925-930.
[22] CHEN L, ZHONG H Y, KUANG J F, LI J G, LU W J, CHEN J Y. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions[J]. Planta, 2011, 234: 377-390.
[23] 汪 ?尚, 徐鷺芹, 張亞仙, 曾后淸, 杜立群. 水楊酸介導(dǎo)植物抗病的研究進(jìn)展[J]. 植物生理學(xué)報(bào), 2016, 52(5): 581-590.
WANG S, XU L Q, ZHANG Y X, ZENG H Q, DU L Q. Recent advance of salicylic acid signaling in plant disease resistance[J]. Plant Physiology Journal, 2016, 52(5): 581-590. (in Chinese)
[24] ZHENG Z, QUALLEY A, FAN B, DUDAREVA N, CHEN Z. An Important role of a BAHD acyl transferase-like protein in plant innate immunity[J]. The Plant Journal: for Cell and Molecular Biology, 2009, 57: 1040-1053.
[25] SEO P J, LEE A K, XIANG F, PARK C. Molecular and functional profiling of Arabidopsis pathogenesis-related genes: Insights into their roles in salt response of seed germination[J]. Plant & Cell Physiology, 2008, 49(3): 334-344.
[26] SEO P J, KIM M J, PARK J, KIM S, JEON J, LEE Y, KIM J, PARK C. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. The Plant Journal, 2010, 61(4): 661-671.
[27] ENDAH R, BEYENE G, KLGGUNDU A, BERG N V D, SCHLüTER U, KUNERT K. Elicitor and Fusarium-induced expression of NPR1-like genes in banana[J]. Plant Physiology and Biochemistry, 2008, 46(11): 1007-1014.
[28] LC V L, EA V S. The families of pathogenesis related proteins, their activities, and comparative analysis of PR1 type proteins[J]. Physiological and Molecular Plant Pathology, 1999, 55: 85-97.
[29] WANG Z, JIA C, LI J, HUANG S, XU B, JIN Z. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. Aaa Group, Cv. Cavendish)[J]. Functional & Integrative Genomics, 2015, 15(1): 47-62.
[30] 張 ?瑩, 王艷輝, 郝 ?敏, 賈 ?慧, 韓建民, 董金皋. 水楊酸誘導(dǎo)對(duì)玉米大斑病抗性的影響[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 2008(3): 501-507.
ZHANG Y, WANG Y H, HAO M, JIA H, HAN J M, DONG J H. Effect of salicylic acid on resistance to Exserohilum turcicum[J]. Journal of Agricultural Biotechnology, 2008(3): 501-507. (in Chinese)
[31] 李紅玉, 郭金魁, 周功克. 水楊酸誘導(dǎo)黃瓜抗黑星病抗性的部位差異和時(shí)效性[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 1999(6): 640-642.
LI H Y, GUO J K, ZHOU G K. Position difference and time course of cucumber resistance to Cladosporium cucumerinum induced by salicylic acid[J]. Chinese Journal of Applied and Environmental Biology, 1999(6): 640-642. (in Chinese)
[32] 王瑞霞, 王振中, 紀(jì)春艷, 董章勇. 水楊酸誘導(dǎo)水稻抗菌物質(zhì)對(duì)稻瘟病菌的抑制作用[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào), 2011, 30(2): 193-196.
WANG R X, WANG Z Z, JI C Y, DONG Z Y. Inhibitory activity of antibiotic substances extraction induced by salicylic acid in rice leaves against Magnaporthe grisea[J]. Journal of Huazhong Agricultural University, 2011, 30(2): 193-196. (in Chinese)
[33] LóPEZMMóPEZ M J, LIéBANA E, MARCILLA P, BELTRá R. Resistance induced in potato tubers by treatment with acetylsalicylic acid to soft rot produced by Erwinia carotovora subsp. carotovora[J]. Journal of Phytopathology, 1995, 143: 719-724.
[34] KANG G Z, WANG Z X, XIA K F, SUN G C. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid[J]. Journal of Zhejiang University Science B (Biomedicine & Biotechnology), 2007(4): 277-282.
[35] 袁 ?月, 陳雪鳳, 李華平, 梁家杰, 劉瓊光. 香蕉細(xì)菌性軟腐病菌的寄主范圍及香蕉品種的抗性測(cè)定[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 34(1): 23-27.
YUAN Y, CHEN X F, LI H P, LIANG J J, LIU Q G. Symptoms of some host plants infected by pathogen of banana soft rot[J]. Journal of South China Agricultural University, 2013, 34(1): 23-27. (in Chinese)