張舜凱,楊慧,杜太生
基于熱紅外成像的溫室番茄植株水分評(píng)估方法
張舜凱,楊慧,杜太生※
(1. 中國(guó)農(nóng)業(yè)大學(xué)中國(guó)農(nóng)業(yè)水問(wèn)題研究中心,北京 100083;2. 甘肅武威綠洲農(nóng)業(yè)高效用水國(guó)家野外科學(xué)觀測(cè)研究站,武威 733000)
為在諸多熱紅外指標(biāo)中篩選出可靠的作物水分評(píng)估指標(biāo)并探明其最優(yōu)獲取方法與最佳監(jiān)測(cè)時(shí)段,該研究以西北旱區(qū)主要經(jīng)濟(jì)作物番茄為試驗(yàn)材料,設(shè)置2個(gè)灌水量水平(充分灌溉和1/2虧缺灌溉),通過(guò)對(duì)比三種干濕參考平面的選取方法(干濕紅織物、干濕綠織物、人工噴涂介質(zhì)),量化了包括作物水分脅迫指數(shù)(Crop Water Stress Index,CWSI)、相對(duì)氣孔導(dǎo)度指數(shù)G、葉片溫度leaf、葉氣溫差leaf-air在內(nèi)的4個(gè)常用熱紅外指標(biāo)與植株生理指標(biāo)(氣孔導(dǎo)度s、光合速率n、葉水勢(shì)leaf)間的響應(yīng)關(guān)系,并明確了利用熱紅外成像技術(shù)進(jìn)行番茄植株水分評(píng)估的最佳測(cè)定時(shí)段。結(jié)果表明,以干濕紅織物作為參考平面測(cè)得的CWSI與s、n、leaf間決定系數(shù)2分別達(dá)0.687、0.698、0.669,G與s、n、leaf間決定系數(shù)2分別達(dá)0.707、0.661、0.663,在三種方法中均最為顯著。在12:00—14:00時(shí)段熱紅外指標(biāo)CWSI與植株生理指標(biāo)s、n、leaf相關(guān)性和G與植株生理指標(biāo)s、n、leaf相關(guān)性均為最高,是利用熱紅外成像技術(shù)進(jìn)行番茄植株水分監(jiān)測(cè)的最佳時(shí)段,根據(jù)獲得的相關(guān)函數(shù)可實(shí)時(shí)預(yù)測(cè)葉片缺水指標(biāo),依此判定植株水分狀況并作為制定灌溉制度的依據(jù)。
作物;水分;脅迫指數(shù);熱紅外成像;相對(duì)氣孔導(dǎo)度指數(shù);番茄
植株水分狀況可直接影響其生長(zhǎng)狀態(tài)并可用于預(yù)測(cè)水分生產(chǎn)力水平,精準(zhǔn)測(cè)量植株水分狀況對(duì)于分析植株生長(zhǎng)趨勢(shì)及其對(duì)不同非生物脅迫響應(yīng)過(guò)程模擬具有重要意義[1]。在特定時(shí)段測(cè)量植株莖葉水勢(shì)是最常見(jiàn)的植株水分狀態(tài)監(jiān)測(cè)方法[2],但受限于試驗(yàn)人員間的測(cè)量誤差以及測(cè)量操作的復(fù)雜性,難以進(jìn)行大規(guī)模測(cè)樣;另一種評(píng)估植株水分狀況的方法是通過(guò)測(cè)量水蒸氣在氣孔中的擴(kuò)散程度,來(lái)實(shí)現(xiàn)監(jiān)測(cè)單個(gè)葉片氣體交換的目的,但該方法需要與葉片直接接觸,通常會(huì)對(duì)葉片的正常生理生態(tài)功能產(chǎn)生較大干擾[3]。此外,這兩種測(cè)量方法大多費(fèi)時(shí)費(fèi)力且受到樣本數(shù)目的制約。因此,離體測(cè)量方法在很大程度上限制了植物水分狀況研究的深度與效率。
近十年來(lái),遠(yuǎn)程、快速連續(xù)監(jiān)測(cè)植物氣孔導(dǎo)度(s)與光合速率(n)由于具有非破壞性和可重復(fù)性的特點(diǎn)逐漸成為評(píng)估植物水分狀況的熱點(diǎn)問(wèn)題[4-7]。其中,熱成像技術(shù)作為一種無(wú)損監(jiān)測(cè)手段已成為植物水分狀況的一種重要判定方法[8-12]。該技術(shù)可有效應(yīng)用于單株、群體甚至更大的區(qū)域尺度[13]??稍诜瞧茐男缘臈l件下基于葉片表面溫度降低差值與蒸發(fā)失水速率呈正比的原理[14],通過(guò)將植物體發(fā)出的不可見(jiàn)紅外能量轉(zhuǎn)變?yōu)榭梢?jiàn)的熱圖像來(lái)提取作物生命需水信息從而監(jiān)測(cè)植株水分狀況[15-16],并獲得連續(xù)、實(shí)時(shí)、完整、客觀的數(shù)據(jù)。植株的蒸騰作用會(huì)對(duì)葉片能量平衡產(chǎn)生影響,具體體現(xiàn)在葉片溫度的變化上。因此,熱成像是一種估算和量化氣孔導(dǎo)度(s)與蒸騰速率()的有效技術(shù)手段[12,17]。目前,熱紅外成像監(jiān)測(cè)技術(shù)已在植物與環(huán)境交互作用研究中表現(xiàn)出巨大的應(yīng)用潛力,同時(shí)對(duì)諸如氣孔關(guān)閉等特殊現(xiàn)象可提供相應(yīng)的田間管理決策依據(jù)。然而,環(huán)境的可變性(例如光強(qiáng)、溫度、相對(duì)濕度、風(fēng)速)會(huì)影響熱成像測(cè)量的準(zhǔn)確性。
在實(shí)際生產(chǎn)中,已開(kāi)發(fā)建立了一系列易于計(jì)算的評(píng)估指數(shù),通過(guò)測(cè)得的冠層溫度來(lái)評(píng)估植株的水分狀況,如作物水分脅迫指數(shù)(Crop Water Stress Index,CWSI)[18-19]與相對(duì)氣孔導(dǎo)度指數(shù)(G)[20]。這些指數(shù)的估算均涉及最高和最低葉片溫度的參考靶葉確定問(wèn)題。因此,能否選定適宜的參考平面對(duì)水分供應(yīng)充足與受到水分脅迫的植株表面溫度進(jìn)行估算,決定著模型預(yù)測(cè)的精度。Leinonen等[21]用凡士林涂抹葉片氣孔面做干參考靶葉,獲取圖像前在葉片兩面噴1~2次清水作為濕參考靶葉,測(cè)得的G與s間呈線性相關(guān),決定系數(shù)2為0.20;Pou等[22]用一塊5 cm×1 cm的黑色薄金屬板作為干參考靶葉,選用一塊尺寸相同的能從集水器中吸水的黑色棉芯作為濕參考靶葉,由于金屬板和棉芯與葡萄葉片邊界層條件間的巨大差異,對(duì)葉片能量表征的準(zhǔn)確性產(chǎn)生較大影響,測(cè)得的CWSI與s間決定系數(shù)2為0.39;Maes等[23]用一塊綠色純棉布作為干參考靶葉,浸濕后作為濕參考靶葉,兩測(cè)量日內(nèi)根據(jù)靶葉溫度計(jì)算所得的G與s間呈顯著相關(guān)(2=0.53,<0.01;2=0.65,<0.01)。基于可操作性與研究尺度等原因,前人的研究多限于一種參考方法的實(shí)測(cè)應(yīng)用或在不同試驗(yàn)中比較不同干濕參考面,對(duì)多種干濕參考面選取方法在同一試驗(yàn)環(huán)境下進(jìn)行評(píng)價(jià)的研究較少;且不同參考平面材料模擬葉片熱能與光學(xué)特性的能力各有差異,因此對(duì)于最佳參考平面材料的選取原則目前尚無(wú)定論。同時(shí),植株溫度不僅受氣孔導(dǎo)度和蒸騰作用影響,還受到一系列環(huán)境變量的影響[24-25],Pou等[22]通過(guò)在西班牙西北部的葡萄灌溉試驗(yàn)得出熱紅外最佳觀測(cè)時(shí)間為11:00和16:00的結(jié)論;而García-Tejero等[10]的研究結(jié)果表明,11:00和14:00時(shí)熱紅外指標(biāo)與葉氣交換參數(shù)間的相關(guān)性最強(qiáng)。因此,確定一天內(nèi)進(jìn)行熱紅外監(jiān)測(cè)的最佳時(shí)段對(duì)于有效評(píng)估植株葉氣交換水平同等重要。本文擬通過(guò)西北旱區(qū)溫室番茄虧缺灌溉試驗(yàn),闡明植株葉片熱紅外特征值對(duì)水分脅迫的響應(yīng)機(jī)理,明確作物水分脅迫指數(shù)和氣孔導(dǎo)度指數(shù)的最優(yōu)估算方法及最佳獲取時(shí)段,以期為作物缺水表型信息識(shí)別及高效灌溉調(diào)控提供理論依據(jù)。
試驗(yàn)于2021年5—9月在甘肅武威綠洲農(nóng)業(yè)高效用水國(guó)家野外科學(xué)觀測(cè)研究站日光溫室內(nèi)進(jìn)行,試驗(yàn)所用溫室為非加熱自然通風(fēng)型溫室。溫室內(nèi)設(shè)有小型氣象站,對(duì)溫室內(nèi)部空氣溫度、相對(duì)濕度和太陽(yáng)輻射等環(huán)境因子進(jìn)行連續(xù)觀測(cè)。溫室內(nèi)0~1 m深度的土壤為灌漠土,計(jì)劃濕潤(rùn)層0~0.6 m內(nèi)的土壤容重為1.48 g/cm3,田間持水率為0.31 cm3/cm3。供試番茄為當(dāng)?shù)刂饕耘嗥贩N粉禧5號(hào)。番茄籽苗以穴盤(pán)育苗法培育至四片真葉期時(shí)移栽到日光溫室內(nèi)對(duì)應(yīng)的各小區(qū)中。在定植當(dāng)日和定植后(DAT)7與15 d對(duì)所有植株分別進(jìn)行3次充分灌溉(即定植水和緩苗水),以保證幼苗成活。番茄植株于2021年5月14日定植至9月22日收獲,每株保留5穗果,全生育期共131 d。從定植到第一穗花開(kāi)為番茄營(yíng)養(yǎng)生長(zhǎng)期,第一穗花開(kāi)至第一穗結(jié)果為番茄開(kāi)花期,第一穗結(jié)果至成熟為果實(shí)膨大和成熟期。
試驗(yàn)設(shè)置2個(gè)水分處理,分別為充分灌溉(W1)和虧缺灌溉(W2),每個(gè)處理設(shè)3個(gè)重復(fù),每個(gè)重復(fù)1個(gè)小區(qū),共計(jì)6個(gè)小區(qū)。當(dāng)W1處理的土壤計(jì)劃濕潤(rùn)層深度內(nèi)平均含水率為田間持水率(F,cm3/cm3)的(75±2)%時(shí)進(jìn)行灌水,灌水上限為(90±2)%F。W2的灌水頻率與W1保持一致,每次灌溉水量為W1的1/2。灌溉方式采用膜下滴灌,灌水量(,mm)按下式計(jì)算
式中為計(jì)劃濕潤(rùn)比,取0.5;為計(jì)劃濕潤(rùn)層深度,取60 cm;v為計(jì)劃濕潤(rùn)層深度內(nèi)實(shí)測(cè)的土壤體積含水率,cm3/cm3。
除灌水外的其他農(nóng)藝管理措施如施肥、授粉、吊蔓等均與當(dāng)?shù)爻R?guī)方式保持一致,各試驗(yàn)小區(qū)間不設(shè)差異。
1.2.1 土壤的物理與水力特性
采用環(huán)刀法(體積為100 cm3)測(cè)定土壤的干容重(γ,g/cm3)、孔隙率和田間持水率,測(cè)定深度依次為20、40、60、80和100 cm。使用ECH2O土壤含水率監(jiān)測(cè)系統(tǒng)(Decagon Devices,Inc.,Pullman,WA,USA)測(cè)定0~60 cm深度土壤的體積含水率與溫度。
1.2.2 氣象數(shù)據(jù)
采用標(biāo)準(zhǔn)自動(dòng)氣象站HOBO U30(Onset Computer Crop,USA)連續(xù)監(jiān)測(cè)日光溫室內(nèi)的空氣溫度(a,℃)、相對(duì)濕度(RH,%)、太陽(yáng)輻射(s,W/m2)等氣象因子。
1.2.3 熱紅外指標(biāo)
植株葉片熱紅外圖像:共選取9個(gè)全天晴朗無(wú)云的典型測(cè)量日,利用Fluke TiX650便攜式紅外熱成像儀(Fluke IR Flex Cam TiX650,F(xiàn)luke Crop.,USA)在每個(gè)觀測(cè)日內(nèi)8:00—18:00,以2 h為一時(shí)段,在距離葉片向陽(yáng)側(cè)0.5 m的位置進(jìn)行拍攝。
植株冠層熱紅外圖像:共選取3個(gè)典型灌水周期,自每次灌水處理第二天開(kāi)始至下次灌水處理前一天,連續(xù)于每日正午,在距離冠層向陽(yáng)側(cè)1.5 m[2,22]的位置進(jìn)行拍攝。
熱紅外相機(jī)分辨率為640×480(像素),熱靈敏度為0.025 ℃,測(cè)溫范圍為-40~2 000 ℃,可在7.5~14m的波段范圍內(nèi)正常工作。植株葉片與冠層的發(fā)射率均設(shè)置為0.96[10,22],以每個(gè)像素作為有效溫度讀數(shù)。可見(jiàn)光數(shù)字圖像(RGB)與熱紅外圖像同時(shí)拍攝,并結(jié)合兩組圖像來(lái)分離植株與參考平面及裸露地表,用SmartView工具軟件,通過(guò)面積選擇和測(cè)量工具從圖像中提取植株葉片溫度leaf、冠層溫度c及干濕參考平面溫度,圈選過(guò)程中忽略葉片邊緣上的混合像素。
作物水分脅迫指數(shù)(CWSI)根據(jù)Jones[18-19]定義的簡(jiǎn)化公式計(jì)算
相對(duì)氣孔導(dǎo)度指數(shù)(G)根據(jù)Jones[20]提出的公式計(jì)算
式中l(wèi)eaf為選定待測(cè)的番茄葉片溫度,℃;dry為模擬氣孔完全閉合的無(wú)蒸騰葉片溫度,℃,分別選擇干燥紅織物、干燥綠織物以及人工向葉片涂抹凡士林的方式進(jìn)行測(cè)量;wet為模擬氣孔完全打開(kāi)的充分蒸騰葉片溫度,℃,分別選擇濕潤(rùn)紅織物、濕潤(rùn)綠織物以及人工向葉片噴水的方式進(jìn)行測(cè)量。
1.2.4 植株生理指標(biāo)
在完成熱紅外圖像采集后,立即采用便攜式光合測(cè)定系統(tǒng)LI-6400XT(LI-COR Corporation,Lincoln,NE,USA)測(cè)量對(duì)應(yīng)時(shí)段下葉片的光合速率(n,mol/(m2·s))和氣孔導(dǎo)度(s,mol/(m2·s)),利用植物壓力室(Soil Moisture Equipment,Santa Barbara,CA,USA)測(cè)量各時(shí)段實(shí)時(shí)葉水勢(shì)(leaf,MPa)。
圖1 三種參考平面選取方法的RGB和其相應(yīng)的熱紅外圖像
1.2.5 數(shù)據(jù)處理
采用SPSS 20.0數(shù)據(jù)處理軟件(SPSS Inc.,Chicago,IL,USA)對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)檢驗(yàn)與分析,多重比較選用Tukey方法,采用Microsoft Office Excel 和Origin 2022進(jìn)行圖表繪制。
圖2表示了3次典型灌水周期內(nèi)不同水分處理下土壤體積含水率及番茄冠層溫度的變化情況。如圖所示,W1處理后的土壤體積含水率v1始終高于虧缺灌溉下的土壤體積含水率v2,兩者間差異隨灌水天數(shù)逐漸減小,在灌水周期末兩者體積含水率間達(dá)到最小差值。在任一測(cè)量日內(nèi),虧缺灌溉下的番茄冠層溫度c2均高于充分灌溉下的番茄冠層溫度c1,兩冠層間溫度差值隨土壤水分消耗逐漸減小,在灌水周期末無(wú)顯著差異。
圖3為三種參考平面選取方法下番茄植株葉片不同生理指標(biāo)與相對(duì)氣孔導(dǎo)度指數(shù)G間的響應(yīng)關(guān)系,為探究各方法表征不同植株水分狀況的能力,圖中數(shù)據(jù)均采用同一參考方法下兩個(gè)水分處理番茄熱紅外指標(biāo)與葉片生理指標(biāo)的均值(圖4同)。如圖3所示,G與葉片氣孔導(dǎo)度s呈正相關(guān)關(guān)系,這與前人在葡萄植株[18]上的研究結(jié)果一致;不同水分處理下的G與葉水勢(shì)leaf亦呈對(duì)數(shù)正相關(guān)關(guān)系。本研究中實(shí)測(cè)G值大于0.5的葉片,實(shí)時(shí)氣孔導(dǎo)度s通常大于0.15 mol/(m2·s),光合速率n大于12mol/(m2·s),葉水勢(shì)leaf通常高于-0.8 MPa。而G小于0.5時(shí),對(duì)應(yīng)更低的氣孔導(dǎo)度與光合速率值,以及更低的實(shí)時(shí)葉水勢(shì)值。
注:θv1、θv2分別為W1和W2處理下的土壤體積含水率,(cm3·cm-3);Tc1、Tc2分別為W1和W2處理下的番茄冠層溫度,℃;W1為充分灌溉;W2為虧缺灌溉。*、**和***分別表示在P<0.05、P<0.01和P<0.001時(shí)兩處理間有統(tǒng)計(jì)學(xué)意義的顯著差異;ns表示差異不顯著,下同。
在參考平面的選取方法上,采用干濕紅織物為對(duì)照的方法計(jì)算的G與s的線性擬合2值最高,為0.707;其次為干濕綠織物對(duì)照法,2為0.652;人工噴涂方法下G與g的響應(yīng)關(guān)系最差,2=0.631(圖3a),在G與n和leaf間的響應(yīng)關(guān)系中規(guī)律相同,均為紅色織物效果最佳(圖3b、3c)。同時(shí),利用G衡量番茄植株生理指標(biāo)的缺水響應(yīng)情況時(shí),G與s的相關(guān)關(guān)系要優(yōu)于n,G與leaf的相關(guān)性最低。
作物水分脅迫指數(shù)CWSI與s間呈顯著負(fù)相關(guān)關(guān)系,在CWSI與n以及l(fā)eaf的響應(yīng)關(guān)系中發(fā)現(xiàn)了同樣的趨勢(shì)。當(dāng)CWSI≥0.7時(shí),s、n、leaf的取值范圍分別為0.02~0.1 mol/(m2·s)、2~10mol/(m2·s),-1.2~-0.8 MPa;當(dāng)0.3≤CWSI≤0.6時(shí),三者的取值范圍分別在0.15~0.25 mol/(m2·s)、12.5~17.5mol/(m2·s),-0.6~-0.3 MPa(圖 4)。
通過(guò)擬合三種參考平面選取方法下CWSI與植株生理指標(biāo)間的響應(yīng)關(guān)系,可以判斷CWSI的最佳獲取方式。如圖4所示,采用干濕紅織物為對(duì)照的方法計(jì)算的CWSI與g的擬合程度最優(yōu)(2=0.687),采用干濕綠織物計(jì)算的CWSI與s的響應(yīng)關(guān)系次之(2=0.631),采用人工噴涂介質(zhì)計(jì)算的CWSI與g的決定系數(shù)2最低,為0.628(圖4a)。這種規(guī)律同樣體現(xiàn)在CWSI與n和leaf的響應(yīng)關(guān)系中(圖4b、4c),同樣以干濕紅織物作為參照效果最佳,決定系數(shù)2分別為0.698和0.669;人工噴涂介質(zhì)的參照效果最差,2分別為0.643和0.609。在對(duì)CWSI與n間響應(yīng)關(guān)系的研究中,三種方法下擬合所得的2值均大于0.6;同時(shí),利用CWSI衡量番茄植株的需水狀況時(shí),n對(duì)CWSI的響應(yīng)均優(yōu)于s與leaf。
a. IG與gs響應(yīng)關(guān)系a. Relationships between IG and gsb. IG與An響應(yīng)關(guān)系b. Relationships between IG and Anc. IG與φl(shuí)eaf響應(yīng)關(guān)系c. Relationships between IG and φl(shuí)eaf
a. CWSI與gs響應(yīng)關(guān)系a. Relationships between CWSI and gsb. CWSI與An響應(yīng)關(guān)系b. Relationships between CWSI and Anc. CWSI與φl(shuí)eaf響應(yīng)關(guān)系c. Relationships between CWSI and φl(shuí)eaf
結(jié)合上文得到的最佳參考平面為紅棉織物的結(jié)論,在研究不同熱紅外指標(biāo)與葉片氣體交換參數(shù)(s和n)間的響應(yīng)關(guān)系時(shí),均以紅棉織物為參考平面來(lái)分別評(píng)估兩個(gè)水分處理下的葉片生理指標(biāo)。如表1所示,熱紅外指標(biāo)CWSI和leaf與葉氣交換參數(shù)之間呈負(fù)相關(guān),而G和leaf-air與各生理指標(biāo)呈正相關(guān)。兩個(gè)水分處理下s、n均與環(huán)境溫度歸一化的熱紅外指標(biāo)CWSI、IG呈極顯著的相關(guān)關(guān)系(<0.01),CWSI與n、G與s的相關(guān)性更強(qiáng)。葉片紅外溫度leaf與氣體交換參數(shù)間亦呈顯著的相關(guān)性(<0.05),利用leaf預(yù)測(cè)s與n的效果大致相同,且不同處理間的相關(guān)性無(wú)顯著差異。代表葉片與周?chē)諝鉁囟炔钪档膌eaf-air在與葉片生理指標(biāo)的相關(guān)性評(píng)估中均未表現(xiàn)出顯著差異。
為了進(jìn)一步探究以干濕紅織物為參考平面下不同時(shí)段熱紅外指標(biāo)與番茄生理指標(biāo)間的響應(yīng)關(guān)系,分別對(duì)一天內(nèi)不同時(shí)段測(cè)得的CWSI與n和leaf、G與s進(jìn)行擬合分析(表2)。結(jié)果表明,一天內(nèi)不同時(shí)段的CWSI、G均與植株生理指標(biāo)n、leaf和s呈極顯著相關(guān),12:00 —14:00時(shí)段測(cè)得的CWSI與n間2值為0.761,、G與s間2值為0.755,CWSI與leaf間2值為0.686,均在此時(shí)段為最高。其次為10:00-12:00時(shí)段。
表1 四個(gè)熱紅外指標(biāo)與葉片氣體交換參數(shù)間的皮爾遜相關(guān)系數(shù)
注:表中參與相關(guān)性分析的數(shù)據(jù)為全天五個(gè)時(shí)段內(nèi)測(cè)得的兩個(gè)水分處理下不同熱紅外指標(biāo)與葉片氣體交換參數(shù)的觀測(cè)值。
Note: The data involved in the correlation analysis in the table are the values of thermal indicators and leaf gas exchage parameters under two water treatments measured at five time periods.
表2 不同時(shí)段內(nèi)熱紅外指標(biāo)與植株生理指標(biāo)間的響應(yīng)關(guān)系
注:表中數(shù)據(jù)均為不同時(shí)段下測(cè)得的兩個(gè)水分處理下熱紅外指標(biāo)與相應(yīng)植株生理指標(biāo)的均值。
Note: The data in this table are the pooled values of thermal indicators and plant physiological indicators under two water treatments measured at different time periods.
通過(guò)遙感技術(shù)監(jiān)測(cè)作物生長(zhǎng)及水分狀況可為灌溉制度的擬定及田間水分管理提供實(shí)時(shí)可靠的依據(jù)。前人研究表明,熱紅外成像技術(shù)可用于定量評(píng)估田間玉米[26-27]、水稻[28]、棉花[29]、葡萄[4]、杏樹(shù)[30]、核桃[31]等作物與樹(shù)木的水分狀況。已有的部分研究著眼于紅外圖像的提取與分析優(yōu)化,這為基于熱紅外成像技術(shù)進(jìn)行植株水分狀況診斷提供了可靠的技術(shù)支撐[32-33]。本文通過(guò)對(duì)比兩個(gè)水分處理間溫室番茄冠層溫度c進(jìn)一步證實(shí),水分脅迫程度較高的番茄植株具有較高的冠層溫度值,未受或受到輕度水分脅迫的植株表現(xiàn)出較低的冠層溫度值,其根本原因是水分脅迫下的葉片會(huì)通過(guò)減小氣孔開(kāi)度來(lái)限制蒸騰作用,以減少水分的過(guò)多散失,從而導(dǎo)致冠層溫度的升高[34-35]。然而,熱紅外指標(biāo)不能單獨(dú)作為植株水分虧缺的評(píng)估因素,必須將其實(shí)測(cè)值與植株的生理指標(biāo)相關(guān)聯(lián),目的是為了減少單一溫度估計(jì)產(chǎn)生的誤差,提高利用熱紅外成像技術(shù)判斷作物水分脅迫程度的可靠性。本文對(duì)比了三組不同參考平面選取方法,主要目的是甄別不同參考平面材料及其顏色對(duì)番茄植株水分監(jiān)測(cè)結(jié)果的影響。結(jié)果表明,干濕紅織物為對(duì)照的方法在一系列熱紅外指標(biāo)中表現(xiàn)最為穩(wěn)定,根據(jù)其計(jì)算的CWSI和G與番茄葉片生理指標(biāo)間的響應(yīng)關(guān)系均優(yōu)于干濕綠織物和人工噴涂介質(zhì)方式(圖3、圖4)。相較于干濕織物的參考方式,人工噴涂介質(zhì)的方法難以保持操作的穩(wěn)定性,且手動(dòng)潤(rùn)濕后的葉片溫度存在較短的穩(wěn)定期[24],紅外測(cè)溫僅應(yīng)在特定的時(shí)間內(nèi)進(jìn)行,否則容易造成wet的估算誤差,在風(fēng)速更高、干燥更快的野外種植條件下存在更大的局限性;通過(guò)人工涂抹凡士林來(lái)主動(dòng)閉合葉片氣孔的方式也會(huì)對(duì)番茄葉片生理與光學(xué)特性產(chǎn)生永久性影響,無(wú)法進(jìn)行可持續(xù)生產(chǎn)。通過(guò)對(duì)比同種材料下不同顏色織物對(duì)評(píng)估結(jié)果產(chǎn)生的影響,發(fā)現(xiàn)以紅色織物為參考平面進(jìn)行植株水分監(jiān)測(cè)的效果均優(yōu)于綠色織物,這與兩顏色織物對(duì)環(huán)境影響的不同反應(yīng)有密切關(guān)系,綠色織物更易受到日光溫室內(nèi)太陽(yáng)直射光及周?chē)邷匚矬w反射光的影響[36],且本研究中采用的暗紅色織物材料較亮綠色材料具有更高的發(fā)射率,而發(fā)射率高的物體其表面溫度更接近其真實(shí)溫度,發(fā)射率低的物體表面溫度與環(huán)境溫度更接近,因此綠色織物易造成wet和dry的估計(jì)偏差,由此對(duì)評(píng)估結(jié)果產(chǎn)生影響。同時(shí)紅色織物在熱紅外圖像的處理過(guò)程中更易于區(qū)分,不會(huì)在圖像提取過(guò)程中造成像素塊的錯(cuò)誤圈選,由此提升了測(cè)量的精度與準(zhǔn)確性。
熱紅外指標(biāo)CWSI、G與番茄植株生理指標(biāo)n和s間表現(xiàn)出最高的線性回歸系數(shù),未經(jīng)環(huán)境歸一化處理的熱紅外指標(biāo)leaf也與兩生理指標(biāo)間具備一定的相關(guān)性,但葉氣溫差leaf-air與兩個(gè)水分處理下的番茄植株生理指標(biāo)間均未表現(xiàn)出顯著的相關(guān)性(表1),主要原因可能是由于部分測(cè)量目標(biāo)葉片與溫室內(nèi)氣象站間存在一定距離,由此對(duì)leaf-air測(cè)量的穩(wěn)定性產(chǎn)生影響。與leaf相比,CWSI和G均需依據(jù)與目標(biāo)葉片處在同一區(qū)域的參考表面溫度(wet和dry)計(jì)算得出,是考慮環(huán)境因素的歸一化指標(biāo),很大程度地避免了單一葉片溫度受溫室氣象變化的影響,這也是leaf與s、n間的相關(guān)性較CWSI、G低的主要原因。盡管如此,參考平面溫度的使用也存在一定的限制,可能會(huì)制約CWSI和G在植株水分評(píng)估上的表現(xiàn),尤其是在種植環(huán)境復(fù)雜多變以及太陽(yáng)輻射角不固定的情況下[37]。潮濕環(huán)境會(huì)減少水分的蒸發(fā)冷卻,由此降低wet與dry間的差異[20];大風(fēng)條件可能會(huì)改變冠層能量平衡并導(dǎo)致葉片氣孔關(guān)閉[38]。
因此,在多變的氣象條件下對(duì)缺水植株進(jìn)行及時(shí)地識(shí)別,需要確定最可靠的熱紅外指標(biāo)以及一天內(nèi)進(jìn)行熱紅外成像測(cè)量的最佳時(shí)段。本研究表明,利用熱紅外成像技術(shù)判定番茄植株水分狀況的最佳時(shí)段為12:00-14:00,在這一時(shí)段內(nèi)測(cè)得的熱紅外指標(biāo)與植株生理指標(biāo)間相關(guān)性最高(表2)。這也是一天內(nèi)不同水分處理下番茄植株葉片溫度leaf、熱紅外指標(biāo)和葉片生理特性間差異最顯著的時(shí)段。正是在這一時(shí)段內(nèi)環(huán)境溫度與植株水分蒸發(fā)強(qiáng)度達(dá)到最大值,由此導(dǎo)致葉片氣孔開(kāi)度以及葉片溫度間的顯著差異[10,22]。此外,在任一測(cè)量日內(nèi),W2處理下的冠層溫度均高于W1處理,土壤水分的虧缺導(dǎo)致了不同水分處理下冠層溫度c的差異,這也是熱紅外指標(biāo)可以表征植株水分狀態(tài)的根本原因。根據(jù)CWSI和G預(yù)測(cè)番茄植株葉氣交換指標(biāo)的線性函數(shù)證實(shí)了熱紅外成像技術(shù)在番茄植株水分狀況判定上的應(yīng)用潛力。本研究主要聚焦于利用熱紅外手段監(jiān)測(cè)番茄植株水分狀況的方法探究上,未來(lái)還需對(duì)虧水識(shí)別后熱紅外指標(biāo)向灌水制度的轉(zhuǎn)化進(jìn)行深入研究與探討,以便更好地服務(wù)于作物水管理。
1)以干濕紅織物作為參考平面測(cè)得的作物水分脅迫指數(shù)、相對(duì)氣孔導(dǎo)度指數(shù)與葉片生理指標(biāo)間關(guān)系在三種方法中最為顯著。作物水分脅迫指數(shù)與氣孔導(dǎo)度、光合速率、葉水勢(shì)間決定系數(shù)分別達(dá)0.687、0.698、0.669;相對(duì)氣孔導(dǎo)度指數(shù)與氣孔導(dǎo)度、光合速率、葉水勢(shì)間決定系數(shù)分別達(dá)0.707、0.661、0.663,可作為熱紅外指標(biāo)獲取的最優(yōu)方法。
2)作物水分脅迫指數(shù)、相對(duì)氣孔導(dǎo)度指數(shù)與氣孔導(dǎo)度、光合速率間均呈極顯著相關(guān)關(guān)系(< 0.01),葉片溫度與氣孔導(dǎo)度、光合速率呈顯著相關(guān)關(guān)系(< 0.05),葉氣溫差與氣孔導(dǎo)度、光合速率無(wú)顯著相關(guān)關(guān)系。作物水分脅迫指數(shù)和相對(duì)氣孔導(dǎo)度指數(shù)可用于預(yù)測(cè)植株葉氣交換水平,作為衡量番茄植株是否缺水的代表性熱紅外指標(biāo)。
3)利用熱紅外成像技術(shù)獲取具備生理學(xué)意義的熱紅外數(shù)據(jù)以評(píng)估番茄植株水分狀況的最佳推薦時(shí)段為12:00 —14:00,此時(shí)作物水分脅迫指數(shù)與光合速率、葉水勢(shì)間的決定系數(shù)分別為0.761、0.755,相對(duì)氣孔導(dǎo)度指數(shù)與氣孔導(dǎo)度間的決定系數(shù)為0.686,能更好地反映番茄作物水分脅迫狀況。
[1] 山侖,鄧西平,康紹忠. 我國(guó)半干旱地區(qū)農(nóng)業(yè)用水現(xiàn)狀及發(fā)展方向[J]. 水利學(xué)報(bào),2002,33(9):27-31.
Shan Lun, Deng Xiping, Kang Shaozhong. Current situation and perspective of agricultural water used in semiarid area of China[J]. Journal of Hydraulic Engineering, 2002, 33(9): 27-31. (in Chinese with English abstract)
[2] Jones H G. Irrigation scheduling: Advantages and pitfalls of plant-based methods[J]. Journal of Experimental Botany, 2004, 55(407): 2427-2436.
[3] Costa J M, Grant O M, Chaves M M. Thermography to explore plant–environment interactions[J]. Journal of Experimental Botany, 2013, 64(13): 3937-3949.
[4] Petrie P R, Wang Y, Liu S, et al. The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status[J]. Biosystems Engineering, 2019, 179: 126-139.
[5] Briglia N, Montanaro G, Petrozza A, et al. Drought phenotyping inusing RGB and NIR imaging[J]. Scientia Horticulturae, 2019, 256: 108555.
[6] 毋海梅,閆浩芳,張川,等. 溫室滴灌黃瓜產(chǎn)量和水分利用效率對(duì)水分脅迫的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):84-93.
Wu Haimei, Yan Haofang, Zhang Chuan, et al. Responses of yield and water use efficiency of drip-irrigated cucumber in greenhouse to water stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 84-93. (in Chinese with English abstract)
[7] 王衛(wèi)星,楊明欣,高鵬,等. 基于多光譜和氣象參數(shù)的菜心水分脅迫指數(shù)反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(6):157-164.
Wang Weixing, Yang Mingxin, Gao Peng, et al. Inverting the water stress index of the Brassica chinensis using multiple-spectral and meteorological parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(6): 157-164. (in Chinese with English abstract)
[8] Akpolat H, Barineau M, Jackson K A, et al. Portable infrared sensing technology for phenotyping chemical traits in fresh market tomatoes[J]. LWT - Food Science and Technology, 2020, 124: 109164.
[9] Ludovisi R, Tauro F, Salvati R, et al. UAV-Based Thermal imaging for high-throughput field phenotyping of black poplar response to drought[J]. Frontiers in Plant Science, 2017, 8: 1681.
[10] García-Tejero I F, Costa J M, Egipto R, et al. Thermal data to monitor crop-water status in irrigated Mediterranean viticulture[J]. Agricultural Water Management, 2016, 176: 80-90.
[11] 劉又夫,周志艷,田麓弘,等. 紅外熱成像技術(shù)在農(nóng)業(yè)中的應(yīng)用[J]. 農(nóng)業(yè)工程,2019,9(11):102-110.
Liu Youfu, Zhou Zhiyan, Tian Luhong, et al. Application of infrared thermal imaging technology in agriculture[J]. Agriculture Engineering, 2019, 9(11): 102-110. (in Chinese with English abstract)
[12] 韓文霆,張立元,牛亞曉,等. 無(wú)人機(jī)遙感技術(shù)在精量灌溉中應(yīng)用的研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(2):1-14.
Han Wenting, Zhang Liyuan, Niu Yaxiao, et al. Review on UAV remote sensing application in precision irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 1-14. (in Chinese with English abstract)
[13] Jones H G, Vaughan R A. Remote Sensing of Vegetation: Principles, Techniques and Applications[M]. Oxford, UK: Oxford University Press, 2010.
[14] Brown H T, Escombe F. Researches on some of the physiological processes of green leaves, with special reference to the interchange of energy between the leaf and its surroundings[J]. Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character, 1905, 76(507): 29-111.
[15] Yousfi S, Kellas N, Saidi L, et al. Comparative performance of remote sensing methods in assessing wheat performance under Mediterranean conditions[J]. Agricultural Water Management, 2016, 164: 137-147.
[16] Tattaris M, Reynolds M P, Chapman S C. A direct comparison of remote sensing approaches for High-Throughput phenotyping in plant breeding[J]. Frontiers in Plant Science, 2016, 7: 1131.
[17] Virnodkar S S, Pachghare V K, Patil V C, et al. Remote sensing and machine learning for crop water stress determination in various crops: A critical review[J]. Precision Agriculture, 2020, 21(5): 1121-1155.
[18] Jones H G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling[J]. Agricultural and Forest Meteorology, 1999, 95(3): 139-149.
[19] Jones H G. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces[J]. Plant Cell and Environment, 1999, 22(9): 1043-1055.
[20] Jones H G, Stoll M, Santos T, et al. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine[J]. Journal of Experimental Botany, 2002, 53(378): 2249-2260.
[21] Leinonen I, Jones H G. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress[J]. Journal of Experimental Botany, 2004, 55(401): 1423-1431.
[22] Pou A, Diago M P, Medrano H, et al. Validation of thermal indices for water status identification in grapevine[J]. Agricultural Water Management, 2014, 134: 60-72.
[23] Maes W H, Baert A, Huete A R, et al. A new wet reference target method for continuous infrared thermography of vegetations[J]. Agricultural and Forest Meteorology, 2016, 226/227: 119-131.
[24] Maes W H, Steppe K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review[J]. Journal of Experimental Botany, 2012, 63(13): 4671-4712.
[25] Alchanatis V, Cohen Y, Cohen S, et al. Evaluation of different approaches for estimating and mapping crop water status in cotton with thermal imaging[J]. Precision Agriculture, 2010, 11(1): 27-41.
[26] 張智韜,于廣多,吳天奎,等. 基于無(wú)人機(jī)遙感影像的玉米冠層溫度提取及作物水分脅迫監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(23):82-89.
Zhang Zhitao, Yu Guangduo, Wu Tiankui, et al. Temperature extraction of maize canopy and crop water stress monitoring based on UAV remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(23): 82-89. (in Chinese with English abstract)
[27] 楊文攀,李長(zhǎng)春,楊浩,等. 基于無(wú)人機(jī)熱紅外與數(shù)碼影像的玉米冠層溫度監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):68-75.
Yang Wenpan, Li Changchun, Yang Hao, et al. Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 68-75. (in Chinese with English abstract)
[28] Krishna G, Sahoo R N, Singh P, et al. Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring[J]. Geocarto International, 2021, 36(5): 481-498.
[29] 張智韜,邊江,韓文霆,等. 無(wú)人機(jī)熱紅外圖像計(jì)算冠層溫度特征數(shù)診斷棉花水分脅迫[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):77-84.
Zhang Zhitao, Bian Jiang, Han Wenting, et al. Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 77-84. (in Chinese with English abstract)
[30] García-Tejero I F, Ortega-Arévalo C J, Iglesias-Contreras M, et al. Assessing the crop-water status in almond (Mill. ) trees via thermal imaging camera connected to smartphone[J]. Sensors, 2018, 18(4): 1050.
[31] 孫圣,張勁松,孟平,等. 基于無(wú)人機(jī)熱紅外圖像的核桃園土壤水分預(yù)測(cè)模型建立與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(16):89-95.
Sun Sheng, Zhang Jinsong, Meng Ping, et al. Establishment and application of prediction model of soil water in walnut orchard based on unmanned aerial vehicle thermal infrared imagery[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 89-95. (in Chinese with English abstract)
[32] Parihar G, Saha S, Giri L I. Application of infrared thermography for irrigation scheduling of horticulture plants[J]. Smart Agricultural Technology, 2021, 1: 100021.
[33] Salgadoe A S A, Robson A J, Lamb D W, et al. A non-reference temperature histogram method for determining Tc from Ground-Based thermal imagery of orchard tree canopies[J]. Remote Sensing, 2019, 11(6): 714.
[34] Gates D M. Transpiration and leaf temperature[J]. Annual Review of Plant Physiology, 1968, 19(1): 211-238.
[35] Mukherjee S, Nandi R, Kundu A, et al. Soil water stress and physiological responses of chickpeaL.subject to tillage and irrigation management in lower Gangetic plain[J]. Agricultural Water Management, 2022, 263: 1-17.
[36] 李云紅. 基于紅外熱像儀的溫度測(cè)量技術(shù)及其應(yīng)用研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2010.
Li Yunhong. Research on Temperature Measurement Technology and Application Based on Infrared Thermal Imager[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese with English abstract)
[37] Jones H G, Grant O M. Remote Sensing and Other Imaging Technologies to Monitor Grapevine Performance[M]. Hoboken, NJ: Wiley-Blackwell, 2016.
[38] Campbell-Clause, J M. Stomatal response of grapevines to wind[J]. Australian Journal of Experimental Agriculture, 1998, 38(1), 77-82.
Evaluating the water status of greenhouse tomatoes using thermal infrared imaging
Zhang Shunkai, Yang Hui, Du Taisheng※
(1.100083; 2.733000)
Infrared thermography is a promising technology for crop water status assessment. Effective information can be acquired for the timely formulation of regulated deficit irrigation strategies. However, it is very necessary to optimize the assessment under field conditions, especially under variable environmental conditions (daily and seasonal). Besides, simplicity and robustness are the basis of thermography applicability in the field. In this study, the optimal thermal indicator and the best acquisition were proposed for the monitoring daily period using thermal infrared imaging. The trial was carried out in the solar greenhouse of the National field scientific observation and research station on efficient water use of oasis agriculture in Wuwei from May to September 2021. The tomato plants (Fenxi 5) were selected as the research object. Two irrigation treatments were set: W1-full irrigation (control); W2-deficit irrigation (50% of the control). Firstly, three groups of dry and wet reference planes were selected to calculate the thermal indicators, including the red fabric, green fabric, and artificial spray medium. Subsequently, the performance was evaluated on the four common thermal indicators (Crop Water Stress Index (CWSI), Relative Stomatal Conductance Index (G), leaf temperature (leaf),and the difference betweenleafand surrounding air (leaf-air)) in the plant water status diagnosis. Finally, the optimal daily period of thermal imagery acquisition was determined for the tomato plants. The results showed that there were significant correlations of the normalized indices (CWSI andG) with the plant physiological indicators, such as stomatal conductance (s), photosynthetic rate (n), and leaf water potential. The leaf temperatureleafwas also used in a stable planting environment to determine whether the plant was dehydrated or not. There were no significant correlations between theleaf-airand the physiological indicators of tomato plants under two water treatments. The correlations between the CWSI andGobtained by the red fabric as the reference plane with thes,n,and leaf water potential were the most significant among the three groups of reference planes, where the determination coefficients were 0.687, 0.698, 0.669 and 0.707, 0.661, 0.663 respectively. By contrast, the thermal indicators obtained by the green fabric as the reference plane showed a weaker correlation with thes,n,and leaf water potential, where the determination coefficients were 0.631, 0.655, 0.615, and 0.652, 0.634, 0.638 respectively. The CWSI andGobtained by the spraying medium artificially were achieved in the lowest determination coefficients with the leaf physiological indicators, which were 0.628, 0.643, 0.609, 0.631, 0.624, and 0.586, respectively. Among the three groups of reference plane acquisition,wetanddryobtained by the red fabric were least affected by the reflection of ambient light. There was no permanent damage to the physiological characteristics of tomato leaves, thereby much easier to distinguish and extract from the thermal imagery. Therefore, the red fabric achieved a great performance to select the reference plane. In addition, the CWSI andGwere most significantly correlated withs,nand leaf water potential during 12:00-14:00 under both irrigation treatments. Different mathematical functions were obtained to estimate the leaf gas exchange using the best-performing thermal indicators. Therefore, the water status of the plant was effectively determined using thermal infrared imaging.
crops; water content; stress index; infrared thermography; relative stomatal conductance index; tomato
10.11975/j.issn.1002-6819.2022.18.025
S274.1
A
1002-6819(2022)-18-0229-08
張舜凱,楊慧,杜太生. 基于熱紅外成像的溫室番茄植株水分評(píng)估方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(18):229-236.doi:10.11975/j.issn.1002-6819.2022.18.025 http://www.tcsae.org
Zhang Shunkai, Yang Hui, Du Taisheng. Evaluating the water status of greenhouse tomatoes using thermal infrared imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 229-236. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.18.025 http://www.tcsae.org
2022-07-01
2022-08-12
國(guó)家自然科學(xué)基金項(xiàng)目(51725904);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(2021TC107)
張舜凱,研究方向?yàn)楣?jié)水灌溉理論與新技術(shù)。Email:zhangshunkai@cau.edu.cn
杜太生,教授,研究方向?yàn)檗r(nóng)業(yè)節(jié)水與水資源高效利用。Email:dutaisheng@cau.edu.cn