彭 玨,陳家贏,王軍光,蔡崇法
中國典型地帶性土壤團(tuán)聚體穩(wěn)定性與孔隙特征的定量關(guān)系
彭 玨,陳家贏,王軍光※,蔡崇法
(華中農(nóng)業(yè)大學(xué)水土保持研究中心,農(nóng)業(yè)農(nóng)村部長江中下游耕地保育重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
團(tuán)聚體結(jié)構(gòu)和穩(wěn)定性關(guān)系著一系列土壤過程。為探明不同類型地帶性土壤團(tuán)聚體穩(wěn)定性與孔隙結(jié)構(gòu)變化規(guī)律及二者關(guān)系,該研究以中國溫帶與亞熱帶地區(qū)5種地帶性土壤(黑土、棕壤、褐土、黃褐土和紅壤)為研究對象,結(jié)合CT掃描、濕篩法和Le Bissonnais(LB)法,量化孔隙結(jié)構(gòu),測定各地帶性土壤團(tuán)聚體平均重量直徑(Mean Weight Diameter,MWD)。結(jié)果表明:團(tuán)聚體水穩(wěn)性受到土壤類型和土層深度的綜合影響,從大到小依次為黃褐土、褐土、棕壤、黑土和紅壤;基于LB法測定的團(tuán)聚體平均質(zhì)量直徑排序?yàn)镸WDsw(慢速濕潤)>MWDws(預(yù)濕潤震蕩)>MWDfw(快速濕潤),即5種團(tuán)聚體的主要破碎機(jī)制是快速濕潤引起的消散作用;5種地帶性土壤團(tuán)聚體不同當(dāng)量直徑孔隙度由北至南呈“U”型變化,且這種變化程度隨土層深度增加而減弱;團(tuán)聚體孔隙大小均以30~<75m孔隙為主,孔隙形狀以細(xì)長型孔隙為主。細(xì)長型孔隙度自北向南呈先下降后上升的趨勢,不規(guī)則型和規(guī)則型孔隙度變化趨勢相反;偏最小二乘回歸表明,規(guī)則型孔隙度、孔隙平均形狀因子、75~100m孔隙度和細(xì)長型孔隙度與團(tuán)聚體水穩(wěn)性顯著相關(guān),細(xì)長型孔隙起正向作用;規(guī)則型孔隙、細(xì)長型孔隙、75~100m孔隙度和>100m孔隙度是MWDfw、MWDws、MWDsw的主控因子。研究結(jié)果有助于加深土壤團(tuán)聚體與孔隙特征關(guān)系的認(rèn)識,從而更好地揭示土壤過程作用機(jī)制。
團(tuán)聚體;土壤;孔隙;穩(wěn)定性;結(jié)構(gòu);地帶性
土壤結(jié)構(gòu)是土壤水氣和養(yǎng)分貯存運(yùn)輸?shù)膱鏊鵞1],健康的土壤結(jié)構(gòu)可以有效提升土壤肥力,促進(jìn)作物高產(chǎn)。土壤結(jié)構(gòu)愈穩(wěn)定,土體坍塌的可能性愈小,也越利于阻控水土流失。團(tuán)聚體是土壤結(jié)構(gòu)和功能的基本單元。團(tuán)聚體穩(wěn)定性決定了團(tuán)聚體破碎的程度和可能性,影響著土壤的通氣性、透水性和抗蝕性,是衡量土壤結(jié)構(gòu)穩(wěn)定性的一個重要指標(biāo)[2-3]。研究指出,土壤團(tuán)聚體穩(wěn)定性越大,抗蝕性能越佳,在侵蝕過程中形成沉積性結(jié)皮的概率越低,侵蝕泥沙粒徑更大[4]。地表結(jié)皮的結(jié)構(gòu)特性會對土壤侵蝕過程和坡面流水力學(xué)特性產(chǎn)生影響[5]。因此,認(rèn)識團(tuán)聚體穩(wěn)定性機(jī)理對于調(diào)控土壤功能具有重要意義。
團(tuán)聚體穩(wěn)定性是多因素綜合作用的結(jié)果,主要包括土壤自身性質(zhì)(機(jī)械組成、成土母質(zhì)、土壤質(zhì)地、礦物組成、膠結(jié)物質(zhì)類型和數(shù)量分布)、氣候環(huán)境(干濕交替、凍融循環(huán))、生物性質(zhì)(動植物、微生物分解)、人為作用(土地管理和耕作措施)[6-7]。其中,土壤性質(zhì)可以直接影響團(tuán)聚體穩(wěn)定性,其他因素往往通過改變土壤性質(zhì)來間接調(diào)控團(tuán)聚體穩(wěn)定性變化的方向與強(qiáng)度。已有研究表明,團(tuán)聚體穩(wěn)定性受膠結(jié)物質(zhì)和孔隙結(jié)構(gòu)共同影響[8-11]。穩(wěn)定性強(qiáng)的大團(tuán)聚體的形成主要依靠有機(jī)質(zhì)的膠結(jié)作用[12]。鐵鋁氧化物與有機(jī)質(zhì)形成的有機(jī)-無機(jī)復(fù)合體是團(tuán)聚體形成和穩(wěn)定的基礎(chǔ)[6]??紫洞笮 ?shù)量、體積和彎曲度均會影響團(tuán)聚體在消散作用和機(jī)械外力下的破碎程度[13-14]。團(tuán)聚體的脆性破壞主要由裂隙逐漸發(fā)展導(dǎo)致土體強(qiáng)度突然減弱引起的,與孔隙分布、連通性和空間各向異性密切相關(guān)[15-17]。第四紀(jì)紅黏土發(fā)育紅壤的團(tuán)聚體穩(wěn)定性隨著超微孔隙(0.1~5m)的增加而增大[9]。Menon等[10]通過X射線顯微斷層掃描技術(shù)提取了耕地、草地和林地的團(tuán)聚體孔徑大小分布,發(fā)現(xiàn)草地與林地團(tuán)聚體表現(xiàn)更為穩(wěn)定,且其孔隙分布在水中持續(xù)浸沒后無明顯變化,證明穩(wěn)定的孔隙結(jié)構(gòu)具有容納水氣儲存和運(yùn)輸?shù)膹椥?,使團(tuán)聚體不易發(fā)生結(jié)構(gòu)性破壞。同時,土壤孔隙還可以通過膠結(jié)物質(zhì)間接對團(tuán)聚體穩(wěn)定性造成影響。Wu等[18]分析了亞熱帶強(qiáng)風(fēng)化土壤,指出土壤膠結(jié)物質(zhì)和孔隙特征間存在顯著的交互作用,非晶態(tài)鐵氧化物與超微孔隙的結(jié)合對團(tuán)聚體穩(wěn)定性影響更為顯著。
在氣候與地形的綜合影響下,水熱條件由北至南逐漸變化,中國土壤呈緯度地帶性分布,土壤風(fēng)化程度逐漸增強(qiáng),土壤類型具有多樣性。盡管孔隙結(jié)構(gòu)的復(fù)雜性決定了團(tuán)聚體穩(wěn)定性的變化,但關(guān)于不同類型地帶性土壤孔隙結(jié)構(gòu)特征與團(tuán)聚體穩(wěn)定性關(guān)系方面的研究仍存在局限。鑒于此,本文根據(jù)土壤發(fā)生學(xué),選取中國溫帶與亞熱帶地區(qū)質(zhì)地接近、發(fā)育程度不同的地帶性土壤(黑土、棕壤、褐土、黃褐土和紅壤)為研究對象,綜合同步輻射顯微計算機(jī)斷層掃描(Synchrotron-based X-ray Micro-computed Tomography,SR-μCT)、濕篩法和Le Bissonnais 法(LB),分析了不同類型地帶性土壤團(tuán)聚體孔隙結(jié)構(gòu)特點(diǎn)及團(tuán)聚體穩(wěn)定性,探討孔隙結(jié)構(gòu)對團(tuán)聚體穩(wěn)定性的影響機(jī)制,以期為完善土壤結(jié)構(gòu)形成、穩(wěn)定和變化機(jī)理,深入理解土壤過程和功能提供理論依據(jù)。
研究區(qū)位于中國東亞季風(fēng)氣候區(qū),受氣候影響,該區(qū)土壤呈緯度地帶性分布,由北至南土壤類型依次為黑土、棕壤、褐土、黃褐土和紅壤。黑土樣點(diǎn)位于黑龍江省海倫市(47o43'N、126o49'E),屬溫帶大陸性季風(fēng)氣候,四季分明,降水集中,年均氣溫2 ℃,年均降水量550 mm,地形為低丘緩崗,成土母質(zhì)為第四紀(jì)更新世的黏質(zhì)黃土;棕壤樣點(diǎn)位于遼寧省沈陽市(41o89'N、113o58'E),屬溫帶半濕潤大陸性季風(fēng)氣候,年均氣溫7.9 ℃,年均降水量716.2 mm,降水集中在夏季,溫差較大,地形為崗地,成土母質(zhì)為第四紀(jì)更新世的黏質(zhì)黃土;褐土樣點(diǎn)位于河南省洛陽市(34o45'N、112o37'E),屬暖溫帶亞濕潤季風(fēng)氣候,夏季炎熱多雨、冬季寒冷少雨雪,年均氣溫14.86 ℃,年均降水量578.2 mm,地形為崗地為主,成土母質(zhì)為馬蘭黃土。黃褐土樣點(diǎn)位于湖北省襄陽市(32o10'N、112o14'E),屬北亞熱帶季風(fēng)氣候,年均氣溫15.0 ℃,年均降水量828 mm,地形為崗地丘陵,成土母質(zhì)為第四紀(jì)更新統(tǒng)黃土母質(zhì)(下蜀黃土);紅壤樣點(diǎn)位于湖南省長沙市(28o41'N、114o15'E),屬中亞熱帶濕熱季風(fēng)氣候,年均氣溫16.8 ℃,年均降水量1 361 mm,地勢以丘陵為主,成土母質(zhì)為第四紀(jì)紅黏土。
表1 采樣點(diǎn)基本信息
本文采樣點(diǎn)均為未擾動多年生林地。采樣時間為2019年7月。土壤按其發(fā)生層次采集淋溶層(A)、淀積層(B)和母質(zhì)層(C)。淋溶層土壤按照“S”形進(jìn)行采集,下層土壤在挖取的典型剖面上采集。在選定50 m×50 m區(qū)域內(nèi)隨機(jī)選取10個小地塊進(jìn)行采樣,后將樣品混合均勻裝袋,以減小同一土樣間的差異與人為主觀因素的干擾。所取土樣部分過10 mm篩進(jìn)行團(tuán)聚體穩(wěn)定性測定。對用于CT掃描的土壤團(tuán)聚體的制備,應(yīng)選擇較大土塊并用特制塑料盒密封運(yùn)回實(shí)驗(yàn)室,以減少孔隙結(jié)構(gòu)在運(yùn)輸過程中的破壞,并于干燥陰涼處自然風(fēng)干后沿脆弱帶輕輕掰開過3~5 mm篩。剩余土壤需保存?zhèn)溆谩?/p>
1.3.1 團(tuán)聚體穩(wěn)定性
團(tuán)聚體穩(wěn)定性綜合參考干篩、濕篩法和LB法[19-20]。干篩法通過四分法稱取500 g原狀土,于5、2、1、0.5和0.25 mm套篩上進(jìn)行土樣分級,根據(jù)比例配成50 g樣品,用于后續(xù)濕篩法。濕篩法通過團(tuán)聚體分析儀進(jìn)行,將土樣置于分析儀套篩(篩孔直徑5、2、1、0.5、0.25 mm)頂部,震蕩分級后將各篩層團(tuán)聚體分別洗入燒杯,并于105 ℃烘箱中烘干,稱取各級團(tuán)聚體質(zhì)量。LB法測定首先需將3~5 mm風(fēng)干團(tuán)聚體置于40 ℃烘箱內(nèi)烘干24 h以統(tǒng)一各樣品初始含水率,后分別稱取5 g團(tuán)聚體,進(jìn)行快速濕潤(模擬暴雨條件下團(tuán)聚體的消散過程)、慢速濕潤(模擬土壤不均勻膨脹對團(tuán)聚體的破壞作用)、預(yù)濕潤振蕩(模擬機(jī)械外力對團(tuán)聚體的破壞作用)3種處理[21],分別用FW、SW、WS表示。各處理后的團(tuán)聚體需烘干,過2、1、0.5、0.25、0.10、0.05 mm篩,稱取各級團(tuán)聚體質(zhì)量。以上試驗(yàn)重復(fù)3次。
平均重量直徑(Mean Weight Diameter,MWD)表征團(tuán)聚體穩(wěn)定性。MWDdry和MWDwet分別為干篩和濕篩條件下的MWD。相對消散指數(shù)(Relative Slaking Index,RSI)和相對機(jī)械破碎指數(shù)(Relative Mechanical Breakdown Index,RMI)表征團(tuán)聚體破碎機(jī)制。RSI和RMI越大,團(tuán)聚體穩(wěn)定性越差[22]。
式中r為第個篩的孔徑,mm;0=1,r=r+1;m為第個篩上的破碎團(tuán)聚體百分比,%;為篩子的數(shù)量,=7。
式中MWDfw、MWDsw和MWDws分別為在快速濕潤、慢速濕潤和機(jī)械震蕩條件下的MWD。
1.3.2 CT掃描與處理
CT裝置為天津三英精密儀器股份有限公司的Geoscan 200 CT scanner。由于束流時間的限制,每個處理隨機(jī)選擇3個3~5 mm近球形團(tuán)聚體樣品進(jìn)行掃描。設(shè)備光子能量100 keV,曝光時間0.33 s,分辨率5.95m(、、軸一致)。每次掃描約采集2 000張圖像切片,利用天津三英 CT Program 軟件進(jìn)行圖像重建,采用背投影算法重建獲得約800張大小為1 052×1 052像素的團(tuán)聚體圖片序列,再將其轉(zhuǎn)存為8位tiff格式的灰度圖像,灰度值范圍為0~255。
團(tuán)聚體三維孔隙結(jié)構(gòu)的可視化及孔隙指標(biāo)的定量化在Image J軟件中完成[23]。為避免邊緣效應(yīng),選取團(tuán)聚體中間部分500×500×500體元區(qū)域作為特征域進(jìn)行圖像分析。之后對圖像進(jìn)行歸一化、去噪、平滑、閾值分割。處理后各土壤團(tuán)聚體三維可視化結(jié)果見圖1??紫抖取⒖紫洞笮》植?、孔隙數(shù)量通過插件3D object counter計算得到。參考Ma等[15]將孔隙當(dāng)量直徑劃分為4個等級:<30、30~<75、75~100和>100m。根據(jù)孔隙形狀系數(shù)()將孔隙形狀分為:規(guī)則型(≥0.5),不規(guī)則型(0.2<<0.5)和細(xì)長型(≤0.2)。值為孔隙等體積球體表面積與孔隙實(shí)測表面積比值,值越小,孔隙形狀越不規(guī)則,值越接近1,孔隙形狀越接近球體[24]。
注:長方體內(nèi)綠色部分為孔隙,黑色部分為土壤基質(zhì)。
所有圖通過Origin 2021生成,數(shù)據(jù)統(tǒng)計分析均在SPSS 25.0上進(jìn)行。不同土壤類型和不同土層間的顯著差異利用雙因素方差分析法確定(<0.05),并用Duncan法進(jìn)行多重比較。團(tuán)聚體穩(wěn)定性指標(biāo)與孔隙特征指標(biāo)的相關(guān)性分析采用Pearson法進(jìn)行評價,顯著性水平為0.05和0.01。選用多元逐步回歸和偏最小二乘回歸(Partial Least Squares Regression,PLSR)進(jìn)行變量的篩選。判斷變量進(jìn)入逐步回歸模型和移除的顯著性水平分別為0.05和0.01。在PLSR模型中,利用模型擬合度2(模型對的擬合度)來提取每個模型中適當(dāng)?shù)某煞謧€數(shù),當(dāng)模型中所有主成分的2>0.5,模型預(yù)測性較為可靠[25]。變量投影重要性指標(biāo)(Variable Importance In Projection,VIP)和回歸系數(shù)(Regression Coefficient,RCS)用來評價團(tuán)聚體孔隙特征對團(tuán)聚體穩(wěn)定性的作用效果,VIP用于衡量自變量對因變量的解釋能力,RCS用于解釋自變量對因變量的作用方向和強(qiáng)度[26]。VIP>1,表明自變量對因變量的解釋作用最強(qiáng),VIP=1說明作用相等,VIP介于0.5~1表明作用一般,VIP<0.5表明無作用。若VIP<0.8,代表該變量對模型的貢獻(xiàn)較小。
團(tuán)聚體穩(wěn)定性受土壤類型和土壤層次綜合作用影響。MWD常作為土壤團(tuán)聚體狀況的指標(biāo),其值越大表示團(tuán)聚體穩(wěn)定性越強(qiáng)[27]。MWDdry變化范圍為2.88~4.75 mm(圖2)。除棕壤和褐土外,MWDdry隨土層深度逐漸增加;各土壤MWDwet明顯低于MWDdry,MWDwet變化范圍為0.18~1.57 mm,各類型土壤團(tuán)聚體水穩(wěn)性均隨土層深度增加而逐漸減小,與MWDdry變化趨勢相反。從黑土到黃褐土,MWDwet逐漸減小,在紅壤中達(dá)到最大值。在所有土壤層次中,紅壤淋溶層MWDwet最高(1.49 mm),黃褐土母質(zhì)層MWDwet值最低(0.19 mm)。
注:A代表淋溶層,B代表淀積層,C代表母質(zhì)層。
由圖3可知,供試土樣在不同處理下團(tuán)聚體穩(wěn)定性差異顯著,由大至小依次為慢速濕潤、預(yù)濕潤震蕩、快速濕潤,說明消散作用和機(jī)械破壞作用是5種土壤團(tuán)聚體的主要破碎機(jī)制。MWDfw變化范圍為0.32~1.39 mm,在3個預(yù)處理中最小,即5種地帶性土壤團(tuán)聚體對快速濕潤的敏感性最大。除紅壤外,其余土壤MWDfw均隨土層深度增大而減小,而紅壤母質(zhì)層MWDfw高于淀積層。自北(黑土)向南(紅壤),MWDfw先減小后增大,其中褐土和黃褐土穩(wěn)定性最差,紅壤最高;MWDsw變化范圍為0.73~1.98 mm,在5個預(yù)處理中最大,即5種地帶性土壤團(tuán)聚體對慢速濕潤的敏感性最小。自北向南,MWDsw變化趨勢與MWDfw相似。根據(jù)土層深度,MWDsw由大到小表現(xiàn)為淋溶層、淀積層和母質(zhì)層,但棕壤不同(母質(zhì)層MWDsw高于淀積層)。對比各層次土壤MWDsw,黃褐土母質(zhì)層MWDsw最小,紅壤淋溶層表現(xiàn)最佳;MWDws變化范圍為0.35~1.79 mm,團(tuán)聚體對預(yù)濕潤震蕩的敏感性居中。所有土壤中,黃褐土MWDws最低,為0.32~0.73 mm;黑土、紅壤團(tuán)聚體穩(wěn)定性較高,分別為0.99~1.48和1.19~1.74 mm。MWDws大體上自北向南逐漸減小后增大。5種土壤MWDws從大到小均按照淋溶層、淀積層、母質(zhì)層的順序排列??傮w上,各類土壤在3種預(yù)處理下的團(tuán)聚體 MWD 自北向南逐漸減小后增大,隨土壤層次的增大而減小。
a. 快速濕潤a. Fast Wetting (FW)b.慢速濕潤b. Slow Wetting (SW)c. 預(yù)濕潤震蕩c.Pre-wetting and Stirring (WS)
RSI和RMI代表了團(tuán)聚體破碎程度的大小,團(tuán)聚體破碎程度隨二者值升高而增大。由圖4可知,RSI普遍大于RMI,說明機(jī)械破壞作用對團(tuán)聚體破碎程度的影響普遍低于消散作用。RSI和RMI從黑土到紅壤整體上呈逐漸增加后減小的趨勢(10.73%~56.43%),說明團(tuán)聚體抵抗消散和破碎的能力自北向南逐漸減小后增大。褐土和黃褐土RMI明顯高于其他土壤,表明其對機(jī)械破碎作用更為敏感。就層次而言,除棕壤和褐土外,淋溶層RSI和RMI高于母質(zhì)層和淀積層,棕壤和褐土表現(xiàn)為淀積層RSI和RMI相對其他層次較小,紅壤表現(xiàn)相反。
團(tuán)聚體孔隙結(jié)構(gòu)特征的量化結(jié)果見表2。受分辨率的限制,本文中總孔隙度均指>5.95m的孔隙。結(jié)果顯示,除黃褐土外,其余土壤團(tuán)聚體的總孔隙度均隨土層深度增加而減少,黑土淋溶層最高(20.67%),大部分土層孔隙度低于10%??紫稊?shù)量表現(xiàn)為黃褐土淋溶層最低(1 749),黑土淋溶層最高(8 264),且隨土層深度增加而減少。黃褐土團(tuán)聚體總孔隙度和孔隙平均當(dāng)量直徑較另四種土壤團(tuán)聚體差異顯著(<0.05),存在明顯粗長孔隙,可能與其原生土壤顆粒的排列方式和土壤中黏土礦物有關(guān)。團(tuán)聚體孔隙大小分布在五種土壤中均以30~75m孔隙為主,其次為>100m孔隙和<30m孔隙。而黃褐土團(tuán)聚體以>100m孔隙為主,這可能與土壤在風(fēng)化過程中產(chǎn)生的長條狀孔隙和不規(guī)則孔隙發(fā)展成大孔隙有關(guān)。整體上,不同當(dāng)量直徑孔隙度自北向南呈先降低后增加的“U”型變化趨勢,淋溶層尤為明顯,且此種規(guī)律性變化程度隨土層深度增加而逐漸減弱。
圖4 不同類型土壤團(tuán)聚體相對消散指數(shù)(RSI)和相對機(jī)械破碎指數(shù)(RMI)
了解土壤孔隙的形態(tài)特征利于深入理解孔隙形狀對土壤持水能力的作用[28]。根據(jù)表2結(jié)果,各類型土壤團(tuán)聚體孔隙形狀以細(xì)長型孔隙為主,其次為不規(guī)則型孔隙和規(guī)則型孔隙。細(xì)長型孔隙自北向南先下降后上升,規(guī)則型和規(guī)則型孔隙變化趨勢相反。隨著土層深度的增加,細(xì)長型孔隙比例逐漸減小,規(guī)則型孔隙和不規(guī)則型孔隙比例逐漸增加。
土壤團(tuán)聚體穩(wěn)定性與團(tuán)聚體孔隙特征間的相關(guān)關(guān)系見圖5。結(jié)果顯示,MWDdry與孔隙數(shù)量呈顯著負(fù)相關(guān)(<0.05),與>100m孔隙度和規(guī)則型孔隙度呈極顯著負(fù)相關(guān)(<0.01)??傮w上,MWDdry與孔隙特征間聯(lián)系較小。MWDwet不同,整體與孔隙特征間存在較強(qiáng)的相關(guān)性,其中,與總孔隙度、孔隙數(shù)量、細(xì)長型孔隙度及不同當(dāng)量直徑下孔隙度間呈極顯著正相關(guān),與孔隙平均當(dāng)量直徑、規(guī)則型孔隙度、不規(guī)則型孔隙度間呈顯著負(fù)相關(guān)(<0.01)。MWDwet與細(xì)長型孔隙度關(guān)系最密切。LB法處理下團(tuán)聚體穩(wěn)定性(MWDsw、 MWDws和MWDfw)與總孔隙度、孔隙數(shù)量、孔隙形態(tài)及不同當(dāng)量直徑下孔隙度間有密切聯(lián)系。其中與總孔隙度、孔隙數(shù)量、細(xì)長型孔隙度、<30m孔隙度、30~<75m孔隙度、75~100m孔隙度和>100m孔隙度呈極顯著正相關(guān),與規(guī)則型孔隙度、不規(guī)則型孔隙度呈極顯著負(fù)相關(guān)(<0.01)。綜合所有指標(biāo),MWDfw與規(guī)則型孔隙度和細(xì)長型孔隙度間關(guān)系最密切(作用方向相反),其次為>100m孔隙度。MWDsw與細(xì)長型孔隙度和>100m孔隙度間具有最密切的正相關(guān)關(guān)系(<0.01)。MWDws與細(xì)長型孔隙度關(guān)系最密切。
表2 不同類型地帶性土壤團(tuán)聚體孔隙結(jié)構(gòu)特征參數(shù)
注:大寫字母不同表示不同類型土壤間存在顯著差異(<0.05),小寫字母不同表示土壤不同層次之間存在顯著差異(<0.05)。
Note: Different capital letters indicate that there are significant differences between different types of soil (<0.05), and different lowercase letters indicate that there are significant differences between different layers of soil (<0.05).
本文將11個孔隙特征參數(shù)作為自變量,5個團(tuán)聚體穩(wěn)定性指標(biāo)作為因變量,利用PLSR法探討孔隙結(jié)構(gòu)特征對團(tuán)聚體穩(wěn)定性的具體影響。不同處理下的團(tuán)聚體穩(wěn)定性選取的最優(yōu)成分見表3。其中,MWDdry不論選擇幾個成分,2與調(diào)整后2仍小于0.5,可見MWDdry與孔隙結(jié)構(gòu)指標(biāo)的擬合度不高,模型不成立。MWDwet和LB法處理下的MWD與孔隙特征擬合度較高(所有2與2均大于0.5),符合相關(guān)性結(jié)果,故于后續(xù)分析中只選取這些處理下的團(tuán)聚體穩(wěn)定性進(jìn)行描述。
表3 團(tuán)聚體穩(wěn)定性偏最小二乘模型概述
注:MWDdry、MWDwet、MWDfw、MWDsw和MWDws分別表示在干篩、濕篩、快速濕潤、慢速濕潤和預(yù)濕潤震蕩處理下的土壤團(tuán)聚體平均重量直徑。
表4列出了4個因變量的VIP和RCS。MWDwet模型中VIP>1的孔隙特征參數(shù)為規(guī)則型孔隙度、孔隙平均形狀因子、75~100m孔隙度和細(xì)長型孔隙度,說明這些孔隙參數(shù)與團(tuán)聚體水穩(wěn)性的相關(guān)性顯著??偪紫抖?、30~<75m孔隙度和>100m孔隙度VIP介于0.8~1之間,表明其對團(tuán)聚體水穩(wěn)性影響較為重要。根據(jù)RCS,總孔隙度、孔隙數(shù)量、細(xì)長型孔隙度、<30m孔隙度、30~75m孔隙度和>100m孔隙度與團(tuán)聚體水穩(wěn)性間呈正相關(guān),團(tuán)聚體遇水不輕易分散,團(tuán)聚結(jié)構(gòu)不容易破碎。MWDfw模型VIP>1的有規(guī)則型孔隙度、細(xì)長型孔隙度和<75~100m孔隙度,證明其對MWDfw有顯著影響。結(jié)合RCS,發(fā)現(xiàn)細(xì)長型孔隙度、<30m孔隙度、>100m孔隙度、孔隙平均當(dāng)量直徑和孔隙數(shù)量對MWDfw有積極影響,即這些孔隙特征參數(shù)在快速濕潤條件下與團(tuán)聚體穩(wěn)定性相關(guān)性好,其余孔隙指標(biāo)作用相反。MWDsw模型VIP>1的孔隙參數(shù)有規(guī)則型孔隙度、75~100m孔隙度和>100m孔隙度,即這3個孔隙特征參數(shù)對MWDsw有顯著影響。結(jié)合RCS,孔隙平均當(dāng)量直徑、孔隙數(shù)量、細(xì)長型孔隙度和>100m孔隙度可以促進(jìn)慢速濕潤處理下的團(tuán)聚體穩(wěn)定性,即提高團(tuán)聚體在發(fā)生不均勻膨脹情況時的穩(wěn)定性。MWDws模型VIP>1的孔隙參數(shù)為規(guī)則型孔隙度、75~100m孔隙度、>100m孔隙度和細(xì)長型孔隙度,證明以上孔隙特征參數(shù)對MWDws影響最為重要??紫镀骄?dāng)量直徑、細(xì)長型孔隙度、>100m孔隙度和孔隙數(shù)量與預(yù)濕潤震蕩條件下的團(tuán)聚體穩(wěn)定性間呈正比,表明這4個孔隙參數(shù)在團(tuán)聚體發(fā)生機(jī)械破碎條件下可以更好地表征團(tuán)聚體穩(wěn)定性。
表4 團(tuán)聚體穩(wěn)定性的回歸系數(shù)值與變量投影重要性
濕篩法結(jié)果可以反映團(tuán)聚體水穩(wěn)性,是最為常見的團(tuán)聚體穩(wěn)定性測定方法。本文中5種土壤團(tuán)聚體MWDwet均隨土層深度增加而遞減,這與表層土壤直接與植被接觸有關(guān)。發(fā)達(dá)的植物根系和枯枝落葉層的分解可以促進(jìn)有機(jī)質(zhì)的累積。有機(jī)質(zhì)通過增加土壤斥水性和黏聚力來提高團(tuán)聚體穩(wěn)定性[29]。而下層土壤性質(zhì)主要取決于土壤母質(zhì)本身,有機(jī)質(zhì)含量低,團(tuán)聚體穩(wěn)定性主要受土壤質(zhì)地和氧化物的影響。從黑土到紅壤,MWDwet呈先降低后增加的趨勢。黑土與紅壤MWDwet較高,黃褐土最低,這與趙玉明等[30]研究結(jié)果一致。黑土在溫帶氣候條件下生物量大,低溫條件限制了微生物對有機(jī)物的分解,使得黑土腐殖質(zhì)累積強(qiáng)度增大,利于土粒膠結(jié)。強(qiáng)烈的淋溶作用致紅壤高度發(fā)育,易形成結(jié)晶良好的鐵鋁氧化物。土壤中的鐵鋁氧化物一方面可以充當(dāng)鍵橋結(jié)合黏粒,產(chǎn)生較難分散的團(tuán)聚體[31];另一方面可呈膠膜狀包被在土粒表面,增大膠結(jié)作用,使得膠膜狀態(tài)改變后的團(tuán)聚體水穩(wěn)性更高。黃褐土水穩(wěn)性最低,這可能與其黏土礦物組成中的蛭石有關(guān),蛭石在濕潤狀態(tài)下可以通過水化膨脹作用來降低團(tuán)聚體穩(wěn)定性。
傳統(tǒng)的濕篩法將所有破碎機(jī)制囊括其中,多用于土壤全樣的團(tuán)聚體穩(wěn)定性評價,但難以判斷團(tuán)聚體發(fā)生破碎的主要機(jī)制。LB法克服了此缺點(diǎn),可以很好地將消散作用、機(jī)械破碎作用及黏粒不均勻脹縮進(jìn)行區(qū)分[32]。通過LB法測定的土壤團(tuán)聚體的MWD由大至小依次為MWDsw、MWDws、MWDfw,可見快速濕潤使得團(tuán)聚體內(nèi)氣體爆破導(dǎo)致的消散作用與外界應(yīng)力引起的機(jī)械破碎作用是團(tuán)聚體破碎的主要原因,此結(jié)果與Ma等[15]一致。原因在于快速濕潤條件下,水分可以迅速的入侵團(tuán)聚體并占據(jù)其內(nèi)部孔隙空間,存在于孔隙中的空氣因容納空間減小而向團(tuán)聚體外逃逸,并于此過程中對團(tuán)聚體產(chǎn)生壓力,當(dāng)此壓力超過團(tuán)聚體可承受范圍,團(tuán)聚體便會發(fā)生“氣爆”。與此同時,土壤顆粒間膠結(jié)作用因水分進(jìn)入而減弱,進(jìn)一步導(dǎo)致團(tuán)聚體破裂。而團(tuán)聚體在預(yù)濕潤震蕩條件下,受乙醇影響,破碎僅與機(jī)械外力(震蕩、搖晃)產(chǎn)生的破壞作用有關(guān),故消散作用對團(tuán)聚體的破壞力最強(qiáng)[32]。綜合LB法的團(tuán)聚體穩(wěn)定性測定結(jié)果發(fā)現(xiàn),5種土壤團(tuán)聚體MWD大體上均呈先降低后增加的趨勢,這是因?yàn)樽员毕蚰贤寥乐懈邘X石含量逐漸增加,而2∶1型黏土礦物含量(蛭石和水云母)逐漸降低,導(dǎo)致了MWD的變化。然而針對特定土壤,其他學(xué)者表示持不同觀點(diǎn)。梁春林等[33]認(rèn)為基于黑土黏土礦物易吸水膨脹與機(jī)械破壞作用不如團(tuán)聚體膠結(jié)作用強(qiáng)度等因素,可能導(dǎo)致MWDsw小于MWDws。
團(tuán)聚體穩(wěn)定性取決于膠結(jié)物質(zhì)數(shù)量和類型、孔隙結(jié)構(gòu)發(fā)育特征及二者間的交互用。根據(jù)孔隙特征參數(shù)與團(tuán)聚體穩(wěn)定性指標(biāo)的相關(guān)性分析結(jié)果可知,孔隙度、孔隙數(shù)量、細(xì)長型孔隙度與團(tuán)聚體穩(wěn)定性間呈正相關(guān)關(guān)系。這與趙冬[34]的結(jié)論一致,其結(jié)果表明,在一定范圍內(nèi),團(tuán)聚體孔隙度越大,團(tuán)聚體通透性越佳,團(tuán)聚體穩(wěn)定性隨之提高。同時,快速濕潤條件下,團(tuán)聚體孔隙度的大小決定了能夠容納迅速進(jìn)入團(tuán)聚體內(nèi)部的空氣體積,增加孔隙體積與連通性或減緩濕潤速率可以降低團(tuán)聚體內(nèi)部空氣達(dá)到飽和的速率,減小孔隙膨脹壓力,進(jìn)而提高團(tuán)聚體穩(wěn)定性[35]。研究表明,孔隙有機(jī)質(zhì)含量越高的土壤,孔隙更為穩(wěn)固,而低有機(jī)質(zhì)的土壤中的新生孔隙較為不穩(wěn)定[8]。有機(jī)質(zhì)可以促進(jìn)團(tuán)聚體中小孔隙的相互融合以及建立團(tuán)聚體的拒水性來降低水的潤濕作用[36],進(jìn)而減小孔隙內(nèi)部氣體所受壓力,使空氣在團(tuán)聚體所能承載壓強(qiáng)范圍內(nèi)緩慢釋放,間接提高團(tuán)聚體的穩(wěn)定性,故有機(jī)質(zhì)含量高的土壤(黑土、棕壤)團(tuán)聚體穩(wěn)定性相對更高。而一些學(xué)者持不同觀點(diǎn),王文剛等[37]認(rèn)為團(tuán)聚體水穩(wěn)性隨凍融循環(huán)次數(shù)增加而下降的主要原因在于土壤孔隙豐度的增大。梁春林等[33]探討了表層與亞表層黑土于不同破碎機(jī)制下團(tuán)聚體穩(wěn)定性與土壤孔隙率的關(guān)系,發(fā)現(xiàn)土壤孔隙率與 MWDfw、MWDsw和MWDst均呈顯著負(fù)相關(guān)關(guān)系(0.05)。究其原因在于不同類型土壤于不同外界環(huán)境下所遭受的侵蝕類型具有差異。黑土孔隙度的增加是在凍融作用影響下產(chǎn)生的,冰晶的凍脹導(dǎo)致土壤孔隙結(jié)構(gòu)的不可逆變形,導(dǎo)致團(tuán)聚體水穩(wěn)性的下降[38]。在紅壤中,高含量的鐵鋁氧化物起主要膠結(jié)作用,通過其較大的比表面積和表面電荷來粘結(jié)反應(yīng)性弱的土壤顆粒,從而增大團(tuán)聚體孔隙度,同時由于非膨脹性黏土礦物(如高嶺石)的存在,使得紅壤團(tuán)聚體在水中不易消散[39],故紅壤團(tuán)聚體孔隙度與水穩(wěn)性成正比關(guān)系。黃褐土在風(fēng)化過程中易形成裂隙,在團(tuán)聚體尺度上則表現(xiàn)為存在較多不規(guī)則、細(xì)長狀孔隙,但總孔隙度少。黃褐土黏土礦物類型主要為2∶1型,此類礦物具有較強(qiáng)的膨脹收縮特征,利于團(tuán)聚體中細(xì)長孔隙的發(fā)育[11],也易發(fā)生水化作用從而減弱土壤顆粒間的黏結(jié)力,故黃褐土團(tuán)聚體總孔隙度小,團(tuán)聚體穩(wěn)定性低。綜合而言,土壤顆粒的排列方式和膠結(jié)物質(zhì)對孔隙結(jié)構(gòu)發(fā)育的貢獻(xiàn)可能是導(dǎo)致孔隙度對團(tuán)聚體穩(wěn)定性影響存在差異的原因之一。因此,結(jié)合孔隙結(jié)構(gòu)發(fā)育的原因來探究團(tuán)聚體穩(wěn)定性機(jī)制差異性是至關(guān)重要的。在不同破碎機(jī)制下,各項孔隙特征參數(shù)的VIP與RCS表現(xiàn)出不同的作用效果。除了規(guī)則型孔隙度、細(xì)長型孔隙度、75~100m孔隙度VIP在1以上,對團(tuán)聚體穩(wěn)定性影響顯著。<75m孔隙度還對MWDwet和MWDfw起正向作用,對MWDsw和MWDws起負(fù)向作用。消散作用在前文中已被確認(rèn)為主要破碎機(jī)制,故<75m孔隙度對MWDwet的正向作用是3種機(jī)制的綜合作用結(jié)果。在氣候條件、土壤類型和土層深度的影響下,孔隙特征參數(shù)對不同破碎機(jī)制下團(tuán)聚體穩(wěn)定性作用方向和強(qiáng)度存在差異。因此,針對導(dǎo)致不同模式下團(tuán)聚體破壞機(jī)制與土壤團(tuán)聚體孔隙結(jié)構(gòu)特征間響應(yīng)變化的更詳盡的原因需進(jìn)行進(jìn)一步探究。
本文圍繞中國溫帶與亞熱帶地區(qū)5種地帶性土壤(黑土、棕壤、褐土、黃褐土和紅壤),開展了團(tuán)聚體孔隙結(jié)構(gòu)和穩(wěn)定性研究,結(jié)論如下:
1)團(tuán)聚體水穩(wěn)性受到土壤類型和土層深度的綜合影響,由小至大依次為黃褐土、褐土、棕壤、黑土和紅壤;對于團(tuán)聚體破碎機(jī)制,不同地帶性土壤團(tuán)聚體在不同預(yù)處理條件下穩(wěn)定性存在差異,由大到小總體按照慢速濕潤、預(yù)濕潤震蕩、快速濕潤的順序,說明消散作用和機(jī)械破壞作用是團(tuán)聚體破碎的主要機(jī)制;由北至南,各地帶性土壤團(tuán)聚體抵抗消散和破碎的能力逐漸減小后增加,且消散作用對團(tuán)聚體破壞程度的影響大于機(jī)械破壞作用。
2)各類土壤團(tuán)聚體不同當(dāng)量直徑孔隙度由北至南呈“U”型變化,且這種變化趨勢隨土層深度增加而減弱;孔隙度和孔隙數(shù)量以黑土團(tuán)聚體最高,黃褐土團(tuán)聚體最低,隨土層深度的增加孔隙度逐漸減少;5種地帶性土壤團(tuán)聚體孔隙均以30~<75m孔隙為主,其次為>100m孔隙和<30m孔隙,團(tuán)聚體孔隙形狀以細(xì)長型孔隙為主,其次為不規(guī)則型孔隙和規(guī)則型孔隙,細(xì)長型孔隙度自北向南呈先下降后上升的趨勢,不規(guī)則型和規(guī)則型孔隙度變化趨勢相反。
3)規(guī)則型孔隙度、孔隙平均形狀因子、75~100m孔隙度和細(xì)長型孔隙度與團(tuán)聚體水穩(wěn)性顯著相關(guān),細(xì)長型孔隙度起正向作用;規(guī)則型孔隙度、細(xì)長型孔隙度、75~100m孔隙度和>100m孔隙度是MWDfw、MWDws、MWDsw的主控因子。團(tuán)聚體孔隙度越大,孔隙結(jié)構(gòu)更為復(fù)雜,含有較多大孔隙的團(tuán)聚體可抵抗更大的外界應(yīng)力作用。
[1] Dexter A R. Advances in characterization of soil structure[J]. Soil Till Research, 1988, 11(3/4): 199-238.
[2] An S S, Huang Y M, Zheng F L. Evaluation of soil microbial indices along a revegetation chronosequence in grassland soils on the Loess Plateau, Northwest China[J]. Applied Soil Ecology, 2009, 41(3): 286-292.
[3] Peng X H, Horn R, Hallett P. Soil structure and its functions in ecosystems: Phase matter & scale matter[J]. Soil Till Research, 2015, 146: 1-3.
[4] Fox D M, Le Bissonnais Y. Process-based analysis of aggregate Stability Effects on Sealing, Infiltration, and Interrill Erosion[J]. Soil Science Society of America Journal, 1998, 62(3): 717-724.
[5] Rabot E, Wiesmeier M, Schlüter S, et al. Soil structure as an indicator of soil functions: A review[J]. Geoderma, 2018, 314: 122-137.
[6] Bronick C J, Lal R. Soil structure and management: A review[J]. Geoderma, 2005. 124: 3-22.
[7] Horn R, Smucker A. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils[J]. Soil Till Research, 2005, 82: 5-14.
[8] Munkholm L J, Heck R J, Deen B. Soil pore characteristics assessed from X-ray micro-CT derived images and correlations to soil friability[J]. Geoderma, 2012, 181: 22-29.
[9] Lu S G, Malik Z, Chen D P, et al. Porosity and pore size distribution of Ultisols and correlations to soil iron oxides[J]. Catena, 2014, 123: 79-87.
[10] Menon M, Mawodza T, Rabbani A. Pore system characteristics of soil aggregates and their relevance to aggregate stability[J]. Geoderma, 2020, 366:114259.
[11] Wu X L, Wei Y J, Cai C F, et al. Quantifying the contribution of phyllosilicate mineralogy to aggregate stability in the East Asian monsoon region[J]. Geoderma, 2021, 393: 115036.
[12] Mingkui Z, Zhenli H E, Guochao C, et al. Wilson MJ. Formation and water stability of aggregates in red soils as Affected by organic matter[J]. Pedosphere, 1996, 1: 39-45.
[13] Consoli N C, Rosa D A, Cruz R C, et al. Water content, porosity and cement content as parameters controlling strength of artificially cemented silty soil[J]. Engineering Geology, 2011, 122: 328-333.
[14] Dal Ferro N, Delmas P, Duwig C, et al. Coupling X-ray microtomography and mercury intrusion porosimetry to quantify aggregate structures of a cambisol under different fertilisation treatments[J]. Soil Till Research, 2012, 119: 13-21.
[15] Ma R M, Cai C F, Li Z X, et al. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography[J]. Soil Till Research, 2015, 149: 1-11.
[16] Ma R M, Jiang Y, Liu B, et al. Effects of pore structure characterized by synchrotron-based micro-computed tomography on aggregate stability of black soil under freeze-thaw cycles[J]. Soil Till Research, 2022, 207: 104855.
[17] Dexter A R, Czy E A, Richard G, et al. A user-friendly water retention function that takes account of the textural and structural pore spaces in soil[J]. Geoderma, 2008, 143: 243-253.
[18] Wu X L, Wei Y J, Wang J G, et al. Effects of soil physicochemical properties on aggregate stability along a weathering gradient[J]. Catena, 2017, 156: 205-215.
[19] 中國科學(xué)院南京土壤研究所. 土壤理化分析[M]. 上海:上??茖W(xué)技術(shù)出版社,1978.
[20] Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology[J]. Eur Journal of Soil Science, 1996, 47(4): 425-437.
[21] 胡節(jié),吳新亮,蔡崇法. 快速濕潤過程中鉀和鈣離子濃度對土壤團(tuán)聚體穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(22):175-182.
Hu Jie, Wu Xinliang, Cai Chongfa. Effect of concentration of potassium and calcium cations on soil aggregates stability during fast wetting process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 175-182. (in Chinese with English abstract)
[22] 王軍光,李朝霞,蔡崇法,等. 坡面水流中不同層次紅壤團(tuán)聚體剝蝕程度研究[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(19):78-84.
Wang Junguang, Li Zhaoxia, Cai Chongfa, et al. Research of red soil aggregate abrasion degree of different layers in overland flow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 78-84. (in Chinese with English abstract)
[23] 周虎,彭新華,張中彬,等. 基于同步輻射微CT研究不同利用年限水稻土團(tuán)聚體微結(jié)構(gòu)特征[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(12):343-347.
Zhou Hu, Peng Xinhua, Zhang Zhongbin, et al. Characterization of aggregate microstructure of paddy soils cultivated for different years with synchrotron based micro-CT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 343-347. (in Chinese with English abstract)
[24] Zhou H, Peng X, Peth S, et al. Effects of vegetation restoration on soil aggregate microstructure quantified with synchrotron-based micro-computed tomography[J]. Soil Till Research, 2012, 124: 17-23.
[25] Yan B, Fang N F, Zhang P C, et al. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression[J]. Journal of Hydrology, 2013, 484: 26-37.
[26] Palermo G, Piraino P, Zucht H D. Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data[J]. Advances and Applications in Bioinformatics and Chemistry, 2009, 2: 57.
[27] 王興,祁劍英,井震寰,等. 長期保護(hù)性耕作對稻田土壤團(tuán)聚體穩(wěn)定性和碳氮含量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(24):121-128.
Wang Xing, Qi Jianying, Jing Zhenhuan, et al. Effects of long-term conservation tillage on soil aggregate stability and carbon and nitrogen in paddy field [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 121-128. (in Chinese with English abstract)
[28] Liu B, Fan H W, Han W, et al. Linking soil water retention capacity to pore structure characteristics based on X-ray computed tomography: Chinese Mollisol under freeze-thaw effect[J]. Geoderma, 2021, 401: 115170.
[29] Chenu C, Le Bissonnais Y, Arrouays D. Organic matter in?uence on clay wettability and soil aggregate stability[J]. Soil Science Society of America Journal, 2000, 64: 1479-1486.
[30] 趙玉明,高曉飛,姜洪濤. 我國五種主要土壤水穩(wěn)性團(tuán)聚體含量研究[J]. 中國水土保持,2013(4):32-35.
Zhao Yuming, Gao Xiaofei, Jiang Hongtao. Content of Five Main Soil Water-Stable Aggregates in China. Soil and Water Conservation in China[J]. 2013(4): 32-35. (in Chinese with English abstract)
[31] 王小紅,楊智杰,劉小飛,等. 中亞熱帶山區(qū)土壤不同形態(tài)鐵鋁氧化物對團(tuán)聚體穩(wěn)定性的影響[J]. 生態(tài)學(xué)報,2016,36(9):2588-2596.
Wang Xiaohong, Yang Zhijie, Liu Xiaofei, et al.Effects of different forms ofFe and Al oxides on soil aggregate stability in mid-subtropical mountainous area of southern China[J]. Acta Ecologica Sinica, 2016, 36(9): 2588-2596. (in Chinese with English abstract)
[32] 冷暖,鄧羽松,林立文,等. 南亞熱帶不同母質(zhì)發(fā)育土壤團(tuán)聚體特征及其穩(wěn)定性[J]. 水土保持學(xué)報,2021,35(5):80-86,93.
Leng Nuan, Deng Yusong, Lin Liwen, et al. Characteristics and stability of soil aggregates developed from different parent materials in the south subtropical region[J]. Journal of Soil and Water Conservation, 2021, 35(5): 80-86,93. (in Chinese with English abstract)
[33] 梁春林,王彬,張文龍. 東北黑土區(qū)坡耕地土壤團(tuán)聚體穩(wěn)定性與結(jié)構(gòu)特征[J]. 中國水土保持科學(xué),2020,18(6):43-52.
Lang Chunlin, Wang Bin, Zhang Wenlong. Stability and structural characteristics of soil aggregates on sloping farmland in black soil region, Northeast China[J]. Science of Soil and Water Conservation, 2020, 18(6): 43-52. (in Chinese with English abstract)
[34] 趙冬. 黃土丘陵區(qū)植被恢復(fù)過程土壤團(tuán)聚體結(jié)構(gòu)演變特征及其量化表征[D]. 咸陽:中國科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心,2017.
Zhao Dong. Evolvement Characteristics and Quantification of Soil Aggregate Microstructure in the Process of Vegetation Restoration in Loess Hilly-gully Region[D]. Xianyang: The University of Chinese Academy of Sciences In partial fulfillment of the requirement, 2017. (in Chinese with English abstract)
[35] Bisdom E, Dekker L, Schoute J T. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure[J]. Geoderma, 1993, 56(1/2/3/4): 105-118.
[36] 王偉鵬,張華. 長期施肥對華北農(nóng)田褐土團(tuán)聚體微結(jié)構(gòu)與穩(wěn)定性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(10):68-74.
Wang Weipeng, Zhang Hua. Effects of long-term fertilization on the microstructure and stability of cinnamon soil aggregates in cropland of North China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 68-74. (in Chinese with English abstract)
[37] 王文剛,王彬,顧汪明,等. 凍融循環(huán)對黑土團(tuán)聚體穩(wěn)定性與微結(jié)構(gòu)特征的影響[J]. 水土保持學(xué)報,2022,36(1):66-73.
Wang Wengang, Wang Bin, Gu Wangming, et al. Effect of freeze-thaw cycles on soil aggregate stability and microstructure of balck soil[J]. Journal of Soil and Water Conservation, 2022, 36(1): 66-73. (in Chinese with English abstract)
[38] 孫義秋,顧汪明,關(guān)穎慧,等. 凍融循環(huán)作用對黑土團(tuán)聚體破碎機(jī)制的影響[J]. 水土保持學(xué)報,2021,35(3):53-60.
Sun Yiqiu, Gu Wangming, Guan Yinghui, et al. Effect of freeze-thaw cycles on the fragmentation mechanism of balck soil aggregate[J]. Journal of Soil and Water Conservation, 2021, 35(3): 53-60. (in Chinese with English abstract)
[39] Regelink I C, Stoof C R, Rousseva S, et al. 2015. Linkages between aggregate formation, porosity and soil chemical properties[J]. Geoderma, 2021, 247/248: 24-37.
Linking aggregate stability to the characteristics of pore structure in different soil types along a climatic gradient in China
Peng Jue, Chen Jiaying, Wang Junguang※, Cai Chongfa
((,,,430070,)
Aggregate structure and stability are related to a series of soil processes. However, it is still lacking in the microstructure and aggregate stability for the different types of zonal soil aggregates. In order to explore the changes of aggregate stability and pore structure for the different types of zonal soil aggregates and their relationship, this study aims to explore aggregate stability and its relevance to the pore structure characteristics in the different types of zonal soil. Five types of typical soils (Black, Brown, Cinnamon, Yellow-cinnamon, and Red soil) were selected as the research objects using geogenesis. The soil samples were collected separately from the Hailun (Heilongjiang), Shenyang (Liaoning), Luoyang (Henan), Xiangyang (Hubei), Changsha (Hunan), and Haikou (Hainan), according to the latitudinal direction zonality of soil distribution. The pore structure and MWD of aggregates were quantified using the CT scanning, wet sieving, and Le Bissonnais method..The results indicated that the water stability of aggregates was affected by the soil type and soil depth, and the values from low to high were Yellow-cinnamon soil, Cinnamon soil, Brown soil, Black soil and Red soil. The eluvial horizon in the Red soil was the highest (1.49 mm), and the parent material horizon in Yellow-cinnamon soil was the lowest (0.19 mm). The average mass diameter of the aggregates measured by LB method was ranked as MWDsw(slow wetting) >MWDws(shaking) >MWDfw(fast wetting), indicating that the dissipation and external mechanical failure were the main fragmentation mechanisms of aggregates. The resistance of soil aggregates to dissipation and fragmentation gradually decreased and then increased from north to south. Significant differences were found in the aggregate microstructure of different soil types. The porosity of the five zonal soil aggregates with different equivalent diameters showed a U-shaped variation from north to south, and the degree of variation decreased with the increase of soil depth. The total porosity and pore number were the highest for the Black soil aggregates and the lowest for the Yellow-cinnamon soil aggregates. The pore sizes in most aggregates were observed to be 30-<75m. However, the pores larger than 100m were dominated in the Yellow-cinnamon soil, which was connected with the original particle arrangement and the low content of cementing material in the soil. The aggregate pore morphology was dominated by elongated pores with a few regular and irregular pores. The elongated pores decreased first and then increased from north to south. By contrast, an opposite trend was found in the irregular and regular pores. The aggregates stability showed significant positive correlations with the total porosity, total pore numbers, elongated porosity, <30, 30-75, 75-100, and >100m porosity, while inversely correlated with the regular and irregular porosity (<0.01). Partial least squares regression (PLSR) showed that the water stability of aggregates was significantly correlated with the regular porosity,,mean pore shape factor, 75-100m porosity, and elongated porosity. The regular porosity, elongated porosity, 75-100m porosity and >100m porosity were proved to be the main controlling factors of MWDfw, MWDwsand MWDsw. These results will help to deepen the understanding of the relationship between soil aggregates and pore characteristics, and better reveal the mechanism of soil processes.
aggregates; soils; pores; stability; structure; zonality
10.11975/j.issn.1002-6819.2022.18.012
S126
A
1002-6819(2022)-18-0113-09
彭玨,陳家贏,王軍光,等. 中國典型地帶性土壤團(tuán)聚體穩(wěn)定性與孔隙特征的定量關(guān)系[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(18):113-121.doi:10.11975/j.issn.1002-6819.2022.18.012 http://www.tcsae.org
Peng Jue, Chen Jiaying, Wang Junguang, et al. Linking aggregate stability to the characteristics of pore structure in different soil types along a climatic gradient in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 113-121. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.18.012 http://www.tcsae.org
2022-04-29
2022-08-17
國家重點(diǎn)研發(fā)計劃項目(2021YFD1500703);國家自然科學(xué)基金(42177317)
彭玨,博士生,研究方向?yàn)橥寥狼治g機(jī)理。Email:pengj12345@mail.hzau.edu.cn
王軍光,博士,副教授,研究方向?yàn)橥寥狼治g機(jī)理。Email:jgwang@mail.hzau.edu.cn