亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        果園懸掛式柔性對(duì)靶噴霧裝置研制與試驗(yàn)

        2022-02-07 00:54:18陳澤鴻陳建澤宋淑然孫道宗
        關(guān)鍵詞:靶標(biāo)樹冠藥液

        陳澤鴻,陳建澤,宋淑然,3,4,孫道宗,3,4

        果園懸掛式柔性對(duì)靶噴霧裝置研制與試驗(yàn)

        陳澤鴻1,陳建澤2,宋淑然1,3,4※,孫道宗1,3,4

        (1. 華南農(nóng)業(yè)大學(xué)電子工程學(xué)院,廣州 510642;2. 廣東利元亨智能裝備股份有限公司,惠州 516000;3. 廣東省農(nóng)情信息監(jiān)測(cè)工程技術(shù)研究中心,廣州 510642;4. 國(guó)家柑橘產(chǎn)業(yè)技術(shù)體系機(jī)械化研究室,廣州 510642)

        為減少農(nóng)藥飄移損失,保護(hù)生態(tài)環(huán)境,該研究從提高噴霧有效性和降低噴霧裝置對(duì)果樹枝葉的機(jī)械性損傷出發(fā),研制了一種懸掛式柔性對(duì)靶噴霧裝置。該裝置以東方紅MS-304拖拉機(jī)為載體,采用超聲波傳感器探測(cè)樹冠位置,利用霍爾傳感器構(gòu)建測(cè)速模塊。對(duì)株距4.0 m、樹高1.6 m、樹冠直徑1.4 m的橘樹進(jìn)行對(duì)靶噴霧試驗(yàn)驗(yàn)證懸掛式柔性對(duì)靶噴霧裝置作業(yè)性能。試驗(yàn)結(jié)果表明:拖拉機(jī)行駛速度為0.5 m/s時(shí),噴霧壓力0.4、0.5及0.6 MPa對(duì)應(yīng)的平均藥液附著率分別為84.7%、91.7%、88.9%,藥液附著率較高且接近,噴霧壓力對(duì)藥液附著率的影響不明顯;拖拉機(jī)行駛速度為1.0 m/s時(shí),噴霧壓力0.4、0.5和0.6 MPa對(duì)應(yīng)的平均藥液附著率分別為64.2%、70.3%、75.8%,噴霧壓力越大,藥液附著率越高;拖拉機(jī)行駛速度為 1.5 m/s時(shí),平均藥液附著率低于50%,且噴霧飄移較為嚴(yán)重,不適宜進(jìn)行自動(dòng)對(duì)靶噴霧;拖拉機(jī)行駛速度和噴霧壓力相同時(shí),藥液附著率按樹冠上、中、下層順序呈遞減規(guī)律,且速度越高,遞減規(guī)律越明顯。研究結(jié)果對(duì)提高果園對(duì)靶噴霧的藥液附著率具有較好的實(shí)用價(jià)值。

        植保機(jī)械;果園;對(duì)靶噴霧;柔性;超聲波測(cè)距;附著率

        0 引 言

        水果已成為中國(guó)繼糧食和蔬菜后第三大種植產(chǎn)業(yè)[1]。但果園植保難題尚未解決,果園植保主要依靠噴施農(nóng)藥進(jìn)行化學(xué)防治,隨著農(nóng)藥的廣泛使用,出現(xiàn)了農(nóng)藥殘留、環(huán)境污染、損害人身安全等一系列負(fù)面問題。其主要原因在于國(guó)內(nèi)植保機(jī)械作業(yè)效率較低、施藥技術(shù)落后,農(nóng)民勞動(dòng)強(qiáng)度過(guò)大,導(dǎo)致農(nóng)藥的有效利用率低于30%[2-3]。要解決以上問題,就需要讓農(nóng)藥盡可能多地噴施在果樹上,流失在其他區(qū)域的農(nóng)藥最少[4],即實(shí)現(xiàn)精準(zhǔn)施藥。精準(zhǔn)施藥技術(shù)就是結(jié)合自動(dòng)化與噴霧技術(shù),實(shí)現(xiàn)果園噴霧機(jī)自動(dòng)識(shí)別靶標(biāo),減少靶標(biāo)間隙處的農(nóng)藥浪費(fèi),在減少農(nóng)藥使用量的同時(shí)提高農(nóng)藥利用率,避免農(nóng)藥在環(huán)境中殘留[5-6]。

        早在20世紀(jì)80年代,國(guó)內(nèi)許多研究單位已先后成功研制出了牽引式、半懸掛式風(fēng)送噴霧機(jī),不僅作業(yè)效果好,且價(jià)格易于果農(nóng)接受[7-9]。近年來(lái),國(guó)內(nèi)外更有不少研究人員從各角度出發(fā)進(jìn)行自動(dòng)化對(duì)靶噴霧研究與試驗(yàn)[10]。

        針對(duì)靶標(biāo)檢測(cè)問題,許多學(xué)者利用實(shí)時(shí)傳感器技術(shù),根據(jù)采集到的樹冠圖像、激光、超聲波以及紅外光信號(hào),判斷果樹形狀、位置,進(jìn)而控制噴頭響應(yīng)位置與電磁閥啟閉動(dòng)作,建立針對(duì)果樹樹冠的對(duì)靶噴霧系統(tǒng)或基于樹冠形狀的仿形噴霧系統(tǒng)[11-15]。李井祝等利用激光測(cè)距傳感器探測(cè)噴霧機(jī)與靶標(biāo)之間的距離,PLC根據(jù)其反饋的距離數(shù)值判斷靶標(biāo)是否存在進(jìn)而控制噴頭啟閉動(dòng)作[16];對(duì)于傳統(tǒng)數(shù)字電路式紅外靶標(biāo)探測(cè)器發(fā)功功率小、發(fā)光強(qiáng)度低等問題,基于模擬正弦調(diào)制的紅外靶標(biāo)探測(cè)系統(tǒng)能夠很好地解決,采用模擬調(diào)制解調(diào)電路來(lái)代替數(shù)字編碼解碼電路,使靶標(biāo)反射更多紅外光,從而提高紅外探測(cè)系統(tǒng)整體性能[17];同樣,為解決紅外靶標(biāo)探測(cè)系統(tǒng)易受光照影響、探測(cè)距離近、工作不穩(wěn)定等問題,可通過(guò)集成電路實(shí)現(xiàn)紅外光信號(hào)脈沖編碼與解碼,在紅外發(fā)射管與接收頭處加裝凸透鏡,改善光束分布[18];還有許多研究人員將機(jī)器視覺與圖像處理技術(shù)結(jié)合,對(duì)作物靶標(biāo)與土壤背景進(jìn)行分割以實(shí)現(xiàn)靶標(biāo)識(shí)別[19-24]。

        在對(duì)靶噴霧控制研究方面,如何利用噴霧機(jī)延時(shí)噴霧來(lái)補(bǔ)償系統(tǒng)響應(yīng)時(shí)間是對(duì)靶噴霧成功與否的關(guān)鍵問題。針對(duì)該問題,有學(xué)者采用自適應(yīng)延時(shí)法補(bǔ)償系統(tǒng)響應(yīng)時(shí)間,通過(guò)EDA仿真軟件(Proteus)比較單片機(jī)采用M法、T法對(duì)地速傳感器(TGSS)信號(hào)計(jì)算的誤差大小,將TGSS信號(hào)頻率與噴霧機(jī)速度進(jìn)行擬合,設(shè)計(jì)了自適應(yīng)延時(shí)噴霧模型[25];為避免激光傳感器因激光光束較細(xì)導(dǎo)致的將樹冠內(nèi)空洞、枝間間隙等誤判為果樹間空隙而出現(xiàn)的電磁閥頻繁啟閉動(dòng)作,國(guó)內(nèi)研究者采用連續(xù)3次檢測(cè)靶標(biāo)判別法設(shè)計(jì)了履帶自走式自動(dòng)對(duì)靶噴霧系統(tǒng),并通過(guò)動(dòng)態(tài)靶標(biāo)識(shí)別間距試驗(yàn),確定噴霧機(jī)提前與延后噴霧距離[26];此外,還有不少學(xué)者利用高壓靜電裝置對(duì)噴頭施加電壓,在噴頭與靶標(biāo)作物之間建立靜電場(chǎng),使農(nóng)藥?kù)F滴在靜電力與其他外力共同作用下定向運(yùn)動(dòng),實(shí)現(xiàn)對(duì)靶噴霧[27-30]。

        已有對(duì)靶噴霧研究采用的每種技術(shù)都各有優(yōu)缺點(diǎn)。其中大部分對(duì)靶噴霧裝置的噴霧機(jī)構(gòu)都是固定的,無(wú)法根據(jù)靶標(biāo)探測(cè)結(jié)果進(jìn)行移位[31],遇到不規(guī)則樹體時(shí),噴霧裝置會(huì)損傷靶標(biāo)果樹。為此,本文提出一種懸掛式柔性對(duì)靶噴霧裝置,并該裝置進(jìn)行田間對(duì)靶噴霧試驗(yàn),以提高果園對(duì)靶噴霧的藥液沉積率。

        1 懸掛式柔性對(duì)靶噴霧試驗(yàn)平臺(tái)

        懸掛式柔性對(duì)靶噴霧裝置以東方紅MS-304拖拉機(jī)為搭載平臺(tái),采用三點(diǎn)懸掛機(jī)構(gòu)將噴霧架搭載在拖拉機(jī)后側(cè)。拖拉機(jī)外形尺寸為3.6 m×1.5 m×1.6 m,其動(dòng)力輸出最大功率為17.78 kW,額定牽引力為6.7 kN。裝置各模塊在拖拉機(jī)上的安裝位置如圖1所示,包括超聲波靶標(biāo)檢測(cè)模塊、主控制器、測(cè)速模塊、電磁閥控制模塊。與現(xiàn)有大部分對(duì)靶噴霧裝置相比,主控制器作為協(xié)調(diào)核心,采用無(wú)線通信與另外3個(gè)模塊進(jìn)行數(shù)據(jù)傳送,如圖1中虛線表示,可減少拖拉機(jī)上的復(fù)雜布線,提高通信可靠性。

        噴霧架結(jié)構(gòu)如圖2所示,總質(zhì)量約為200 kg,主要包括承重架、升降導(dǎo)軌、升降架、一級(jí)展臂、二級(jí)展臂、吊掛噴桿、倒Y 型噴頭支架和噴頭。其中,承重架的長(zhǎng)寬高尺寸為850 mm×700 mm×1 200 mm,分為上下兩層,上層放置一個(gè)容量為450 L的藥液箱,下層安裝流量為135 L/min的隔膜泵;升降架上的軸承嵌入升降導(dǎo)軌內(nèi),通過(guò)調(diào)節(jié)手柄和滑輪組可上下調(diào)節(jié)噴霧臂,整個(gè)水平藥液管道的總質(zhì)量約為100 kg,具有約為1 000 N的重力,調(diào)節(jié)手柄的杠桿比例為5∶1,結(jié)合動(dòng)滑輪組在理想情況下僅需使用約50 N的拉力即可調(diào)節(jié)升降架;升降架、一級(jí)展臂和二級(jí)展臂共同組成噴霧臂并可二次折疊,便于移動(dòng)和運(yùn)輸;水平噴霧臂總長(zhǎng)度為8.7 m,可適應(yīng)多種果樹種植行距,可調(diào)節(jié)高度為1.5~2.2 m;為增大噴幅,同時(shí)減少藥液流失,選用霧錐角為110°、孔徑小、低流量、噴霧幾何形狀為扇形的德國(guó)Lechler公司的TR110-015噴頭,壓力范圍0.2~2.0 MPa;噴霧臂左右兩側(cè)的倒Y型噴頭支架上安裝4個(gè)噴頭,用于對(duì)樹冠頂部進(jìn)行噴霧;吊掛噴桿長(zhǎng)度為1.2 m,在水平方向上2個(gè)倒Y型噴頭支架和4個(gè)吊掛噴桿在初始安裝點(diǎn)兩側(cè)0.5 m范圍內(nèi)可調(diào);噴霧時(shí),在拖拉機(jī)前進(jìn)方向上,兩側(cè)門型噴霧結(jié)構(gòu)的吊掛噴桿與倒Y型噴頭可同時(shí)以掃場(chǎng)的方式對(duì)樹冠直徑小于2 m,高度小于2 m的左右兩排果樹進(jìn)行圍繞噴霧;吊掛噴桿與噴霧臂之間使用雙十字萬(wàn)向節(jié)進(jìn)行柔性連接,吊掛噴桿可以多角度多方向自由轉(zhuǎn)動(dòng),噴桿末端與噴頭之間使用柔性噴霧軟膠管連接。由于萬(wàn)向節(jié)可自由擺動(dòng)且噴霧軟管為柔性,當(dāng)果樹阻礙噴桿行進(jìn)時(shí),吊掛噴桿可柔性繞開,降低對(duì)果樹的損害,從而實(shí)現(xiàn)柔性噴霧。

        2 對(duì)靶噴霧裝置

        對(duì)靶噴霧裝置主要包括主控制器、超聲波靶標(biāo)檢測(cè)模塊、拖拉機(jī)在線測(cè)速模塊和電磁閥控制模塊。其中主控制器為協(xié)調(diào)核心,負(fù)責(zé)與另外3個(gè)模塊進(jìn)行數(shù)據(jù)傳輸。

        2.1 主控制器

        主控制器的主要作用是實(shí)現(xiàn)超聲波靶標(biāo)檢測(cè)模塊、測(cè)速模塊及電磁閥控制模塊電路之間的信息實(shí)時(shí)互傳。顯示超聲波測(cè)距距離、速度、電磁閥開啟狀態(tài)等信息,向電磁閥控制模塊發(fā)送控制命令,切換“手動(dòng)”與“自動(dòng)”模式,兼做人機(jī)交互模塊。主控制器的工作流程圖如圖3所示。

        圖3 主控制器工作流程圖

        由于數(shù)據(jù)處理量較大,且實(shí)時(shí)性要求較高,故該模塊選擇綜合性能較好的STM32F103ZET6處理器。該處理器基于ARM Cortex-M3內(nèi)核,時(shí)鐘頻率可達(dá)72 MHz主頻,單周期精簡(jiǎn)指令集(RSIC),具有低功耗、高性能的微控制器,在72 MHz主頻下的電流為36 mA,代碼安全性高。

        主控制器的控制電路板安裝在電控箱內(nèi),電路板由容量為4.4 Ah、供電電壓為DC-12V的鋰電池供電,電控箱長(zhǎng)寬高尺寸為40 cm×30 cm×25 cm。為增強(qiáng)無(wú)線信號(hào)的收發(fā)能力,從電控箱內(nèi)部引出天線,電控箱面板上設(shè)計(jì)1個(gè)電源開關(guān)、1個(gè)手動(dòng)與自動(dòng)模式的切換開關(guān)和14個(gè)電磁閥獨(dú)立控制開關(guān)。

        預(yù)試驗(yàn)表明,當(dāng)各模塊同時(shí)發(fā)送數(shù)據(jù)時(shí),主控制器會(huì)先接收完其中一個(gè)模塊所發(fā)送的數(shù)據(jù)后,再接收另一個(gè)模塊的數(shù)據(jù),不會(huì)出現(xiàn)數(shù)據(jù)交叉的情況。此外,通過(guò)為不同模塊分配不同地址碼,接收數(shù)據(jù)時(shí),先匹配地址碼,即可避免數(shù)據(jù)沖突。為確保主控制器與其余模塊進(jìn)行可靠通信,對(duì)主控制器模塊進(jìn)行通信測(cè)試:每間隔200 ms,令靶標(biāo)檢測(cè)模塊向主控制器發(fā)送特定的數(shù)據(jù)包,主控制器接收到數(shù)據(jù)包后回發(fā)響應(yīng)信號(hào),循環(huán)發(fā)送1 000 次,電腦同步接收并存儲(chǔ)數(shù)據(jù)包和響應(yīng)信號(hào),通過(guò)對(duì)比發(fā)送數(shù)據(jù)與電腦存儲(chǔ)數(shù)據(jù)計(jì)算通信誤碼率;每間隔300 ms,拖拉機(jī)測(cè)速模塊向主控制器發(fā)送特定的數(shù)據(jù)包,主控制器接收到數(shù)據(jù)包后回發(fā)響應(yīng)信號(hào),循環(huán)發(fā)送1 000 次,電腦同步接收并存儲(chǔ)數(shù)據(jù)包和響應(yīng)信號(hào),通過(guò)對(duì)比發(fā)送數(shù)據(jù)與電腦存儲(chǔ)數(shù)據(jù)計(jì)算通信誤碼率。在測(cè)試通信可靠性時(shí),先對(duì)各模塊進(jìn)行單獨(dú)測(cè)試,查看誤碼率,再同時(shí)對(duì)各模塊進(jìn)行測(cè)試與查看誤碼率。由于200與300的最小公倍數(shù)為600,即每間隔600 ms,靶標(biāo)檢測(cè)模塊與測(cè)速模塊將有1次幾乎同時(shí)發(fā)送數(shù)據(jù)的情況出現(xiàn),因此特別檢查每間隔600 ms的誤碼率。主控制器與電磁閥控制模塊的通信與響應(yīng)測(cè)試在電磁閥控制模塊部分單獨(dú)講述。

        經(jīng)測(cè)試,主控制器與超過(guò)聲波測(cè)距對(duì)靶模塊、測(cè)速模塊之間的通信誤碼率為0,并且主控制器接收到數(shù)據(jù)包后能做出正確響應(yīng),正確響應(yīng)率為100%,主控制器能與靶標(biāo)檢測(cè)模塊和拖拉機(jī)測(cè)速模塊之間進(jìn)行可靠通信。

        2.2 靶標(biāo)檢測(cè)模塊

        在拖拉機(jī)左右兩側(cè)各安裝3個(gè)TCF40-16TR1超聲波測(cè)距傳感器,其中心頻率為40 kHz,波束角為60°。在垂直方向上將超聲波傳感器按照上、中、下順序進(jìn)行安裝,分別探測(cè)各高度處在水平方向上是否存在靶標(biāo)。

        當(dāng)超聲波測(cè)距傳感器與靶標(biāo)果樹的水平距離發(fā)生變化時(shí),若探測(cè)距離增大,則探測(cè)范圍也會(huì)增大,這將導(dǎo)致拖拉機(jī)向前行駛時(shí)提前對(duì)非靶標(biāo)物體錯(cuò)誤觸發(fā)噴霧或者錯(cuò)誤觸發(fā)不同冠層高度下的噴頭噴霧,造成農(nóng)藥浪費(fèi)。故本文將超聲波傳感器放在套筒內(nèi),傳感器探頭與套筒外沿距離20 mm,以削弱超聲波傳感器在波束中軸線以外方向上的超聲波能量,達(dá)到增強(qiáng)傳感器方向性的目的。超聲波傳感器固定架置于拖拉機(jī)最前方,與噴霧架之間的水平距離為4.1 m,各超聲波測(cè)距傳感器的安裝如圖4a所示。

        在同一個(gè)果園中,果樹品種、生長(zhǎng)環(huán)境及樹齡、高基本一致。選取3棵樹高約為1.6 m,樹冠直徑約為1.4 m的橘樹,將樹冠均勻分為上、中、下3層,超聲波傳感器固定架上的上層、中層、下層分別與樹冠的上層、中層、下層一一對(duì)應(yīng),如圖4b所示。當(dāng)果樹樹冠高度變化時(shí),手動(dòng)調(diào)整定位架上傳感器與束波套筒的高度,使各超聲波傳感器與樹冠各層對(duì)應(yīng),并通過(guò)調(diào)節(jié)手柄與滑輪組上下調(diào)節(jié)噴霧臂實(shí)現(xiàn)對(duì)靶噴霧。

        在自動(dòng)對(duì)靶裝置中,靶標(biāo)識(shí)別間距直接影響裝置對(duì)靶標(biāo)的正確識(shí)別,因此對(duì)該對(duì)靶噴霧裝置的靶標(biāo)識(shí)別間距進(jìn)行測(cè)試,靶標(biāo)識(shí)別間距包括靜態(tài)靶標(biāo)識(shí)別間距和動(dòng)態(tài)靶標(biāo)識(shí)別間距。

        注:U1為右上層超聲波測(cè)距傳感器,U2為右中層超聲波測(cè)距傳感器,U3為右下層超聲波測(cè)距傳感器。

        Note:U1is upper right ultrasonic ranging sensor, U2is right middle layer ultrasonic ranging sensor, U3is lower right ultrasonic ranging sensor.

        圖4 靶標(biāo)檢測(cè)單元示意圖

        Fig.4 Schematic diagram of target detection unit

        靜態(tài)靶標(biāo)識(shí)別間距測(cè)量試驗(yàn)以右中層超聲波測(cè)距傳感器為代表,在室外水泥平地上進(jìn)行。在2塊尺寸為400 mm×600 mm的KT板上粘貼橘樹枝葉用于模擬2棵靶標(biāo)果樹,將其固定在支架上,KT板中心位置距離地面1.2 m,中心位置與超聲波測(cè)距傳感器中軸線對(duì)齊。拖拉機(jī)靜止,超聲波測(cè)距傳感器中心線垂直于靶標(biāo)所在平面,傳感器仰角為0°。試驗(yàn)時(shí),設(shè)傳感器與靶標(biāo)水平距離在0~2.5 m范圍內(nèi)每間隔0.5 m設(shè)置一個(gè)測(cè)點(diǎn)。測(cè)試時(shí),先將左側(cè)靶標(biāo)從左端緩慢向超聲波測(cè)距傳感器中軸線靠近,當(dāng)在電腦中初次觀察到有效測(cè)距數(shù)據(jù)時(shí),則判斷為探測(cè)到靶標(biāo),記錄靶標(biāo)位置為D1點(diǎn),再將右側(cè)靶標(biāo)按同樣方式從右端緩慢向超聲波測(cè)距傳感器中軸線移動(dòng),記錄探測(cè)到靶標(biāo)的D2點(diǎn),D1與D2的間距即為超聲波測(cè)距傳感器的靜態(tài)靶標(biāo)識(shí)別間距,試驗(yàn)重復(fù)3次,以3次測(cè)試的平均值作為最終測(cè)試結(jié)果。

        測(cè)試結(jié)果如表1所示。超聲波傳感器靜態(tài)靶標(biāo)識(shí)別間距隨探測(cè)距離增加呈先增大后減小的趨勢(shì),是由于波束遠(yuǎn)距離傳播后波束能量減少而引起。靜態(tài)靶標(biāo)識(shí)別間距的最小值105 mm出現(xiàn)在距靶標(biāo)最近距離0.5 m處,最大值270 mm出現(xiàn)在距靶標(biāo)2.0 m處。

        表1 靜態(tài)靶標(biāo)識(shí)別間距測(cè)試結(jié)果

        探測(cè)范圍小于3 000 mm,超聲波對(duì)靶裝置的數(shù)據(jù)處理周期小于50 ms。根據(jù)技術(shù)文檔,電磁閥勵(lì)磁時(shí)間為50 ms,為了給電磁閥足夠的勵(lì)磁時(shí)間,設(shè)其勵(lì)磁時(shí)間為80 ms。在試驗(yàn)樣機(jī)上,超聲波傳感器與噴霧臂之間距離為4.1 m。在探測(cè)到靶標(biāo)后,可以對(duì)電磁閥的響應(yīng)時(shí)間、各裝置的數(shù)據(jù)處理時(shí)間進(jìn)行足夠的時(shí)間補(bǔ)償,且超聲波靶標(biāo)檢測(cè)模塊與電磁閥控制模塊工作時(shí)相互獨(dú)立,故取二者中工作周期較長(zhǎng)的作為動(dòng)態(tài)靶標(biāo)識(shí)別間距的最大識(shí)別周期,即80 ms。則拖拉機(jī)在1 m/s行駛速度下,噴霧裝置理論識(shí)別間距為80 mm。裝置的理論動(dòng)態(tài)靶標(biāo)識(shí)別間距為理論值80 mm與靜態(tài)靶標(biāo)識(shí)別間距之和,結(jié)合表 1可知,拖拉機(jī)在1 m/s行駛速度下,對(duì)應(yīng)的理論動(dòng)態(tài)靶標(biāo)識(shí)別間距如表2所示。

        表2 行駛速度為 1 m·s-1時(shí)的理論動(dòng)態(tài)靶標(biāo)識(shí)別間距

        實(shí)際果園中樹冠之間的間隙一般大于1 000 mm,由表2可知,拖拉機(jī)行駛速度為1 m/s時(shí),超聲波靶標(biāo)檢測(cè)模塊的理論動(dòng)態(tài)靶標(biāo)識(shí)別間距最大值為350 mm,遠(yuǎn)小于1 000 mm。預(yù)試驗(yàn)中,橘樹株距4.0 m、樹冠直徑1.4 m,樹冠之間的間隙為1 200 mm,遠(yuǎn)大于350 mm,故該對(duì)靶噴霧裝置可在果園中進(jìn)行自動(dòng)對(duì)靶噴霧試驗(yàn)。

        2.3 拖拉機(jī)在線測(cè)速模塊

        為研究對(duì)靶噴霧裝置噴霧效率與拖拉機(jī)行駛速度之間的關(guān)系,設(shè)計(jì)拖拉機(jī)在線測(cè)速模塊以實(shí)現(xiàn)拖拉機(jī)行駛速度的實(shí)時(shí)測(cè)量。當(dāng)超聲波傳感器靶標(biāo)識(shí)別狀態(tài)發(fā)生變化時(shí),開始計(jì)算拖拉機(jī)行進(jìn)路程,當(dāng)拖拉機(jī)的行進(jìn)距離等于超聲波傳感器與噴霧臂之間的距離時(shí),主控制器控制電磁閥打開,控制噴頭開啟,進(jìn)行對(duì)靶噴霧。

        測(cè)速模塊包括CHE18-15N11-H710霍爾傳感器、ATmega16處理器、ZigBee無(wú)線通信模塊以及釹鐵硼磁鐵(又稱永磁王)。拖拉機(jī)輪轂直徑為590 mm,周長(zhǎng)約為1 854 mm,輪輞較平整部分寬度為20 mm,為增強(qiáng)磁場(chǎng),選用長(zhǎng)寬高為20 mm×15 mm×5 mm的釹鐵硼磁鐵,為提高測(cè)試精度,在輪輞每隔15 mm處安裝一塊磁鐵,共安裝61塊磁鐵,磁鐵安裝實(shí)物圖如圖5a所示。由于霍爾傳感器對(duì)磁鐵N極更為敏感,故將磁鐵N極朝向霍爾傳感器探頭,霍爾傳感器具體安裝位置如圖5b所示。

        a. 磁鐵安裝實(shí)物圖a. Physical drawing of magnet installationb. 霍爾傳感器安裝實(shí)物圖b. Physical drawing of Hall sensor installation

        1.輪輞 2.霍爾傳感器探頭 3.磁鐵

        1.Rim 2.Hall sensor probe 3.Magnet

        圖5 測(cè)速裝置安裝實(shí)物圖

        Fig.5 Physical drawing of speed measuring device installation

        霍爾傳感器探頭固定于離磁鐵N極表面5~10 mm的位置上,利用霍爾傳感器檢測(cè)拖拉機(jī)輪輞磁性強(qiáng)弱變化而輸出脈沖信號(hào),再根據(jù)單位時(shí)間內(nèi)的脈沖數(shù)計(jì)算拖拉機(jī)實(shí)時(shí)行駛速度。由于拖拉機(jī)在地面較為平整的果樹行間行駛,且不需要深耕作業(yè),滑轉(zhuǎn)率不超過(guò)0.1[32],可忽略不計(jì)。

        速度計(jì)算公式為

        式中為拖拉機(jī)實(shí)時(shí)行駛速度,m/s;為實(shí)時(shí)脈沖數(shù);為輪胎轉(zhuǎn)一圈的行駛距離,cm;為數(shù)據(jù)掃描頻率,Hz;為車輪轉(zhuǎn)一圈對(duì)應(yīng)的脈沖數(shù)。

        為測(cè)試該測(cè)速裝置的測(cè)速準(zhǔn)確率,在試驗(yàn)果園進(jìn)行拖拉機(jī)測(cè)速試驗(yàn)。每次試驗(yàn)用秒表測(cè)量拖拉機(jī)行駛30 m所用時(shí)間,計(jì)算出平均速度作為速度真值v,最后將實(shí)時(shí)測(cè)量速度v與該速度真值進(jìn)行比較。為驗(yàn)證測(cè)速模塊低速行駛時(shí)的測(cè)速準(zhǔn)確性,分別在0.5、1.0、1.5和2.0 m/s共4個(gè)行駛速度下進(jìn)行測(cè)速試驗(yàn),每個(gè)行駛速度進(jìn)行3次試驗(yàn),再分別對(duì)4個(gè)行駛速度的試驗(yàn)結(jié)果取平均值,最后根據(jù)式(2)計(jì)算拖拉機(jī)測(cè)速準(zhǔn)確率。

        式中v為速度真值,m/s;v為速度測(cè)量值,m/s。

        經(jīng)分析,在上述速度范圍內(nèi),在線測(cè)速裝置的測(cè)速準(zhǔn)確率在98%以上,滿足懸掛式柔性對(duì)靶噴霧裝置的測(cè)速精度與穩(wěn)定性要求。

        2.4 電磁閥控制模塊

        本設(shè)計(jì)中,電磁閥控制有手動(dòng)模式和自動(dòng)模式,電磁閥直接與噴頭連接,能否可靠控制電磁閥開關(guān),是影響對(duì)靶噴霧穩(wěn)定性的關(guān)鍵。對(duì)靶噴霧裝置正常工作時(shí)管道壓差大于0.3 MPa,考慮到開關(guān)頻率較高,工作時(shí)間較短,選用直動(dòng)式電磁閥。電磁閥內(nèi)部介質(zhì)流通孔的等價(jià)直徑為通徑,通徑越大,流通能力就越大。對(duì)吊掛噴桿上的單噴頭體使用通徑為6.36 mm的電磁閥,倒Y型噴頭支架的4個(gè)噴頭由一個(gè)通徑為12.72 mm的電磁閥單獨(dú)控制,電磁閥選用金通V2A102-03和PU225-04A,功率分別為13和23 W,采用DC-24V高能鋰電池供電。處理器與無(wú)線通信模塊的電源電壓為3.3 V,采用金升陽(yáng)DC-DC模塊將DC-24V轉(zhuǎn)成5 V,再由AMS31117-3.3降壓穩(wěn)壓得到3.3 V。

        電磁閥控制模塊共安裝14個(gè)電磁閥,其中倒Y型噴頭支架處4個(gè)噴頭開關(guān)的電磁閥功率為23 W,所需工作電流約為1 A,根據(jù)場(chǎng)效應(yīng)管(MOS管)開關(guān)速度快、驅(qū)動(dòng)電流大等優(yōu)點(diǎn),選用N溝道增強(qiáng)型MOS管IRF540N作為開關(guān)元件。

        為測(cè)試電磁閥控制模塊能否準(zhǔn)確響應(yīng),將拖拉機(jī)啟動(dòng)并固定在試驗(yàn)果園中,用KT板遮擋超聲波傳感器,觀察電磁閥能否正確控制噴頭進(jìn)行噴霧,判斷電磁閥是否準(zhǔn)確響應(yīng),每層測(cè)試5次,共測(cè)試30次。經(jīng)測(cè)試,所有電磁閥均能準(zhǔn)確響應(yīng),響應(yīng)時(shí)間約為50~70 ms。試驗(yàn)中,主控制器、靶標(biāo)檢測(cè)裝置、電磁閥控制裝置等響應(yīng)時(shí)間共約為132.5 ms,當(dāng)靶標(biāo)檢測(cè)模塊最初探測(cè)到靶標(biāo)存在時(shí),主控制器根據(jù)拖拉機(jī)實(shí)時(shí)行駛速度及超聲波傳感器與噴霧臂之間的距離,計(jì)算出拖拉機(jī)待行走時(shí)間,減去總響應(yīng)時(shí)間132.5 ms,得到電磁閥待啟動(dòng)時(shí)間。

        3 對(duì)靶噴霧試驗(yàn)

        3.1 試驗(yàn)儀器與設(shè)備

        試驗(yàn)儀器包括標(biāo)智BENETECH GM8902數(shù)字風(fēng)速儀(分辨率為0.01 m/s,用于測(cè)量周圍環(huán)境風(fēng)速);60 mm×40 mm霧滴采樣標(biāo)簽紙,面積與一般橘葉面積相當(dāng);美國(guó)雙杰集團(tuán)有限公司的電子天平秤(用于稱量染色劑,精度為0.01 g);紅利來(lái)TCS-500電子臺(tái)秤(用于稱量染色溶液,分辨率為0.01 kg);根據(jù)《JB/T 9782—2014》選用誘惑紅染色劑配置染色溶液[33],誘惑紅染色劑產(chǎn)自上海染料研究所有限公司;數(shù)碼顯微鏡(放大倍率為1~300,影像解析度為1 600×1 200);鍍鋅管架(用于觀測(cè)靶標(biāo)間隙處的霧滴附著情況);為便于試驗(yàn)布置,達(dá)到噴霧裝置水平噴霧臂長(zhǎng)度要求,采用仿真橘樹L、仿真橘樹R、真實(shí)橘樹T,其中2棵仿真橘樹均產(chǎn)自廣州市慶緣景觀園林設(shè)計(jì)有限公司,3棵橘樹樹高均為1.6 m,樹冠直徑均為1.4 m;設(shè)計(jì)一種定位卡紙,定位卡紙上有3個(gè)1 cm×1 cm的正方形方格,查定時(shí)將卡紙覆蓋在標(biāo)簽紙上方,觀察方格中的霧滴,進(jìn)而計(jì)算每平方厘米上的平均霧滴數(shù)。

        3.2 試驗(yàn)方案

        為驗(yàn)證懸掛式柔性對(duì)靶噴霧裝置作業(yè)性能,對(duì)噴霧裝置進(jìn)行噴霧試驗(yàn),研究不同拖拉機(jī)行駛速度與噴霧壓力下的藥液附著情況。考慮到研制的噴霧裝置各個(gè)部件能承受的壓力范圍,設(shè)定了進(jìn)行試驗(yàn)時(shí)噴霧壓力范圍為0~0.8 MPa,根據(jù)所選噴頭,采用低量自動(dòng)對(duì)靶噴霧方式,最終設(shè)定工作壓力為0.4、0.5和0.6 MPa三個(gè)水平,對(duì)應(yīng)流量范圍為0.68~0.83 L/min。結(jié)合低量自動(dòng)對(duì)靶噴霧方式,設(shè)計(jì)行駛速度為0.5、1.0和1.5 m/s三個(gè)水平,各因素進(jìn)行全因子試驗(yàn)。

        依據(jù)標(biāo)準(zhǔn)《JB/T 9782—2014》,根據(jù)樹冠冠幅大小按比例在每棵橘樹樹冠的上、中、下層平面內(nèi)均勻布置10個(gè)采樣點(diǎn),與圖4b各層傳感器高度對(duì)應(yīng),樹冠上、中、下層采樣平面分別距離地面150、105和60 cm。將霧滴采樣標(biāo)簽紙布置在采樣點(diǎn)處承接藥液,以樹冠中層為例,霧滴采樣標(biāo)簽紙?jiān)跇涔诮孛嫔喜贾梅桨溉鐖D6a所示,圖 6b為橘樹采樣標(biāo)簽紙布置實(shí)物圖。

        注:1~10為采樣點(diǎn)。

        由于霧滴采樣標(biāo)簽紙正反面均能承接霧滴,選擇其中一面左上角進(jìn)行標(biāo)記,在每個(gè)植株上、中、下層各設(shè)10個(gè)采樣點(diǎn)并標(biāo)記編號(hào)。

        3.3 對(duì)靶噴霧藥液附著率試驗(yàn)

        試驗(yàn)開始前,使用電子天平(精度為0.01 g)稱取20.00 g誘惑紅染色劑,再使用電子臺(tái)秤(精度為0.01 kg)稱取100.00 kg清水,將染色劑倒入清水中,配置成1∶5 000的誘惑紅染色液。

        試驗(yàn)以仿真橘樹L、仿真橘樹R、真實(shí)橘樹T為對(duì)象,橘樹的分布情況如圖7a所示,現(xiàn)場(chǎng)試驗(yàn)如圖7b所示。將鍍鋅管架并排放置于靶標(biāo)間隙處;使用長(zhǎng)尾夾將采樣標(biāo)簽紙固定在橘樹指定位置;根據(jù)試驗(yàn)因素與水平,將拖拉機(jī)油門固定在某一位置,經(jīng)多次調(diào)試使速度穩(wěn)定在設(shè)置水平;調(diào)節(jié)壓力使當(dāng)前拖拉機(jī)噴霧壓力達(dá)到設(shè)置水平;使用風(fēng)速儀測(cè)量周圍環(huán)境風(fēng)速,待室外風(fēng)速小于0.2 m/s時(shí),拖拉機(jī)開始行進(jìn)噴霧。拖拉機(jī)行進(jìn)過(guò)程中,對(duì)靶噴霧裝置在超聲波測(cè)距檢測(cè)靶標(biāo)的同時(shí)檢測(cè)拖拉機(jī)的行駛速度,再向電磁閥驅(qū)動(dòng)電路發(fā)送命令,控制噴頭的開啟與關(guān)閉,進(jìn)行對(duì)靶噴霧。當(dāng)拖拉機(jī)完全駛過(guò)所有橘樹且對(duì)靶噴霧自動(dòng)停止后,試驗(yàn)結(jié)束。

        1.噴霧軟膠管 2.噴頭 3.吊掛噴桿 4.電磁閥 5.雙十字萬(wàn)向節(jié) 6.升降導(dǎo)軌 7.升降架 8.一級(jí)展臂 9.二級(jí)展臂 10.倒Y型噴頭支架

        1.Spray hose 2.Nozzle 3.Hanging spray bar 4.Solenoid valve 5.Double cross universal joints 6.Lifting guide rail 7.Lifting frame 8.Primary boom 9.Secondary boom 10.Inverted Y-type nozzle bracket

        圖7 對(duì)靶噴霧試驗(yàn)

        Fig.7 Targeted spray test

        4 試驗(yàn)結(jié)果與分析

        試驗(yàn)結(jié)束后,待采樣標(biāo)簽紙風(fēng)干,收集采樣標(biāo)簽紙,查定時(shí)將定位卡紙置于標(biāo)簽紙上使二者重合,用數(shù)碼顯微鏡對(duì)定位卡紙上3個(gè)方格中的霧滴進(jìn)行放大并統(tǒng)計(jì)霧滴數(shù),計(jì)算每平方厘米上的平均霧滴數(shù),得到藥液附著密度。

        根據(jù)《JB/T 9782—2014》,將查定后的霧滴采樣標(biāo)簽紙進(jìn)行分級(jí):無(wú)效0級(jí)(無(wú)藥液附著)、有效1級(jí)(藥液附著面積為觀察面積的>0~1/4)、有效2級(jí)(藥液附著面積為觀察面積的>1/4~1/2)、有效3級(jí)(藥液附著面積為觀察面積的>1/2~3/4)、有效4級(jí)(藥液附著面積為觀察面積的3/4以上),分級(jí)完成后,根據(jù)式(3)計(jì)算葉面與葉背的藥液附著率。

        式中1為有效1級(jí)葉片數(shù);2為有效2級(jí)葉片數(shù);3為有效3級(jí)葉片數(shù);4為有效4級(jí)葉片數(shù);為觀察葉片總數(shù)。

        試驗(yàn)結(jié)果如表3所示。試驗(yàn)結(jié)果統(tǒng)計(jì)發(fā)現(xiàn)拖拉機(jī)行駛速度為1.5 m/s時(shí),不同壓力下藥液附著情況普遍較差,只有樹冠上層葉面的藥液附著率超過(guò)50%,且試驗(yàn)中噴霧飄移現(xiàn)象嚴(yán)重,因此該速度下不宜進(jìn)行對(duì)靶噴霧作業(yè)。

        此外,在進(jìn)行田間噴霧試驗(yàn)時(shí),在地面鍍鋅管架上觀察了藥液附著情況,發(fā)現(xiàn)藥液附著面積為觀察面積的1/4以下,根據(jù)《JB/T 9782—2014》,將其視為無(wú)效噴霧。

        由表3可知,拖拉機(jī)行駛速度為0.5 m/s時(shí),噴霧壓力0.4、0.5和0.6 MPa對(duì)應(yīng)的平均藥液附著率分別為84.7%、91.7%、88.9%,藥液附著率較高且接近,即該試驗(yàn)速度下噴霧壓力對(duì)藥液附著率無(wú)較大影響,故建議在0.5 m/s的速度下行駛時(shí),應(yīng)當(dāng)選擇較低噴霧壓力進(jìn)行噴霧,以減少藥液損失;速度為1.0 m/s時(shí),噴霧壓力0.4、0.5和0.6 MPa對(duì)應(yīng)的平均藥液附著率分別為64.2%、70.3%、75.8%,均低于0.5 m/s的平均藥液附著率,噴霧壓力對(duì)藥液附著率影響較大,噴霧壓力越大,藥液附著率越高,故建議在1.0 m/s的速度下,應(yīng)當(dāng)使用較高噴霧壓力提高藥液附著率;在0.5與1.0 m/s的行駛速度下,葉背的平均藥液附著率大部分低于30%,遠(yuǎn)低于葉面的藥液附著率,其根本原因是該懸掛式柔性對(duì)靶噴霧非風(fēng)送式對(duì)靶噴霧,大部分藥液經(jīng)噴霧架噴施后在重力作用下沉降在葉片表面,只有小部分藥液在環(huán)境風(fēng)力等作用下附著在葉背;藥液附著率在樹冠上、中、下層呈遞減規(guī)律,且在拖拉機(jī)較高速行駛時(shí),藥液附著率遞減規(guī)律尤為明顯,原因在于除噴霧架上的吊掛噴桿對(duì)水平方向的樹冠各層進(jìn)行噴施以外,樹冠上層與倒Y型噴頭支架之間距離較近且無(wú)遮擋,故樹冠上層噴霧效果最好,而樹冠中、下層在垂直方向上受到不同程度遮擋,噴霧效果受到不同程度影響,此外,拖拉機(jī)行駛速度越大,噴霧飄移情況越嚴(yán)重,藥液附著率遞減規(guī)律越明顯。

        表3 不同行駛速度與噴霧壓力下的藥液附著率

        5 結(jié) 論

        本文設(shè)計(jì)了懸掛式柔性對(duì)靶噴霧裝置通過(guò)不同噴霧作業(yè)參數(shù)下的藥液附著率試驗(yàn),得出以下主要結(jié)論:

        1)在拖拉機(jī)行駛速度為0.5 m/s時(shí),噴霧壓力0.4、0.5和0.6 MPa對(duì)應(yīng)的平均藥液附著率分別為84.7%、91.7%、88.9%,藥液附著率較高且接近,建議選擇較低噴霧壓力,減少藥液流失;行駛速度為1.0 m/s時(shí),噴霧壓力0.4、0.5和0.6 MPa對(duì)應(yīng)的平均藥液附著率分別為64.2%、70.3%、75.8%,噴霧壓力對(duì)藥液附著率影響較大,建議選擇較高噴霧壓力,提高藥液附著率。

        2)拖拉機(jī)行駛速度為1.5 m/s時(shí),藥液附著情況較差,噴霧飄移現(xiàn)象較為嚴(yán)重,故該對(duì)靶噴霧裝置不適宜在此行駛速度下進(jìn)行對(duì)靶噴霧試驗(yàn),今后如需在此行駛速度下進(jìn)行試驗(yàn),可結(jié)合風(fēng)送式對(duì)靶噴霧技術(shù)來(lái)實(shí)現(xiàn)。

        3)藥液附著率在樹冠上、中、下層呈遞減規(guī)律,隨著拖拉機(jī)速度增大,遞減規(guī)律越明顯。

        4)噴霧試驗(yàn)表明,在0.5與1.0 m/s的行駛速度下,葉背的平均藥液附著率大部分低于30%,遠(yuǎn)低于葉面的藥液附著率,故該裝置暫不適用于對(duì)葉背藥液附著率要求高的果樹進(jìn)行噴霧。

        該果園柔性對(duì)靶噴霧裝置能同時(shí)對(duì)2行果樹進(jìn)行對(duì)靶噴霧,田間藥液附著率試驗(yàn)中所測(cè)得的結(jié)果符合實(shí)際果樹對(duì)噴霧有效性的需求。與現(xiàn)有大部分對(duì)靶噴霧裝置的噴霧機(jī)構(gòu)相比,所設(shè)計(jì)的柔性噴霧機(jī)構(gòu)可在樹冠遮擋門型噴霧架前進(jìn)時(shí),吊掛噴桿被動(dòng)式柔性通過(guò)果樹冠層,降低了對(duì)果樹的損害;樹冠分層靶標(biāo)識(shí)別裝置采用無(wú)線通信方式傳輸靶標(biāo)識(shí)別信息,減少了拖拉機(jī)上的復(fù)雜布線,提高了通信可靠性。

        當(dāng)果園中種植的果樹生長(zhǎng)情況較一致時(shí),在噴霧作業(yè)前應(yīng)調(diào)整好噴霧臂高度及定位架上各放置傳感器的束波套筒之間的垂直距離;對(duì)于果樹生長(zhǎng)情況差異較大的果園,可適當(dāng)改變超聲波測(cè)距傳感器與束波套筒邊沿的距離,或是考慮增加傳感器數(shù)量,進(jìn)一步調(diào)整探測(cè)范圍。

        [1] 喬金亮. 農(nóng)業(yè)部:2020年果園面積要穩(wěn)定在2億畝[R]. 農(nóng)村經(jīng)濟(jì)與科技:農(nóng)業(yè)產(chǎn)業(yè)化,2016:11-16.

        [2] 何雄奎. 植保精準(zhǔn)施藥技術(shù)裝備[J]. 農(nóng)業(yè)工程技術(shù),2017,37(30):22-26.

        He Xiongkui. Precision spraying equipment for plant protection[J]. Agricultural Engineering Technology, 2017, 37(30): 22-26. (in Chinese with English abstract)

        [3] 鄭永軍,陳炳太,呂昊暾,等. 中國(guó)果園植保機(jī)械化技術(shù)與裝備研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):110-124.

        Zheng Yongjun, Chen Bingtai, Lyu Haotun, et al. Research progress of orchard plant protection mechanization technology and equipment in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 110-124. (in Chinese with English abstract)

        [4] 鄧敏,邢子輝,李衛(wèi),等. 我國(guó)施藥技術(shù)和施藥機(jī)械的現(xiàn)狀及問題[J]. 農(nóng)機(jī)化研究,2014,36(5):235-238.

        Deng Min, Xing Zihui, Li Wei, et al. Actuality and problems of pesticide machinery and its application techniques in China[J]. Journal of Agricultural Mechanization Research, 2014, 36(5): 235-238. (in Chinese with English abstract)

        [5] 何雄奎. 中國(guó)精準(zhǔn)施藥技術(shù)和裝備研究現(xiàn)狀及發(fā)展建議[J]. 智慧農(nóng)業(yè),2020,2(1):133-146.

        He Xiongkui. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1): 133-146. (in Chinese with English abstract)

        [6] 劉金龍. 對(duì)靶噴霧紅外探測(cè)系統(tǒng)的設(shè)計(jì)與試驗(yàn)[D]. 南京:南京農(nóng)業(yè)大學(xué),2012.

        Liu Jinlong. The Design and Experiment of Infrared Detection System in Target Spray[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)

        [7] 趙映,肖宏儒,梅松,等. 我國(guó)果園機(jī)械化生產(chǎn)現(xiàn)狀與發(fā)展策略[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,22(6):116-127.

        Zhao Ying, Xiao Hongru, Mei Song, et al. Current status and development strategies of orchard mechanization production in China[J]. Journal of China Agricultural University, 2017, 22(6): 116-127. (in Chinese with English abstract)

        [8] 張海鋒,許林云. 果園噴霧機(jī)發(fā)展現(xiàn)狀及展望[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2014,35(3):112-118.

        Zhang Haifeng, Xu Linyun. Summary of research status on orchard sprayer[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(3): 112-118. (in Chinese with English abstract)

        [9] 常有宏,呂曉蘭,藺經(jīng),等. 我國(guó)果園機(jī)械化現(xiàn)狀與發(fā)展思路[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2013,34(6):21-26.

        Chang Youhong, Lyu Xiaolan, Lin Jing, et al. Present state and thinking about development of orchard mechanization in China[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 21-26. (in Chinese with English abstract)

        [10] 張富貴,洪添勝,王錦堅(jiān),等. 現(xiàn)代農(nóng)藥噴施技術(shù)士及裝備研究進(jìn)展[J]. 農(nóng)機(jī)化研究,2011,33(2):209-213.

        Zhang Fugui, Hong Tiansheng, Wang Jinjian, et al. Development of modern pesticide spry technique and equipment[J]. Journal of Agricultural Mechanization Research, 2011, 33(2): 209-213. (in Chinese with English abstract)

        [11] 王萬(wàn)章,洪添勝,李捷,等. 果樹農(nóng)藥精確噴霧技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(6):98-101.

        Wang Wanzhang, Hong Tiansheng, Li Jie, et al. Review of the pesticide precision orchard spraying technolotgies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004,20(6): 98-101. (in Chinese with English abstract)

        [12] Nan Y, Zhang H, Zheng J, et al. Research on profiling tracking control optimization of orchard sprayer based on the phenotypic characteristics of tree crown[J]. Computers and Electronics in Agriculture, 2022, 192: 106455.

        [13] 南玉龍,張慧春,徐幼林,等. 農(nóng)林仿形對(duì)靶噴霧及其控制技術(shù)研究進(jìn)展[J]. 世界林業(yè)研究,2018,31(4):54-58.

        Nan Yulong, Zhang Huichun, Xu Youlin, et al. Research progress on profiling target spray and its control technology in agriculture and forestry[J]. World Forestry Research, 2018, 31(4): 54-58. (in Chinese with English abstract)

        [14] 李龍龍,何雄奎,宋堅(jiān)利,等. 果園仿形變量噴霧與常規(guī)風(fēng)送噴霧性能對(duì)比試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):56-63.

        Li Longlong, He Xiongkui, Song Jianli, et al. Comparative experiment on profile variable rate spray and conventional air assisted spray in orchards[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 56-63. (in Chinese with English abstract)

        [15] 李龍龍,何雄奎,宋堅(jiān)利,等. 基于變量噴霧的果園自動(dòng)仿形噴霧機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):70-76.

        Li Longlong, He Xiongkui, Song Jianli, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 70-76. (in Chinese with English abstract)

        [16] 李井祝,朱鳳武. 基于PLC自動(dòng)對(duì)靶噴霧控制系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2017,38(8):55-58.

        Li Jingzhu, Zhu Fengwu. Design and experiment of automatic targeting spraying control system based on PLC[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 55-58. (in Chinese with English abstract)

        [17] 劉金龍,丁為民,鄧巍. 果園對(duì)靶噴霧紅外探測(cè)系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 江蘇農(nóng)業(yè)科學(xué),2012,40(12):370-372.

        Liu Jinlong, Ding Weimin, Deng Wei, et al. Design and experiment of infrared detection system for target spray in orchard[J]. Jiangsu Agricultural Sciences, 2012, 40(12): 370-372. (in Chinese with English abstract)

        [18] 鄒建軍,曾愛軍,何雄奎,等. 果園自動(dòng)對(duì)靶噴霧機(jī)紅外探測(cè)控制系統(tǒng)的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(1):129-132.

        Zou Jianjun, Zeng Aijun, He Xiongkui, et al. Research and development of infrared detection system for automatic target sprayer used in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(1): 129-132. (in Chinese with English abstract)

        [19] 肖健. 果樹對(duì)靶噴霧系統(tǒng)中圖像識(shí)別技術(shù)[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2005.

        Xiao Jian. Image Recognition Used in Crown Detection for Orchard Spraying System[D]. Beijing: China Agricultural University, 2005. (in Chinese with English abstract)

        [20] 趙茂程,鄭加強(qiáng),凌小靜. 一種基于小波變換的圖像過(guò)渡區(qū)提取及分割方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(11):103-107.

        Zhao Maocheng, Zheng Jiaqiang, Ling Xiaojing. Image transition region extraction and segmentation method based on wavelet transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(11): 103-107. (in Chinese with English abstract)

        [21] Ozluoymak, Omer Baris, Ali Bolat, et al. Design, development, and evaluation of a target oriented weed control system using machine vision[J]. Turkish Journal of Agriculture and Forestry, 2019, 43(2): 164-173.

        [22] Tellaeche A, Burgosartizzu X P, Pajares G, et al. A new vision-based approach to differential spraying in precision agriculture[J]. Computers and Electronics in Agriculture, 2008, 60: 144-155.

        [23] Xu Y, Gao Z, Khot L, et al. A real-time weed mapping and precision herbicide spraying system for row crops[J]. Sensors, 2018, 18(12): 4245.

        [24] Asaei H, Jafari A, Loghavi M. Site-specific orchard sprayer equipped with machine vision for chemical usage management[J]. Computers and Electronics in Agriculture, 2019, 162: 431-439.

        [25] 袁鵬成,李秋潔,鄧賢,等. 基于LiDAR的對(duì)靶噴霧實(shí)時(shí)控制系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S1):273-280.

        Yuan Pengcheng, Li Qiujie, Deng Xian, et al. Design and experiment of Real-time Control System for Target Spraying Based on LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 273-280. (in Chinese with English abstract)

        [26] 許林云,張昊天,張海鋒,等. 果園噴霧機(jī)自動(dòng)對(duì)靶噴霧控制系統(tǒng)研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(22):1-9.

        Xu Linyun, Zhang Haotian, Zhang Haifeng, et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 1-9. (in Chinese with English abstract)

        [27] Tavares R M, Jo?o P A R Cunha, Alves T C, et al. Electrostatic spraying in the chemical control of Triozoida limbata (Enderlein) (Hemiptera: Triozidae) inguava treesL.)[J]. Pest Management Science, 2017, 73(6): 1148-1153.

        [28] 薛楊春. 果園靜電噴霧機(jī)的設(shè)計(jì)與試驗(yàn)[D]. 楊凌:西北農(nóng)林科技大學(xué),2019.

        Xue Yangchun. Design and Test of Orchard Electrostatic Sprayer[D]. Yangling: Northwest Agriculture and Forest Science and Technology University, 2019. (in Chinese with English abstract)

        [29] Cerqueira D T R D, Raetano C G, Pogetto M H F A D, et al. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer[J]. Scientia Agricola, 2017, 74(1): 32-40.

        [30] Zhang W, Hou Y, Liu X, et al. Wind tunnel experimental study on droplet drift reduction by a conical electrostatic nozzle for pesticide spraying[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 87-94.

        [31] 宋淑然,鄭君彬,洪添勝,等. 果樹對(duì)靶噴霧機(jī)柔性噴臂控制設(shè)計(jì)及試驗(yàn)[J]. 農(nóng)機(jī)化研究,2017,39(5):106-112.

        Song Shuran, Zheng Junbin, Hong Tiansheng, et al. Design and experiment of the control of flexible spray arm on orchard targeted spray device[J]. Journal of Agricultural Mechanization Research, 2017, 39(5): 106-112. (in Chinese with English abstract)

        [32] 周慧,魯植雄,白學(xué)峰,等. 四輪驅(qū)動(dòng)拖拉機(jī)滑轉(zhuǎn)率的測(cè)量與特性分析[J]. 山東農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),201,44(3):423-427.

        Zhou Hui, Lu Zhixiong, Bai Xuefeng, et al. Wheel slip measurement in 4wd tractor based on Labview[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2013, 44(3): 423-427. (in Chinese with English abstract)

        [33] 中華人民共和國(guó)工業(yè)和信息化部. JB/T 9782-2014植物保護(hù)機(jī)械-通用試驗(yàn)方法[S]. 北京:中國(guó)質(zhì)檢出版社,2014.

        Development and experiments of the hanging flexible targeted spray device for orchards

        Chen Zehong1, Chen Jianze2, Song Shuran1,3,4※, Sun Daozong1,3,4

        (1.,,510642,;2..,.,516000,;3.,510642,;4.,,510642,)

        Spray drift has been one of the major diffuse pollution sources for fertilizers and pesticides in intensive agriculture. Non-target drift loss of pesticides has posed a great risk to the ecological environment in recent years. It is a high demand to improve the utilization rate of pesticides for the reduction of spray drift in an orchard. In this study, a hanging-type, flexible, and targeted spray device was developed to promote the efficiency of spraying with less mechanical damage to the fruit branches and leaves. The spraying device included ultrasonic target detection, a main controller, speed measurement, and a solenoid valve control module. As the core of coordination, the main controller was responsible for the data transmission with the other three modules. A Dongfanghong MS-304 tractor was taken as the carrying platform, with overall dimensions (length × width × height) of 3.6 m × 1.5 m × 1.6 m. A three-point suspension mechanism was also used to carry the spray frame on the rear side of the tractor. The spray frame mainly included a load-bearing frame, a lifting guide rail, a lifting frame, a first-level spread arm, a second-level spread arm, a hanging spray rod, and an inverted Y-shaped nozzle bracket. Among them, the spray arm was folded twice, including the lifting frame, the first-level spread arm, and the second-level spread arm. A double cross universal joint was used for the flexible connection between the hanging spray boom and the spray arm, and a flexible spray hose was between the hanging spray end and the spray head for the flexible spraying. As such, the flexible and bendable spray hose was utilized to reduce the mechanical damage to the irregular branches and leaves. Different address codes were assigned in various modules, due to a large amount of data processing. The data conflicts were avoided to first match the address codes of the main controller as-received data. Three ultrasonic ranging sensors (TCF40-16TR1) were installed on the left and right sides of the tractor, particularly in the upper, middle, and lower order along the vertical direction. The horizontal distance was 4.1m between the ultrasonic sensor holder and the spray rack, in order to detect the target at each height. In addition, a sleeve was designed to strengthen the ultrasonic energy of the sensors in the central axis of the beam, in order to reduce the detection range under the same detection distance for better directionality of the spraying. Different levels of spray nozzles were prevented to trigger the spray ahead of time, due to the driving forward of the tractor. Specifically, the Hall sensor was utilized to detect the magnetic field strength on the tractor rim for the real-time running speed of the tractor. 14 solenoid valves were selected to control the sprinklers, four of which the inverted Y-type sprinkler brackets were controlled by one solenoid valve, and each of the rest was controlled by a solenoid valve individually. A target spray test was performed on the orange trees with a planting spacing of 4.0 m, tree height of 1.6 m, and crown diameter of 1.4 m. Two factors and three levels of orthogonal experiment were designed for the test. The first factor was the travel speed with the three levels of 0.5, 1.0, and 1.5 m/s, and the second factor was the spray pressure with the three levels of 0.4, 0.5, and 0.6 MPa. A full factorial experimental design was also performed as follows. Prior to the test, 10 sampling points were evenly arranged on the upper, middle, and lower planes on the crown of each orange tree. The droplet labeling was also arranged at the sampling points to receive the medicinal solution. The allura red staining solution was then prepared. The tractor throttle was fixed, according to the factors of the spray test and the horizontal relationship. The speed of the tractor was stabilized at the speed required for the test after debugging. The pressure was also adjusted to the required. Finally, an anemometer was used to measure the wind speed of the surrounding environment. The tractor started to travel and spray when the outdoor wind speed was less than 0.2 m/s. The spraying was automatically stopped when the tractor completely passed all the orange trees. The test results show that: 1) the average droplet adhesion rates were 84.7%, 91.7%, and 88.9% at the spray pressures of 0.4, 0.5, and 0.6 MPa, respectively, when the tractor traveled at a speed of 0.5 m/s. There was no outstanding effect of spray pressure on the droplet adhesion rate at this speed. A lower spray pressure was then selected to reduce the loss of medicinal solution. 2) Once the driving speed of the tractor was 1.0 m/s, the average droplet adhesion rates of 0.4, 0.5 and 0.6 MPa were 64.2%, 70.3%, and 75.8%, respectively. The higher the spray pressure was, the higher the droplet adhesion rate was. Therefore, a higher spray pressure was selected to improve the droplet adhesion rate in this case. 3) The average droplet adhesion rate was less than 50% at the speed of 1.5 m/s, indicating the serious spray drift unsuitable for the spraying. Decreasing spraying was observed at the droplet adhesion rate in the upper, middle, and lower layers of the canopy when the spray pressure was the same. Consequently, the greater the speed of the tractor was, the more outstanding the decreasing trend was. Furthermore, the droplet adhesion rate of the leaf back was much lower than that on the leaf front, temporarily unsuitable for spraying with high requirements. It is then necessary to adjust the nozzle angle on the hanging spray bar for a higher droplet adhesion rate on the leaf back in the future.

        plant protection machinery; orchard; target spraying; flexible; ultrasonic distance measurement; droplet adhesion rate

        10.11975/j.issn.1002-6819.2022.18.002

        S491

        A

        1002-6819(2022)-18-0011-10

        陳澤鴻,陳建澤,宋淑然,等. 果園懸掛式柔性對(duì)靶噴霧裝置研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(18):11-20.doi:10.11975/j.issn.1002-6819.2022.18.002 http://www.tcsae.org

        Chen Zehong, Chen Jianze, Song Shuran, et al. Development and experiments of the hanging flexible targeted spray device for orchards[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 11-20. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.18.002 http://www.tcsae.org

        2022-05-18

        2022-08-30

        國(guó)家自然科學(xué)基金項(xiàng)目(31671591);廣東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團(tuán)隊(duì)建設(shè)專項(xiàng)資金項(xiàng)目(2022KJ108);廣州市科技計(jì)劃項(xiàng)目(202002030245);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助項(xiàng)目(CARS-26)

        陳澤鴻,研究方向?yàn)閷?duì)靶噴霧。Email:chenzehong@stu.scau.edu.cn

        宋淑然,博士,教授,研究方向?yàn)閲婌F技術(shù)及測(cè)控技術(shù)。Email:songshuran@scau.edu.cn

        猜你喜歡
        靶標(biāo)樹冠藥液
        藥液勻速滴落的原理
        “百靈”一號(hào)超音速大機(jī)動(dòng)靶標(biāo)
        灌巢法毒殺紅火蟻
        樹冠羞避是什么原理?
        榕樹
        納米除草劑和靶標(biāo)生物的相互作用
        樹冠
        文學(xué)港(2019年5期)2019-05-24 14:19:42
        治斑禿
        婦女生活(2018年12期)2018-12-14 06:43:30
        復(fù)雜場(chǎng)景中航天器靶標(biāo)的快速識(shí)別
        前列腺特異性膜抗原為靶標(biāo)的放射免疫治療進(jìn)展
        国产精品一区二区三区播放| 国产一及毛片| 男人天堂AV在线麻豆| 久久狼人国产综合精品 | 日本少妇又色又紧又爽又刺激 | 99久久精品自在自看国产| 人人妻人人澡av| 91偷自国产一区二区三区| 日韩人妻无码一区二区三区久久| 内射无码专区久久亚洲| 国产精品99精品一区二区三区∴| 免费国人成人自拍视频| 精品一级一片内射播放| 又粗又黄又猛又爽大片免费| 日韩欧美一区二区三区中文精品| 乱人伦中文字幕在线不卡网站| 综合久久青青草免费观看视频| 今井夏帆在线中文字幕| 日本精品女优一区二区三区| 影音先锋女人av鲁色资源网久久| 中文字幕福利视频| 99久久国产一区二区三区| 国产伦精品一区二区三区四区| 日本一区二区三区看片| 国产乱精品女同自线免费| 少妇人妻大乳在线视频不卡 | 午夜亚洲av永久无码精品| 亚洲嫩模高清在线视频| 免费av一区男人的天堂 | 中文字幕乱码亚洲无线精品一区 | 久久精品一区二区免费播放| 成人国产在线播放自拍| 久久国产精品亚洲va麻豆| 欧美性猛交xxxx富婆| 精品国产免费Av无码久久久| 日韩精品视频中文字幕播放| av无码精品一区二区三区| 久久午夜伦鲁片免费无码| 国产成人拍精品免费视频| 亚洲一区二区视频免费看| 精品久久久久久无码中文野结衣 |