郭紹雷,許建蘭,王曉俊,2,宿子文,2,張斌斌,馬瑞娟,俞明亮
桃XTH家族基因鑒定及其在桃果實(shí)貯藏過(guò)程中的表達(dá)特性
郭紹雷1,許建蘭1,王曉俊1,2,宿子文1,2,張斌斌1,馬瑞娟1,俞明亮1
1江蘇省農(nóng)業(yè)科學(xué)院果樹(shù)研究所/江蘇省高效園藝作物遺傳改良重點(diǎn)實(shí)驗(yàn)室,南京 210014;2南京農(nóng)業(yè)大學(xué)園藝學(xué)院,南京 210095
【目的】通過(guò)桃木葡聚糖內(nèi)糖基轉(zhuǎn)移/水解酶(xyloglucan endotransglucosylase/hydrolase,XTH)基因家族鑒定與不同肉質(zhì)桃貯藏過(guò)程中相關(guān)基因的表達(dá)分析,發(fā)掘PpXTHs家族成員中參與桃果實(shí)軟化的重要候選基因,為深入解析在果實(shí)采后貯藏過(guò)程中的功能研究奠定基礎(chǔ)?!痉椒ā扛鶕?jù)XTH蛋白保守結(jié)構(gòu)域Glyco_hydro_16 domain和XET_C domain,利用Hmmer 3.1軟件對(duì)桃蛋白質(zhì)數(shù)據(jù)庫(kù)進(jìn)行搜索,鑒定桃XTH基因家族成員;利用在線軟件ProtParam預(yù)測(cè)其分子量、理論等電點(diǎn)等理化性質(zhì);利用在線分析工具Plant-mPLoc預(yù)測(cè)其亞細(xì)胞定位;MEGA11軟件構(gòu)建系統(tǒng)進(jìn)化樹(shù);運(yùn)用在線工具M(jìn)EME對(duì)其保守motif進(jìn)行分析,Tbtools呈現(xiàn)蛋白保守結(jié)構(gòu)域和基因結(jié)構(gòu)圖譜;MapChart軟件繪制基因在染色體上的分布圖;利用實(shí)時(shí)熒光定量PCR(quantitative reverse transcription PCR,qRT-PCR)技術(shù)檢測(cè)在不同肉質(zhì)桃貯藏過(guò)程中的表達(dá)特性?!窘Y(jié)果】在桃基因組共鑒定XTH基因家族成員27個(gè),分布在7條染色體上。系統(tǒng)進(jìn)化樹(shù)顯示,PpXTHs家族成員可分為祖先類(lèi)群、Ⅰ/Ⅱ亞家族以及ⅢA和ⅢB亞家族。蛋白結(jié)構(gòu)域分析顯示所有PpXTHs成員均含有Glyco_hydro_16和XET_C兩個(gè)蛋白保守結(jié)構(gòu)域。qRT-PCR結(jié)果表明,屬于ⅢB亞家族的隨著溶質(zhì)桃貯藏期延長(zhǎng),表達(dá)量上調(diào),且表達(dá)量顯著高于同期硬質(zhì)桃貯藏過(guò)程的表達(dá)水平;克隆測(cè)序結(jié)果顯示其CDS序列與桃參考基因組一致,長(zhǎng)度為924 bp,編碼307個(gè)氨基酸;激光共聚焦顯微鏡觀察發(fā)現(xiàn)PpXTH33與GFP融合蛋白可能主要于細(xì)胞壁與細(xì)胞核上產(chǎn)生綠色熒光信號(hào)?!窘Y(jié)論】桃27個(gè)PpXTHs家族成員蛋白結(jié)構(gòu)均含有2個(gè)XTH蛋白保守結(jié)構(gòu)域,不均勻分布在7條染色體上。在溶質(zhì)桃和硬質(zhì)桃貯藏過(guò)程中的表達(dá)特性顯示,與桃采后果實(shí)軟化密切相關(guān)。
桃;果實(shí)軟化;XTH基因家族;基因表達(dá);亞細(xì)胞定位
【研究意義】桃[(L.) Batsch]原產(chǎn)于中國(guó),根據(jù)聯(lián)合國(guó)糧農(nóng)組織統(tǒng)計(jì)(http://www.fao.org/ faostat/en/#data),2019年我國(guó)桃種植面積84.1萬(wàn)hm2,產(chǎn)量1 584萬(wàn)t,均居世界首位。然而,桃果實(shí)普遍具有成熟后迅速軟化,常溫條件難久貯藏,不方便運(yùn)輸,貨架期較短的特點(diǎn)[1],致使經(jīng)濟(jì)損失嚴(yán)重,極大制約了我國(guó)桃產(chǎn)業(yè)的發(fā)展。果實(shí)中細(xì)胞壁成分分解和細(xì)胞壁結(jié)構(gòu)的改變對(duì)果實(shí)軟化起主要作用[2],果實(shí)軟化涉及諸多細(xì)胞壁修飾酶的作用,其中XTH作為一類(lèi)多基因家族酶類(lèi)在果實(shí)軟化中發(fā)揮重要作用[3-5]。在桃上開(kāi)展XTH基因家族研究可豐富果實(shí)采后衰老軟化分子基礎(chǔ)及調(diào)控網(wǎng)絡(luò),為創(chuàng)制桃果實(shí)采后品質(zhì)維持的精準(zhǔn)調(diào)控提供重要理論基礎(chǔ)?!厩叭搜芯窟M(jìn)展】木葡聚糖是雙子葉植物細(xì)胞壁半纖維素主要成分,而半纖維素通過(guò)氫鍵與纖維素微纖絲連接構(gòu)成的網(wǎng)絡(luò)結(jié)構(gòu)能夠給細(xì)胞壁提供機(jī)械支撐,對(duì)細(xì)胞壁膨脹松軟起到限制作用[6-8]。同時(shí),XTH以木葡聚糖為底物,對(duì)木葡聚糖分子糖基具有轉(zhuǎn)移和水解雙重作用,木葡聚糖內(nèi)糖基轉(zhuǎn)移酶(xyloglucan endo-transglucosylase,XET)和木葡聚糖內(nèi)糖基水解酶(xyloglucan endo-hydrolase,XEH)通過(guò)特異性催化、水解木葡聚糖1,4--D-糖苷鍵完成對(duì)細(xì)胞壁的擴(kuò)張、降解、修復(fù)和形態(tài)發(fā)生[9-11]。XTH被認(rèn)為是細(xì)胞生長(zhǎng)過(guò)程中調(diào)節(jié)細(xì)胞壁延展性的關(guān)鍵酶[9,12],因此,XTH基因伴隨果實(shí)的生長(zhǎng)發(fā)育和成熟軟化。XTH通過(guò)調(diào)控木葡聚糖代謝,進(jìn)而降解細(xì)胞壁,為其他細(xì)胞壁相關(guān)酶的進(jìn)一步修飾做準(zhǔn)備[13],從而對(duì)果實(shí)成熟軟化起重要作用。XTHs已從多種植物或組織中得到鑒定,為多基因家族編碼酶[14-17]。蘋(píng)果[18]、柿子[19]、獼猴桃[13]、梨[20]、草莓[21]、香蕉[22]等果樹(shù)均有XTH相關(guān)報(bào)道。XTHs在不同物種中的家族基因數(shù)量存在差異,擬南芥上有33個(gè)[23]、水稻29個(gè)[24]、煙草56個(gè)[17]、大麥24個(gè)[16]、番茄25個(gè)[25]。最初在擬南芥上XTHs根據(jù)分支和拓?fù)浣Y(jié)構(gòu)可以分為第Ⅰ亞家族、第Ⅱ亞家族以及第Ⅲ亞家族[11],之后XTH在更多物種上被鑒定,近期XTHs家族基因進(jìn)化關(guān)系研究發(fā)現(xiàn)Ⅰ類(lèi)和Ⅱ類(lèi)亞家族成員沒(méi)有明顯差異[24],將它們統(tǒng)稱(chēng)為Ⅰ/Ⅱ亞家族,故XTH可分為Ⅰ/Ⅱ、ⅢA和ⅢB三個(gè)亞家族[10,14-17]。不同亞家族具有的XTH活性不同,柿屬于Ⅰ/Ⅱ亞家族成員,編碼的蛋白表現(xiàn)出XET活性[26];同樣地,擬南芥屬于ⅢB亞家族成員也表現(xiàn)出明顯的XET活性[10,27],ⅢA亞家族成員Tm-NXG1表現(xiàn)出XEH活性[10]。XTH基因家族屬于第16糖苷水解酶家族(glycoside hydrolase family 16,GH16)[28],通常含有Glyco_hydro_16和XET_C兩個(gè)保守結(jié)構(gòu)域,XET_C蛋白結(jié)構(gòu)域可與GH16家族中的其他蛋白區(qū)分[9,29-30]。諸多被報(bào)道與果實(shí)軟化密切相關(guān),蘋(píng)果中的與果實(shí)成熟相關(guān),且外源乙烯可誘導(dǎo)表達(dá)上調(diào),參與果實(shí)軟化[31]。在番茄果實(shí)中,超表達(dá)柿子,可加快番茄果實(shí)成熟和軟化速率[5]。此外,草莓中的和也被報(bào)道與果實(shí)成熟軟化密切相關(guān)[4]?!颈狙芯壳腥朦c(diǎn)】XTH在果實(shí)軟化中發(fā)揮重要作用,而桃上的相關(guān)鑒定和功能解析還未見(jiàn)報(bào)道?!緮M解決的關(guān)鍵問(wèn)題】本研究擬通過(guò)生物信息學(xué)手段鑒定桃果實(shí)XTH基因家族成員并對(duì)其進(jìn)行特征分析,通過(guò)其在溶質(zhì)桃和硬質(zhì)桃采后過(guò)程的表達(dá)分析,發(fā)掘參與桃果實(shí)軟化的重要,為研究的功能和在桃果實(shí)軟化中的重要作用奠定基礎(chǔ)。
本研究以溶質(zhì)桃‘湖景蜜露’(‘HJML’)和硬質(zhì)桃‘霞脆’(‘XC’)為試驗(yàn)材料,兩品種桃均種植于國(guó)家果樹(shù)種質(zhì)南京桃資源圃試驗(yàn)園,每品種選擇3棵桃樹(shù)進(jìn)行試驗(yàn)。2018年采收,采收后立即運(yùn)回實(shí)驗(yàn)室,果實(shí)以商業(yè)采收期為標(biāo)準(zhǔn),選取成熟度一致、大小均勻、無(wú)病蟲(chóng)害和機(jī)械損傷的果實(shí)用于常溫貯藏。貯藏溫度為(25±0.5)℃,相對(duì)濕度75%—85%。兩品種桃果實(shí)常溫貯藏0、3、6和9 d后,分別隨機(jī)取樣,每次取5個(gè)果實(shí),3次重復(fù),共15個(gè)果實(shí)用于試驗(yàn)。桃果實(shí)去皮后,切成均勻小塊,經(jīng)液氮速凍后,置于-80℃冰箱用于后續(xù)試驗(yàn)。大腸桿菌菌株DH5α、根癌農(nóng)桿菌GV3101購(gòu)于上海唯地生物技術(shù)有限公司。
從Pfam數(shù)據(jù)庫(kù)(https://Pfam.xfam.org/)[32]下載XTH保守蛋白結(jié)構(gòu)域HMM文件Glyco_hydro_16 domain(PF00722)和XET_C domain(PF06955)[14],運(yùn)用Hmmer 3.1軟件對(duì)桃蛋白質(zhì)數(shù)據(jù)庫(kù)(https:// phytozome-next.jgi.doe.gov/)[33]進(jìn)行搜索,手動(dòng)刪除冗余序列,所得候選序列經(jīng)CDD數(shù)據(jù)庫(kù)(https://www. ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)[34]驗(yàn)證后,最終同時(shí)包含Glyco_hydro_16和XET_C保守結(jié)構(gòu)域的蛋白序列用于后續(xù)研究。分子量(molecular weight,Mw)、理論等電點(diǎn)(theoretical isoelectric point,pI),氨基酸數(shù)量等利用在線工具ProtParam(https://web. expasy.org/protparam/)進(jìn)行分析[35]。亞細(xì)胞定位利用在線分析軟件Plant-mPLoc(http://www.csbio.sjtu.edu. cn/bioinf/plant-multi/)進(jìn)行預(yù)測(cè)[36]。每條蛋白序列的motif使用MEME在線工具(https://meme-suite.org/ meme/tools/meme)[37]進(jìn)行預(yù)測(cè)和分析。使用TBtools對(duì)每條基因序列的內(nèi)含子及外顯子進(jìn)行分析,最終每條PpXTHs蛋白序列保守結(jié)構(gòu)域和motif使用Tbtools呈現(xiàn)[38]。
桃XTH家族成員基因組序列、CDS序列及蛋白質(zhì)序列均來(lái)自Phytozome數(shù)據(jù)庫(kù)(https://phytozome- next.jgi.doe.gov/)[33]。擬南芥XTH蛋白序列均來(lái)自TAIR數(shù)據(jù)庫(kù)(https://www.arabidopsis.org/)[39]。番茄XTH蛋白序列根據(jù)SALADIé等[25]的報(bào)道。其他XTH蛋白序列根據(jù)前人報(bào)道獲得:Tm- NXG1[10]、MdXTH10[31]、Ptt-XET16-34[40]、DkXTH6[26]。多序列比對(duì)使用Clustal X1.8軟件,利用MEGA11軟件[41]最大似然法用于構(gòu)建進(jìn)化樹(shù),使用LG+G模型,自展重復(fù)次數(shù)設(shè)為100。
從PDB數(shù)據(jù)庫(kù)中下載晶體結(jié)構(gòu)TmNXG1(PDB id: 2UWA)[10]和Ptt-XET16-34(PDB id: 1UN1)[40],使用ESPript在線工具(https://espript.ibcp.fr/ESPript/ESPript/)進(jìn)行二級(jí)結(jié)構(gòu)預(yù)測(cè)與共有結(jié)構(gòu)序列鑒定[21,42]。桃XTH基因的染色體位置信息從Phytozome數(shù)據(jù)庫(kù)(https:// phytozome-next.jgi.doe.gov/)[33]獲取,使用MapChart軟件繪制基因在染色體上的分布圖[43]。
RNA提取采用多糖多酚植物總RNA提取試劑盒(天根生化科技(北京)有限公司),按試劑盒說(shuō)明書(shū)步驟操作,提取的總RNA用1%的瓊脂糖凝膠電泳和One DropTMOD-1000+型紫外可見(jiàn)分光光度計(jì)(南京五義科技有限公司,中國(guó))分別檢測(cè)提取RNA的純度和濃度。檢測(cè)合格后的總RNA,使用PrimeScriptTMRT Reagent Kit(TaKaRa,大連)反轉(zhuǎn)錄試劑盒,去除基因組DNA后合成第一鏈cDNA作為qRT-PCR的模板。通過(guò)NCBI/Primer-BLAST在線服務(wù)器設(shè)計(jì)基因的特異性表達(dá)引物,內(nèi)參基因選用桃2()[44]。引物由南京擎科生物科技有限公司合成,引物序列詳見(jiàn)表1。利用ABI7500熒光定量PCR儀(ABI,美國(guó))進(jìn)行qRT-PCR檢測(cè),qRT-PCR試劑選用TB Green? Premix Ex Taq? II(Tli RNaseH Plus)(TaKaRa,大連),按照其說(shuō)明書(shū)進(jìn)行操作,反應(yīng)體系為20 μL,反應(yīng)程序?yàn)椋?5℃,30 s;95℃,5 s,60℃,34 s,40個(gè)循環(huán);72℃,10 s。相對(duì)表達(dá)量計(jì)算公式參照2-ΔΔCT[45]。
表1 用于qRT-PCR與亞細(xì)胞定位的引物
下劃線為18 bp同源序列,小寫(xiě)字母為酶切位點(diǎn)
The underlined base sequences in the primers represent 18 bp extension homologous to vector ends, and lowercase letters represent corresponding restriction enzyme site
以‘HJML’和‘XC’桃果實(shí)cDNA為模板,使用PrimeSTAR? Max DNA聚合酶(TaKaRa,大連)進(jìn)行擴(kuò)增,PCR體系為50 μL,反應(yīng)程序?yàn)椋?8℃,2 min;98℃,10 s,55℃,15 s,72℃,20 s,35個(gè)循環(huán);72℃,5 min。利用ClonExpress? II One Step Cloning Kit試劑盒(諾唯贊,南京)按照試劑盒說(shuō)明書(shū)使用DNA無(wú)縫克隆技術(shù),將PCR純化產(chǎn)物克隆至pCAMBIA1302載體,使用NEB限制性?xún)?nèi)切酶I和I對(duì)pCAMBIA1302載體雙酶切,PCR擴(kuò)增引物見(jiàn)表1。pCAMBIA1302-重組產(chǎn)物轉(zhuǎn)化進(jìn)大腸桿菌DH5α,過(guò)夜培養(yǎng),經(jīng)陽(yáng)性鑒定后送南京擎科生物科技有限公司測(cè)序。將pCAMBIA1302(空載體)和pCAMBIA1302-重組質(zhì)粒分別轉(zhuǎn)化GV3101農(nóng)桿菌,按照王昊等[46]的方法,選取1月齡煙草葉片注射后瞬時(shí)表達(dá),注射3 d后利用激光共聚焦掃描顯微鏡觀察在煙草葉片細(xì)胞中的定位。
用Microsoft Excel 2019 進(jìn)行數(shù)據(jù)整理和作圖,使用SPSS 19.0 的t-檢驗(yàn),進(jìn)行數(shù)據(jù)的差異顯著性分析。
本研究去除冗余序列后共有28條XTH蛋白序列,Prupe.2G154800.1僅含有Glyco_hydro_16蛋白結(jié)構(gòu)域,缺少XET_C蛋白結(jié)構(gòu)域,不作為桃XTH基因家族成員進(jìn)行研究。篩選后共有27條桃基因序列作為家族成員進(jìn)行研究。桃根據(jù)擬南芥XTH家族成員同源序列進(jìn)行命名(表2)。PpXHTs家族成員蛋白序列的氨基酸數(shù)量從269—359 ,伴隨Mw從30 385.02—41 218.83 Da。pI范圍從4.80—9.52(表2)。亞細(xì)胞定位預(yù)測(cè)顯示桃上所有的XTHs都定位在細(xì)胞壁上。其中、、、、、、、、、、、、也能定位在細(xì)胞質(zhì)中(表2)。
本研究利用包括27個(gè)桃XTHs、33個(gè)擬南芥XTHs和13個(gè)番茄XHTs以及DkXTH6、Ptt-XET16-34、MdXTH10、Tm-NXG1在內(nèi)的共77個(gè)XTH氨基酸序列構(gòu)建系統(tǒng)進(jìn)化樹(shù)(圖1),其中DkXTH6與MdXTH10分別在柿子和蘋(píng)果上被報(bào)道與果實(shí)軟化密切相關(guān)[26,31],Ptt-XET16-34具有XET活性[40],Tm-NXG1具有XEH活性[10],且Ptt-XET16-34、Tm-NXG1蛋白結(jié)構(gòu)均已報(bào)道,因此根據(jù)系統(tǒng)進(jìn)化樹(shù),分析桃XTH蛋白可能具有的活性及功能。如圖1所示,構(gòu)建的系統(tǒng)進(jìn)化樹(shù)中桃PpXTHs成員包含2個(gè)祖先類(lèi)群(PpXTH1a和PpXTH1b),2個(gè)ⅢA亞家族成員(PpXTH32a和PpXTH32b)和3個(gè)ⅢB亞家族成員(PpXTH28、PpXTH30、PpXTH33),以及20個(gè)Ⅰ/Ⅱ亞家族成員。
如圖2-A所示,PpXTHs家族成員分布在桃7條染色體上。其中第1染色體上含有的成員最多(10個(gè)),其次是第3染色體上含7個(gè),第5染色體上僅含有,第2染色體上不包含。剩下的4條染色體上,除第8條染色體含有3個(gè),其他染色體均只含有2個(gè)(圖2-A)。為鑒定PpXTHs結(jié)構(gòu)特征在進(jìn)化中的保守性,對(duì)PpXTHs編碼序列的外顯子-內(nèi)含子結(jié)構(gòu)及蛋白序列含有的motif進(jìn)行分析。結(jié)果表明,鑒定到的27個(gè)PpXTHs序列均包含Glyco_hydro_16和XET_C兩個(gè)蛋白保守結(jié)構(gòu)域(圖2-C)。根據(jù)擬南芥進(jìn)化樹(shù)分類(lèi)[11],屬于第Ⅰ亞家族的PpXHTs(PpXTH5—10,除PpXTH5含5個(gè)外顯子)成員含有4個(gè)外顯子,第Ⅲ亞家族(ⅢA與ⅢB亞家族)和祖先類(lèi)群成員同樣含有4個(gè)外顯子。屬于第Ⅱ亞家族的桃PpXTHs成員(除PpXTH26含4個(gè)外顯子),均含有3個(gè)外顯子,聚集在同一亞家族中的PpXTHs成員motif分布差異不大(圖2-B),表現(xiàn)出相似的基因結(jié)構(gòu)模式(圖2-D)。
根據(jù)兩種完全解析的XTH蛋白結(jié)構(gòu)Ptt-XET16- 34(PDB id: 1UN1)與TmNXG1(PDB id:2UWA)通過(guò)在線分析工具ESPript對(duì)PpXTHs蛋白質(zhì)二級(jí)結(jié)構(gòu)進(jìn)行分析。(/W/R)-(/N)-E-(/L/F/V)-D-(/I/L/M)-E- (/L)-(L/M)-G(其中常見(jiàn)的氨基酸用下劃線標(biāo)示)是所有XTH中都包含的活性位點(diǎn)序列[9]。其中第一個(gè)谷氨酸殘基(E)被認(rèn)為是啟動(dòng)酶促反應(yīng)的催化親核體,第二個(gè)谷氨酸殘基(E)激活進(jìn)入的底物。如圖3所示,桃上27個(gè)PpXTHs均含有活性位點(diǎn)序列,具有XTH的蛋白保守功能。PpXTHs蛋白序列包含保守的環(huán)序列(環(huán)1、環(huán)2、環(huán)3),環(huán)1與環(huán)3在PpXHTs蛋白序列中相對(duì)保守,變化不大,但在祖先類(lèi)群PpXHT1a與PpXTH1b中環(huán)3相較于其他亞家族要短(圖3-A),環(huán)2在ⅢA亞家族成員(PpXTH32a與PpXTH32b)中的長(zhǎng)度比ⅢB亞家族及Ⅰ/Ⅱ亞家族成員要長(zhǎng)(圖3),環(huán)2在不同亞家族的差異可能導(dǎo)致其酶學(xué)功能的差異。
對(duì)21個(gè)PpXTHs家族成員在溶質(zhì)桃‘HJML’和硬質(zhì)桃‘XC’常溫貯藏過(guò)程中的表達(dá)水平進(jìn)行了分析(圖4)。6個(gè)(、、、、、)因表達(dá)量太低未列圖中。在Ⅰ/Ⅱ亞家族成員中有8個(gè)基因(、、、、、、、)在溶質(zhì)桃‘HJML’和硬質(zhì)桃‘XC’常溫貯藏過(guò)程中呈現(xiàn)下調(diào)表達(dá)趨勢(shì),其中、和在兩種肉質(zhì)桃中變化不大,其他5個(gè)基因在相同貯藏期內(nèi),硬質(zhì)桃的表達(dá)量高于溶質(zhì)桃。在溶質(zhì)桃貯藏過(guò)程中有下調(diào)趨勢(shì),在硬質(zhì)桃貯藏3 d時(shí)表達(dá)量上調(diào),隨后下降,且的表達(dá)量在硬質(zhì)桃貯藏過(guò)程中顯著高于溶質(zhì)桃。在兩種肉質(zhì)桃貯藏過(guò)程中貯藏6 d內(nèi)表達(dá)量上升,隨后下降。而在溶質(zhì)桃‘HJML’和硬質(zhì)桃‘XC’貯藏過(guò)程(0—6 d)表達(dá)量均上調(diào),在貯藏期(3—9 d),硬質(zhì)桃的表達(dá)量顯著高于溶質(zhì)桃。與的表達(dá)量在溶質(zhì)桃和硬質(zhì)桃貯藏過(guò)程中呈現(xiàn)上調(diào)趨勢(shì),貯藏9 d時(shí)的表達(dá)量在溶質(zhì)桃中高于硬質(zhì)桃,而的表達(dá)量在貯藏6 d時(shí),溶質(zhì)桃高于硬質(zhì)桃,其他貯藏時(shí)期表達(dá)量差異不明顯。在溶質(zhì)桃‘HJML’貯藏期表達(dá)量一直升高,在硬質(zhì)桃貯藏6 d內(nèi)升高,而后表達(dá)量下降。與在兩種肉質(zhì)類(lèi)型桃貯藏過(guò)程中的表達(dá)無(wú)明顯規(guī)律。在兩肉質(zhì)桃貯藏3 d后表達(dá)量均上調(diào)。ⅢB亞家族成員中與的表達(dá)量在兩肉質(zhì)桃常溫貯藏過(guò)程中均有先下降后升高的趨勢(shì),而在溶質(zhì)桃常溫貯藏過(guò)程中表達(dá)量顯著上調(diào),在硬質(zhì)桃常溫貯藏過(guò)程中只在貯藏后期(6—9 d)出現(xiàn)略微上調(diào),在溶質(zhì)桃常溫貯藏過(guò)程中的表達(dá)量顯著高于硬質(zhì)桃,與兩肉質(zhì)桃的軟化特征相符。溶質(zhì)桃‘HJML’在貯藏3 d時(shí)硬度快速下降,且持續(xù)呈下降趨勢(shì),‘XC’貯藏過(guò)程中硬度變化較小,且‘XC’在貯藏0、3、6和9 d硬度顯著高于‘HJML’(圖5)。表明可能是編碼XTH與桃果實(shí)軟化相關(guān)的重要候選基因。祖先類(lèi)群中在溶質(zhì)桃貯藏過(guò)程中先升高后降低。
表2 桃XTH基因家族成員特征分析
紅圈代表桃XTH蛋白序列,藍(lán)圈代表擬南芥XTH蛋白序列,黃圈代表番茄XTH蛋白序列,黑圈代表其他物種XTH蛋白序列
A:染色體分布;B:保守motif分布;C:domain分布;D:內(nèi)含子與外顯子結(jié)構(gòu)
以桃果實(shí)‘HJML’和‘XC’cDNA為模板克隆,發(fā)現(xiàn)在溶質(zhì)桃‘HJML’與硬質(zhì)桃‘XC’果實(shí)中CDS序列結(jié)果一致,得到CDS序列924 bp,編碼307個(gè)氨基酸,克隆得到的CDS序列與Phytozome數(shù)據(jù)庫(kù)(https://phytozome-next.jgi.doe.gov/)桃參考基因組(v2.1)Prupe.1G255100.1序列一致。融合表達(dá)載體pCAMBIA1302-- GFP構(gòu)建如圖6-A所示。采用農(nóng)桿菌介導(dǎo)的瞬時(shí)表達(dá)轉(zhuǎn)化方法,進(jìn)一步研究綠色熒光蛋白GFP標(biāo)記的PpXTH33蛋白在煙草葉片表皮細(xì)胞中的定位。結(jié)合生物信息學(xué)分析結(jié)果,pCAMBIA1302-PpXTH33- GFP融合蛋白的煙草葉片可能定位在細(xì)胞壁中,同時(shí)也在細(xì)胞核發(fā)現(xiàn)了微弱的GFP熒光,表明PpXTH33蛋白可能主要在細(xì)胞壁中發(fā)揮作用(圖6-B)。
A:Ⅰ/Ⅱ亞家族、祖先類(lèi)群;B:ⅢA和ⅢB亞家族,活性位點(diǎn)(黑色橫線),環(huán)1、環(huán)2、環(huán)3(綠色橫線),保守的氨基酸殘基用紅色字母表示
桃果實(shí)快速衰老軟化是影響品質(zhì)維持的主要原因,而采后快速衰老軟化的防控和相關(guān)理論的研究是降低果實(shí)采后損耗的基礎(chǔ)。果實(shí)衰老軟化是一個(gè)復(fù)雜的生理生化過(guò)程,主要包括呼吸躍變、乙烯釋放、細(xì)胞壁降解及各種氧化還原酶的變化等[47-48]。果實(shí)中細(xì)胞壁成分分解和細(xì)胞壁結(jié)構(gòu)的改變是引起果實(shí)軟化的主要原因[2]。XTH調(diào)控木葡聚糖代謝,進(jìn)而降解細(xì)胞壁,為其他細(xì)胞壁相關(guān)酶的進(jìn)一步修飾做準(zhǔn)備[13],參與果實(shí)軟化。
在植物進(jìn)化過(guò)程中,基因復(fù)制為基因功能多樣化提供了來(lái)源,并有助于基因家族成員數(shù)量的擴(kuò)增[15]。XTH家族成員在不同物種上存在的數(shù)目不盡相同[14,21,23,49-50],本研究在桃上共鑒定到27個(gè)XTH成員,與其他物種相比XTH同源基因數(shù)目不同,可能是因?yàn)樵谔疑匣蛑貜?fù)事件發(fā)生的次數(shù)不同所導(dǎo)致。系統(tǒng)進(jìn)化樹(shù)分析PpXTHs與多數(shù)物種一樣,其中ⅢA亞家族中包含的PpXTHs最少,含有2個(gè),Ⅰ/Ⅱ亞家族成員最多,與大白菜、甘藍(lán)、菠蘿等報(bào)道結(jié)果類(lèi)似[14-15]。所有PpXTHs亞細(xì)胞定位預(yù)測(cè)結(jié)果顯示定位于細(xì)胞壁,與其參與細(xì)胞壁重組的功能吻合,說(shuō)明PpXTHs具有XTH的保守性。盡管桃同源基因數(shù)目與其他物種不同,且PpXTHs在Mw、pI和氨基酸數(shù)量上存在顯著差異,但PpXTHs在各亞家族中包含相對(duì)保守的motif和基因結(jié)構(gòu),表明同一組的XTH可能具有相似的功能。
前人研究表明屬于Ⅰ/Ⅱ亞家族和ⅢB亞家族成員編碼的XTH蛋白通常具有XET活性[11,26-27],而ⅢA亞家族成員的XTH蛋白具有XEH活性[6,10]。然而與果實(shí)軟化相關(guān)的XTH基因通常屬于Ⅰ/Ⅱ亞家族或ⅢB亞家族,如在草莓中超表達(dá)和(Ⅰ/Ⅱ亞家族成員),會(huì)導(dǎo)致草莓加快成熟并伴隨硬度下降[4]。OPAZO等[21]研究表明屬于Ⅰ/Ⅱ亞家族的與和屬于ⅢB亞家族的與在果實(shí)成熟過(guò)程中表達(dá)量逐漸升高與草莓果實(shí)軟化密切相關(guān)。超表達(dá)(Ⅰ/Ⅱ亞家族成員)會(huì)引起‘金冠’蘋(píng)果與‘富士’蘋(píng)果更快的軟化速率和更早的乙烯高峰出現(xiàn)[3]。和在柿果實(shí)成熟期表達(dá)量升高并伴隨硬度下降[19]。屬于ⅢB亞家族的是成熟蘋(píng)果果實(shí)表達(dá)量較高的基因[13],且受乙烯誘導(dǎo)表達(dá)上調(diào)[31],在番茄中超表達(dá)會(huì)導(dǎo)致與果實(shí)軟化相關(guān)基因(、、、)的表達(dá)量上調(diào),同時(shí)乙烯生物合成途徑與信號(hào)轉(zhuǎn)導(dǎo)途徑基因(、、)表達(dá)量同樣升高,表明可能激活軟化相關(guān)基因或反饋調(diào)節(jié)乙烯來(lái)影響果實(shí)軟化[18]。因此參與果實(shí)軟化的XTHs基因可能來(lái)自Ⅰ/Ⅱ亞家族或ⅢB亞家族成員,具有XET活性,且伴隨果實(shí)硬度的下降,表達(dá)量升高?!瓾JML’為溶質(zhì)桃果實(shí),在常溫貯藏過(guò)程中硬度迅速下降變軟,‘XC’為硬質(zhì)桃果實(shí),在常溫貯藏過(guò)程中長(zhǎng)時(shí)間保持堅(jiān)硬[51],這與本研究中溶質(zhì)桃與硬質(zhì)桃常溫貯藏過(guò)程的硬度變化趨勢(shì)一致。在溶質(zhì)桃‘HJML’貯藏過(guò)程中隨著硬度下降表達(dá)量不斷升高,且隨著貯藏時(shí)間延長(zhǎng),表達(dá)量顯著高于硬質(zhì)桃‘XC’(圖4、圖5)。因此,在轉(zhuǎn)錄水平上符合XTHs參與果實(shí)軟化的特征,即隨著硬度的下降表達(dá)量不斷升高。XTH蛋白序列中Ⅰ/Ⅱ亞家族和ⅢB亞家族的環(huán)2要比ⅢA亞家族成員含有的氨基酸數(shù)量少,而環(huán)2是XTH蛋白活性偏向水解或轉(zhuǎn)移酶活性的重要因素[9]。同樣,環(huán)2的氨基酸數(shù)量區(qū)別于ⅢA亞家族,與Ⅰ/Ⅱ亞家族成員類(lèi)似(圖3),說(shuō)明所編碼的XTH蛋白可能具有XET活性。因此,參與果實(shí)軟化可能與蘋(píng)果類(lèi)似,受乙烯調(diào)控,且與多數(shù)果實(shí)軟化相關(guān)XTH基因類(lèi)似,具有XET活性。亞細(xì)胞定位顯示柿子X(jué)TH家族成員定位于細(xì)胞壁[26],說(shuō)明XTH的作用部位在細(xì)胞壁,本研究中可能定位于細(xì)胞壁,同時(shí)也在細(xì)胞核中發(fā)現(xiàn)了GFP熒光,這可能是PpXTH33蛋白擴(kuò)散所致,類(lèi)似的情況也在向日葵上發(fā)現(xiàn)[52],因而桃XTH家族成員中的可能具有降解細(xì)胞壁的功能,也可能具有其他功能,是中參與桃果實(shí)軟化的重要候選基因,在桃果實(shí)軟化過(guò)程中起重要作用。但的基因功能和調(diào)控機(jī)理仍需進(jìn)一步研究。
‘HJML’為溶質(zhì)桃,‘XC’為硬質(zhì)桃
HJML is the melting peach and XC is the stony hard peach
*表示同一時(shí)期不同肉質(zhì)差異顯著比較(<0.05)。下同
*indicate significant difference of different textures in the same period (<0.05). The same as below
圖4 桃XTH家族成員在不同肉質(zhì)桃常溫貯藏過(guò)程中的表達(dá)特性
Fig. 4 Expression characteristics of XTH family members in peach fruit with different textures during room temperature storage
圖5 不同肉質(zhì)桃果實(shí)常溫貯藏過(guò)程中硬度變化
標(biāo)尺長(zhǎng)度=39.00 μm Scale bars=39.00μm
從桃全基因組中共鑒定到27個(gè)XTH家族基因,均含有Glyco_hydro_16與XET_C保守結(jié)構(gòu)域,不均勻分布在桃7條染色體上,系統(tǒng)進(jìn)化樹(shù)可將桃PpXTHs分為4個(gè)亞類(lèi)。在溶質(zhì)桃‘HJML’貯藏過(guò)程中隨著硬度下降而表達(dá)量不斷升高,且常溫貯藏過(guò)程中表達(dá)量顯著高于硬質(zhì)桃‘XC’,為參與桃果實(shí)軟化的重要候選基因。
[1] YOSHIOKA H, HAYAMA H, TATSUKI M, NAKAMURA Y. Cell wall modification during development of mealy texture in the stony-hard peach “Odoroki” treated with propylene. Postharvest Biology and Technology, 2010, 55(1): 1-7.
[2] BRUMMELL D A, HARPSTER M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology, 2001, 47(1/2): 311-340.
[3] MA M M, YUAN Y B, CHENG C X, ZHANG Y, YANG S L. Thegene is involved in fruit softening in ‘Golden Del. Reinders’ (). Journal of the Science of Food and Agriculture, 2021, 101(2): 564-572.
[4] WITASARI L D, HUANG F C, HOFFMANN T, ROZHON W, FRY S C, SCHWAB W. Higher expression of the strawberry xyloglucan endotransglucosylase/hydrolase genesandaccelerates fruit ripening. The Plant Journal, 2019, 100(6): 1237-1253. doi: 10.1111/tpj.14512.
[5] HAN Y, BAN Q Y, LI H, HOU Y L, JIN M J, HAN S K, RAO J P. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening. Scientific Reports, 2016, 6: 39155. doi: 10.1038/srep39155.
[6] 韓葉. 柿果實(shí)木葡聚糖內(nèi)糖基轉(zhuǎn)移/水解酶基因表達(dá)特性及功能分析[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2017.
HAN Y. Expression and functional analysis of xyloglucan endotransglycosylase/hydrolase genes in persimmon fruit [D]. Yangling: Northwest A&F University, 2017. (in Chinese)
[7] ZHU Q G, ZHANG Z K, RAO J P, HUBER D J, LV J Y, HOU Y L, SONG K H. Identification of xyloglucan endotransglucosylase/ hydrolase genes (XTHs) and their expression in persimmon fruit as influenced by 1-methylcyclopropene and gibberellic acid during storage at ambient temperature. Food Chemistry, 2013, 138(1): 471-477. doi: 10.1016/j.foodchem.2012.09.141.
[8] SCHR?DER R, ATKINSON R G, LANGENK?MPER G, REDGWELL R J. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta, 1998, 204(2): 242-251. doi: 10.1007/s004250050253.
[9] EKL?F J M, BRUMER H. The XTH gene family: an update on enzyme structure, function, and phylogeny in xyloglucan remodeling. Plant Physiology, 2010, 153(2): 456-466. doi: 10.1104/pp.110.156844.
[10] BAUMANN M J, EKL?F J M, MICHEL G, KALLAS A M, TEERI T T, CZJZEK M, BRUMER H. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell, 2007, 19(6): 1947-1963. doi: 10.1105/tpc.107.051391.
[11] ROSE J K C, BRAAM J, FRY S C, NISHITANI K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 2002, 43(12): 1421-1435. doi: 10.1093/ pcp/pcf171.
[12] COSGROVE D J. Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861.
[13] ATKINSON R G, JOHNSTON S L, YAUK Y K, SHARMA, N N, SCHRODER R. Analysis of xyloglucan endotransglucosylase/ hydrolase (XTH) gene families in kiwifruit and apple. Postharvest Biology and Technology, 2009, 51(2): 149-157.
[14] WU D, LIU A Q, QU X Y, LIANG J Y, SONG M. Genome-wide identification, and phylogenetic and expression profiling analyses ofgene families inL. andL.. BMC Genomics, 2020, 21(1): 782.
[15] LI Q Y, LI H Y, YIN C Y, WANG X T, JIANG Q, ZHANG R, GE F F, CHEN Y D, YANG, L. Genome-wide identification and characterization of xyloglucan endotransglycosylase/hydrolase induring development. Genes, 2019, 10(7): E537. doi: 10.3390/genes10070537.
[16] FU M M, LIU C, WU F B. Genome-wide identification, characterization and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in barley (). Molecules (Basel, Switzerland), 2019, 24(10): E1935. doi: 10.3390/molecules24101935.
[17] WANG M, XU Z C, DING A M, Kong Y Z. Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco (L.). Genes, 2018, 9(6): 273.
[18] ZHANG Z Y, WANG N, JIANG S H, XU H F, WANG Y C, WANG C Z, LI M, LIU J X, QU C Z, LIU W, WU S J, CHEN X L, CHEN X S. Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening. Journal of Agricultural and Food Chemistry, 2017, 65(2): 429-434. doi: 10.1021/acs.jafc. 6b04536.
[19] HAN Y, ZHU Q G, ZHANG Z K, MENG K, HOU Y L, Ban Q Y, SUO J T, RAO J P. Analysis of xyloglucan endotransglycosylase/ hydrolase () genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS ONE, 2015, 10(4): e0123668.
[20] 叢郁, 劉洪, 李慧, 顏志梅, 俞明亮, 常有宏. 成熟砂梨果實(shí)木葡聚糖轉(zhuǎn)移酶基因的克隆及其在夏季貨架期的表達(dá)規(guī)律, 江蘇農(nóng)業(yè)學(xué)報(bào), 2010, 26(1): 143-151.
CONG Y, LIU H, LI H, YAN Z M, YU M L, CHANG Y H. Cloning of an xyloglucan endotransglycosylase/hydrolase gene () from mature sandy pear fruit and its expression characteristics during summer shelf life. Jiangsu Journal of Agricultural Sciences, 2010, 26(1): 143-151. (in Chinese)
[21] OPAZO M C, LIZANA R, STAPPUNG Y, DAVIS T M, HERRERA R, MOYA-LEóN M A. XTHs from: genomic structure and transcriptomic analysis in ripening fruit and other tissues. BMC Genomics, 2017, 18(1): 852. doi: 10.1186/s12864-017-4255-8.
[22] LU W J, NAKANO R, KUBO Y, INABA A, JIANG Y M. Cloning and expression analysis of an XET cDNA in the peel and pulp of banana fruit ripening and softening. Acta Botanica Sinica, 2004, 46(3): 355-362.
[23] YOKOYAMA R, NISHITANI K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of. Plant and Cell Physiology, 2001, 42(10): 1025-1033. doi: 10.1093/pcp/pce154.
[24] YOKOYAMA R, ROSE J K C, NISHITANI K. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiology, 2004, 134(3): 1088-1099.
[25] SALADIé M, ROSE J K, COSGROVE D J, CATALá C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. The Plant Journal, 2006, 47(2): 282-295. doi: 10.1111/j.1365-313x.2006.02784.x.
[26] HAN Y, BAN Q Y, HOU Y L, MENG K, SUO J T, RAO J P. Isolation and characterization of two persimmon xyloglucan endotransglycosylase/ hydrolase () genes that have divergent functions in cell wall modification and fruit postharvest softening. Frontiers in Plant Science, 2016, 7: 624.
[27] CAMPBELL P, BRAAM J.activities of four xyloglucan endotransglycosylases from. Plant Journal, 1999, 18(4): 371-382. doi: 10.1046/j.1365-313x.1999.00459.x.
[28] STROHMEIER M, HRMOVA M, FISCHER M, HARVEY A J, FINCHER G B, PLEISS J. Molecular modeling of family GH16 glycoside hydrolases: Potential roles for xyloglucan transglucosylases/ hydrolases in cell wall modification in the Poaceae. Protein Science, 2004, 13(12): 3200-3213. doi: 10.1110/ps.04828404.
[29] BEHAR H, GRAHAM S W, BRUMER H. Comprehensive cross- genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. Plant Journal, 2018, 95(6): 1114-1128. doi: 10.1111/tpj. 14004.
[30] MICHAILIDIS G, ARGIRIOU A, DARZENTAS N, TSAFTARIS A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid () cotton and its diploid progenitors expressed during fiber elongation. Journal of Plant Physiology, 2009, 166(4): 403-416. doi: 10.1016/j.jplph.2008.06.013.
[31] MU?OZ-BERTOMEU J, MIEDES E, LORENCES E P. Expression of xyloglucan endotransglucosylase/hydrolase () genes and XET activity in ethylene treated apple and tomato fruits. Journal of Plant Physiology, 2013, 170(13): 1194-1201.
[32] FINN R D, COGGILL P, EBERHARDT R Y, EDDY S R, MISTRY J, MITCHELL A L, POTTER S C, PUNTA M, QURESHI M, SANGRADOR-VEGAS A, SALAZAR G A, TATE J, BATEMAN A. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 2015, 44(D1): D279-D285. doi: 10.1093/nar/ gkv1344.
[33] GOODSTEIN D M, SHU S Q, HOWSON R, NEUPANE R, HAYES R D, FAZO J, MITROS T, DIRKS W, HELLSTEN U, PUTNAM N, ROKHSAR D S. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Resesearch, 2012, 40(D1): D1178-D1186. doi: 10.1093/nar/gkr944.
[34] MARCHLER-BAUER A, BO Y, HAN L Y, HE J E, LANCZYCKI C J, LU S N, CHITSAZ F, DERBYSHIRE M K, GEER R C, GONZALES N R, GWADZ M, HURWITZ D I, LU F, MARCHLER G H, SONG J S, THANKI N, WANG Z X, YAMASHITA R A, ZHANG D C, ZHENG C J, GEER L Y, BRYANT S H. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2016, 45(D1): D200-D203. doi: 10.1093/nar/gkw1129.
[35] WILKINS M R, GASTEIGER E, BAIROCH A, SANCHEZ J C, WILLIAMS K L, APPEL R D, HOCHSTRASSER D F. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 1999, 112: 531-552. doi: 10.1385/1-59259-584-7: 531.
[36] CHOU K C, SHEN H B. Cell-PLoc: A package of web servers for predicting subcellular localization of proteins in various organisms. Nature Protocols, 2008, 3(2): 153-162. doi: 10.1038/nprot.2007.494.
[37] BAILEY T L, JOHNSON J, GRANT C E, Noble W S. The MEME Suite. Nucleic Acids Research, 2015, 43(W1): W39-W49.
[38] CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. doi: 10.1016/j.molp.2020.06.009.
[39] LAMESCH P, BERARDINI T Z, LI D H, SWARBRECK D, WILKS C, SASIDHARAN R, MULLER R, DREHER K, ALEXANDER D L, GARCIA-HERNANDEZ M, KARTHIKEYAN A S, LEE C H, NELSON W D, PLOETZ L, SINGH S, WENSEL A, HUALA E. TheInformation Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 2011, 40(D1): D1202-D1210. doi: 10.1093/nar/gkr1090.
[40] JOHANSSON P, BRUMER H, BAUMANN M J, KALLAS A M, HENRIKSSON H, DENMAN S E, TEERI T T, JONES T A. Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. The Plant Cell, 2004, 16(4): 874-886. doi:10.1105/tpc.020065.
[41] TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120.
[42] ROBERT X, GOUET P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 2014, 42(W1): W320-W324. doi: 10.1093/nar/gku316.
[43] VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1): 77-78. doi: 10.1093/jhered/93.1.77.
[44] TONG Z G, GAO Z H, WANG F, ZHOU J, ZHANG Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 2009, 10: 71. doi: 10.1186/ 1471-2199-10-71.
[45] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 2001, 25(4): 402-408.
[46] 王昊, 尹蓮, 劉潔霞, 賈麗麗, 丁旭, 沈迪, 馮凱, 徐志勝, 熊愛(ài)生. 類(lèi)胡蘿卜素裂解雙加氧酶基因AgCCD4調(diào)控芹菜不同組織的著色. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(15): 3279-3294.
WANG H, YIN L, LIU J X, JIA L L, DING X, SHEN D, FENG K, XU Z S, XIONG A S. The carotenoid cleavage dioxygenases gene AgCCD4 regulates the pigmentation of celery tissues with different colors. Scientia Agricultura Sinica, 2021, 54(15): 3279-3294. (in Chinese)
[47] 徐小迪, 李博強(qiáng), 秦國(guó)政, 陳彤, 張占全, 田世平. 果實(shí)采后品質(zhì)維持的分子基礎(chǔ)與調(diào)控技術(shù)研究進(jìn)展. 園藝學(xué)報(bào), 2020, 47(8): 1595-1609.
XU X D, LI B Q, QIN G Z, CHEN T, ZHANG Z Q, TIAN S P. Molecular basis and regulation strategies for quality maintenance of postharvest fruit. Acta Horticulturae Sinica, 2020, 47(8): 1595-1609. (in Chinese)
[48] IQBAL N, KHAN N A, FERRANTE A, TRIVELLINI A, FRANCINI A, KHAN M I R. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science, 2017, 8: 475. doi: 10.3389/fpls.2017.00475.
[49] ZHAI Z F, FENG C, WANG Y Y, Sun Y T, Peng X, Xiao Y Q, Zhang X, Zhou X, Jiao J L, Wang W L. Genome-wide identification of the xyloglucan endotransglucosylase/hydrolase (XTH) and polygalacturonase (PG) genes and characterization of their role in fruit softening of sweet cherry. International Journal of Molecular Sciences, 2021, 22(22): 12331. doi: 10.3390/ijms222212331.
[50] CHENG Z H, ZHANG X M, YAO W J, GAO Y, ZHAO K, GUO Q, ZHOU B R, JIANG T B. Genome-wide identification and expression analysis of the xyloglucan endotransglucosylase/hydrolase gene family in poplar. BMC Genomics, 2021, 22(1): 804. doi: 10.1186/ s12864-021-08134-8.
[51] 楊勇, 馬瑞娟, 張斌斌, 宋志忠, 張春華, 郭紹雷, 俞明亮. 不同溶質(zhì)桃果實(shí)的軟化與乙烯合成相關(guān)基因的差異表達(dá). 園藝學(xué)報(bào), 2015, 42(10): 1869-1878.
YANG Y, MA R J, ZHANG B B, SONG Z Z, ZHANG C H, GUO S L, YU M L. Differential expression analysis in fruit softening and ethylene biosynthetic pathways in peaches of different flesh textures. Acta Horticulturae Sinica, 2015, 42(10): 1869-1878. (in Chinese)
[52] CHEEVARUNGNAPAKUL K, KHAKSAR G, PANPETCH P, BOONJING P, SIRIKANTARAMAS S. Identification and functional characterization of genes involved in the biosynthesis of caffeoylquinic acids in sunflower (L.). Frontiers in Plant Science, 2019, 10: 968. doi: 10.3389/fpls.2019.00968.
Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage
GUO ShaoLei1, XU JianLan1, WANG XiaoJun1,2, SU ZiWen1,2, ZHANG BinBin1, MA RuiJuan1, YU MingLiang1
1Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014;2College of Horticulture, Nanjing Agricultural University, Nanjing 210095
【Objective】The aim of this study was to identify members of the XTH gene family from peach, and to analyze the expression ofin peach fruit with different textures during storage, which not only provided data for the research on the candidateinvolved in peach fruit softening, but also laid the foundation for further study on thefunction in peach fruit softening.【Method】The HMM profiles of the Glyco_hydro_16 domain and XET_C domain were used to search all XTH proteins with the Hmmer 3.1 software in the peach protein database. The molecular weight, theoretical isoelectric point and other physicochemical properties were then predicted by the online tool ProtParam. PpXTHs subcellular localization were predicted by the online software Plant-mPLoc. The MEGA 11 software was used to construct a phylogenetic tree. The online tool MEME was used to analyze conserved motifs, the conserved motifs, conserved protein domains and gene structure maps were draw by Tbtools.According to the PpXTH gene family location information, chromosome mapping was carried out with MapChart software. The expressions ofin peach fruit with different textures during storage were monitored by qRT-PCR. 【Result】A total of 27genes were systematically identified from peach, which were distributed on seven chromosomes. Based on the phylogenetic tree, the ancestral group, Ⅰ/Ⅱ subfamily, ⅢA subfamily and ⅢB subfamily were classified. In addition, according to the analysis of protein domains, all PpXTH gene family proteins had Glyco_hydro_16 and XET_C conserved domain. The results from qRT-PCR analysis showed thatbelonging to the ⅢB subfamily was upregulated as the storage period increased in melting peach fruit, with the expression being markedly higher than that during the storage period of stony hard peach fruit. The positive clone sequencing was consistent with the coding sequence of thereference genome with a length of 924 bp for a 307 amino acid sequence.The PpXTH33 combined with green fluorescent protein may mainly located in the cell wall and nucleus detected by confocal laser scanning microscopy. 【Conclusion】All 27protein structures contained two highly XTH conserved domains and the genes weredistributed on seven chromosomes. The expression characteristics ofwas closely associated with peach fruit softening during storage.
peach; fruit softening; XTH gene family; gene expression; subcellular localization
10.3864/j.issn.0578-1752.2022.23.011
2022-02-23;
2022-07-24
江蘇省重大新品種創(chuàng)制(PZCZ201727)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專(zhuān)項(xiàng)資金(CARS-30)
郭紹雷,E-mail:guoshaolei0305@126.com。通信作者俞明亮,E-mail:mly1008@aliyun.com
(責(zé)任編輯 趙伶俐)