亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        中國野生毛葡萄轉(zhuǎn)錄因子VqWRKY6與VqbZIP1互作調(diào)控抗白粉病功能分析

        2022-02-02 03:15:48張潔姜長岳王躍進
        中國農(nóng)業(yè)科學(xué) 2022年23期

        張潔,姜長岳,王躍進

        中國野生毛葡萄轉(zhuǎn)錄因子VqWRKY6與VqbZIP1互作調(diào)控抗白粉病功能分析

        張潔,姜長岳,王躍進

        西北農(nóng)林科技大學(xué)園藝學(xué)院/旱區(qū)作物逆境生物學(xué)國家重點實驗室/農(nóng)業(yè)農(nóng)村部西北地區(qū)園藝作物生物與種質(zhì)創(chuàng)制重點實驗室,陜西楊凌 712100

        【目的】歐洲葡萄作為世界葡萄主栽品種,具有產(chǎn)量高、品質(zhì)佳的優(yōu)點,但對病害抵抗能力差。白粉病是嚴重危害葡萄栽培的一種真菌性病害,中國野生葡萄資源豐富,可為抗病育種提供充足種質(zhì)資源。論文旨在篩選調(diào)控抗白粉病的葡萄轉(zhuǎn)錄因子基因,探究轉(zhuǎn)錄因子基因調(diào)控抗白粉病的作用機理,為選育葡萄抗病品種提供優(yōu)質(zhì)的基因資源?!痉椒ā繌闹袊吧咸选?24’中克隆得到轉(zhuǎn)錄因子基因,使用DANMAN和MEGA-X軟件對序列進行分析。利用PEG介導(dǎo)轉(zhuǎn)化擬南芥原生質(zhì)體進行亞細胞定位分析發(fā)揮轉(zhuǎn)錄調(diào)控作用的位置,利用酵母雙雜交和雙分子熒光互補試驗證明VqWRKY6能夠和轉(zhuǎn)錄因子VqbZIP1互作形成轉(zhuǎn)錄復(fù)合體。以感病葡萄‘赤霞珠’葉片為試材,通過農(nóng)桿菌介導(dǎo)法瞬時轉(zhuǎn)化到‘赤霞珠’葡萄葉片,葉片進行白粉菌()接種后,觀察發(fā)病癥狀,用臺盼藍染色在顯微鏡下觀察菌絲發(fā)育進程,使用DAB染色觀察活性氧積累,比較共同過表達和的葡萄葉片、單獨過表達的葡萄葉片、單獨過表達的葡萄葉片和對照組葉片的差異。使用實時熒光定量PCR技術(shù)對抗病基因在白粉菌誘導(dǎo)下的表達水平進行分析。【結(jié)果】定位于葡萄2號染色體,編碼342個氨基酸,屬于WRKY家族的group Ⅲ亞家族。亞細胞定位和酵母轉(zhuǎn)錄激活試驗證明,VqWRKY6在細胞核內(nèi)發(fā)揮轉(zhuǎn)錄調(diào)控功能且在酵母中有轉(zhuǎn)錄激活活性?!嘞贾椤~片共同過表達和后,葉片表面白粉菌菌絲擴繁速率顯著慢于單獨過表達和單獨過表達的葉片,共同過表達和的葉片組織中活性氧含量顯著高于單獨過表達和單獨過表達的葉片;此外,VqWRKY6和VqbZIP1的協(xié)同調(diào)控能夠激活茉莉酸(JA)途徑的,基因表達量顯著上調(diào)?!窘Y(jié)論】VqWRKY6和VqbZIP1協(xié)同作用可能通過激活JA抗病途徑,促進活性氧產(chǎn)生,增強抗病基因表達,抑制白粉菌的生長,從而提高葡萄對白粉病的抗性。因此,中國野生毛葡萄‘商-24’是重要的抗病種質(zhì)資源,而與可作為重要的抗病基因資源。

        中國野生毛葡萄;WRKY轉(zhuǎn)錄因子;白粉??;轉(zhuǎn)錄調(diào)控

        0 引言

        【研究意義】葡萄是世界上栽培歷史悠久且重要的果樹之一。根據(jù)聯(lián)合國糧食及農(nóng)業(yè)組織(FAO)的統(tǒng)計數(shù)據(jù),2020年我國葡萄栽培面積和產(chǎn)量分別為76.75萬公頃和1 484.31萬噸,分別占世界葡萄栽培總面積和總產(chǎn)量的11%和19%。目前世界范圍內(nèi)廣泛栽培的葡萄品種為歐洲葡萄,其具有品質(zhì)優(yōu)良、產(chǎn)量高的特點,但抵抗真菌病害的能力較差[1]。白粉病是葡萄栽培生產(chǎn)上危害較大的一種典型真菌病害,主要危害綠色幼嫩組織,受害組織表面生成白色粉狀物,影響葡萄果實的正常發(fā)育并造成減產(chǎn),嚴重損害葡萄的品質(zhì)和產(chǎn)量[2]。在葡萄的栽培過程中普遍使用化學(xué)防治作為病害防治的手段。然而,噴施農(nóng)藥不僅增加葡萄栽培的成本,也會導(dǎo)致農(nóng)藥及其副產(chǎn)品的積累,對環(huán)境和人畜造成一定影響[3-5]。因此,選育抗病葡萄品種是控制病害產(chǎn)生的一種有效措施。中國是世界葡萄起源中心之一,野生抗病葡萄資源豐富[6]。這些野生資源蘊含豐富的抗病調(diào)控基因,為揭示葡萄與白粉菌()的互作機理提供了豐富的材料[7]。明確中國野生葡萄中存在的抗病調(diào)控基因,闡明其調(diào)控抗病性的作用機理,對抗病葡萄選育具有重要意義?!厩叭搜芯窟M展】WRKY轉(zhuǎn)錄因子在植物抗病信號途徑中發(fā)揮重要的轉(zhuǎn)錄調(diào)控作用[8-11]。目前,在模式植物擬南芥中鑒定到WRKY家族成員75個[12],小麥中鑒定到270個[13],小豆和綠豆中分別有84個和85個[14],水稻中有83個[15],葡萄中有59個[16]。在擬南芥中異源表達毛葡萄‘丹鳳-2’的可激活水楊酸(salicylic acid,SA)途徑,增強植物的抗病性,VqWRKY53與MYB轉(zhuǎn)錄因子MYB14和MYB15的協(xié)同作用能夠調(diào)控芪合酶基因的表達[17-18]。在轉(zhuǎn)和葡萄植株中,‘無核白’對于白粉病抗性顯著提高[19]。擬南芥中、和能夠增強對丁香假單胞菌()抗性[20],增強對灰霉病抗性[21]。在大麥中,已發(fā)現(xiàn)有12個能夠響應(yīng)大麥白粉菌(f. sp.)的誘導(dǎo),其中10個顯著上調(diào)表達,2個明顯下調(diào)[22]。水稻中過表達會增強對稻瘟病的抗性[17]。菊花中過表達能夠增強植株對白色銹病的抗性[23]。此外,在葡萄中過表達能夠增強對白粉病的抗性[24]。植物受到病原微生物的誘導(dǎo)會產(chǎn)生病程相關(guān)蛋白(pathogenesis-related protein,PR),植物抗病性的標志之一即PR蛋白的產(chǎn)生[25-26]。在易感葡萄葉片中過表達可以增強對霜霉病的抗性[27]。擬南芥中過表達,可以正向調(diào)控對白粉病的防御反應(yīng)[28]。在葡萄中,轉(zhuǎn)錄因子WRKY40和WRKY75與啟動子結(jié)合參與葡萄抵抗霜霉病入侵的抗病進程[29]?!颈狙芯壳腥朦c】本團隊前期通過人工接種葡萄白粉菌后的誘導(dǎo)表達分析發(fā)現(xiàn),中國野生毛葡萄()中能夠響應(yīng)白粉菌的誘導(dǎo)上調(diào)表達,本研究以不同中國野生葡萄為供試材料,在人工接種白粉菌誘導(dǎo)條件下研究轉(zhuǎn)錄因子VqWRKY6和VqbZIP1互作調(diào)控葡萄抗白粉病的機理?!緮M解決的關(guān)鍵問題】研究中國野生葡萄中抗病相關(guān)轉(zhuǎn)錄因子基因調(diào)控葡萄抗病性的作用,為利用中國野生葡萄資源進行葡萄抗病育種提供理論依據(jù)。

        1 材料與方法

        1.1 試材及取樣

        供試葡萄材料:中國野生毛葡萄‘商-24’、中國野生華東葡萄()‘白河-35-1’、歐洲葡萄()‘赤霞珠’和‘無核白’,所需葡萄材料均取自西北農(nóng)林科技大學(xué)園藝學(xué)院北校區(qū)葡萄種質(zhì)資源圃。在2021年5—6月晴朗天氣對健康且長勢一致的葡萄葉片進行白粉菌接種處理作為供試材料。

        供試模式植物為擬南芥(,Col-0),擬南芥植株在植物光照培養(yǎng)箱中培養(yǎng),環(huán)境溫度設(shè)置為22℃,光周期L﹕D=16 h﹕8 h。

        供試白粉菌孢子采集自西北農(nóng)林科技大學(xué)溫室中感病葡萄葉片,植物過表達載體pCAMBIA2300由本實驗室馬福利博士[30]改造并保存,農(nóng)桿菌菌株GV3101由本實驗室保存。

        1.2 基因克隆與載體構(gòu)建

        在液氮速凍的條件下,使用組織研磨儀將‘商-24’和‘赤霞珠’葉片充分研磨,用購自O(shè)mega公司的RNA提取試劑盒進行RNA提取,使用購自天根公司的商品化試劑盒進行反轉(zhuǎn)錄得到cDNA,根據(jù)葡萄基因組網(wǎng)站Grape Genome Browser(https://www.genoscope. cns.fr/externe/GenomeBrowser/Vitis)提供的‘黑比諾’同源基因和序列設(shè)計引物VqWRKY6-F/VqWRKY6-R、VqbZIP1-F/VqbZIP1-R(表1),從‘商-24’中克隆和編碼序列(coding sequence,CDS),用TaKaRa PrimeSTAR Max DNA Polymerase R045A高保真酶進行PCR擴增,對條帶大小正確的擴增產(chǎn)物進行純化回收,使用無縫克隆技術(shù)連接至目標載體。經(jīng)檢測正確的陽性克隆菌液送至北京奧科生物有限公司測序,用DANMAN分析軟件進行序列比對,生物信息學(xué)分析軟件MEGA-X和FigTree v1.4.4用于WRKY轉(zhuǎn)錄因子家族成員聚類分析。試驗所用引物見表1。

        表1 本研究所用引物

        1.3 酵母雙雜交試驗

        酵母雙雜交驗證方法參照文獻[31]。將BD- VqWRKY6/AD-VqbZIP1及對照組BD-VqWRKY6/AD分別共轉(zhuǎn)化酵母菌株Y2H Gold,在SD/-Ade/-His/-Leu/ -Trp+AbA+X--Gal四缺培養(yǎng)基平板驗證,觀察結(jié)果并拍照。

        1.4 亞細胞定位與雙分子熒光互補驗證

        亞細胞定位:取長勢健壯的擬南芥葉片用于制備擬南芥原生質(zhì)體與轉(zhuǎn)化[32]。亞細胞定位試驗中將pCAMBIA2300-VqWRKY6融合質(zhì)粒與35S-AtHY5- mCherry共轉(zhuǎn)化擬南芥原生質(zhì)體后進行觀察,pCAMBIA2300載體作為對照。利用激光掃描共聚焦顯微鏡檢測GFP和mCherry信號,葉綠體信號顯示藍色和mCherry信號區(qū)域區(qū)分。

        雙分子熒光互補:擬南芥原生質(zhì)體制備和顯微鏡觀察方法同上。將pSPYNE-VqWRKY6質(zhì)粒與pSPYCE-VqbZIP1質(zhì)粒共轉(zhuǎn)化擬南芥原生質(zhì)體后進行觀察,以pSPYNE-VqWRKY6和pSPYCE作為對照。葉綠體信號顯示紅色,利用激光掃描共聚焦顯微鏡檢測YFP信號。

        1.5 葡萄瞬時轉(zhuǎn)化和抗病性分析

        1.5.1‘赤霞珠’葉片瞬時轉(zhuǎn)化 將融合過表達載體35S-VqWRKY6-GFP與35S-VqbZIP1-GFP轉(zhuǎn)入農(nóng)桿菌菌株GV3101,將攜帶重組載體的農(nóng)桿菌菌液收集菌體重懸至OD600在0.3—0.5左右,使用真空泵通過真空滲透的方式使農(nóng)桿菌菌液導(dǎo)入葡萄葉片,置于溫度為22℃的光照培養(yǎng)箱中進行培養(yǎng)。

        1.5.2 人工接種白粉菌 參考王躍進等[33]的接菌方法,采取感白粉病的葡萄葉片,配制孢子懸浮液,用血球計數(shù)板調(diào)節(jié)孢子濃度為2×105個/ml時進行接菌,使用噴壺將配好的孢子懸浮液向瞬時轉(zhuǎn)化24 h后生長狀況良好的‘赤霞珠’葉片斜上方噴霧,使葉片表面均勻覆蓋細小霧滴。接種后的葡萄葉片在光照培養(yǎng)箱中培養(yǎng)。

        1.5.3 葡萄葉片上白粉菌菌絲發(fā)育進程觀察 采用臺盼藍染色[34]觀察接種白粉菌后1—5 d‘赤霞珠’葉片上菌絲的生長發(fā)育狀況。將葉片放置于罐頭瓶中,加入臺盼藍染色液直至葉片完全浸沒,沸水浴加熱15 min后,去除染色液,用無菌水清洗兩次洗凈廢液后,加入水合氯醛浸沒葉片,常溫放置過夜脫色。脫色后,用于后續(xù)顯微鏡觀察。

        1.5.4 活性氧含量檢測 對接種白粉菌第5天的葡萄葉片進行3,3′-二氨基聯(lián)苯胺(DAB)染色,觀察過氧化氫(H2O2)的積累,染色后去除DAB染液,加入無水乙醇于沸水浴中孵育5—10 min進行脫色,脫色后的葉片用于后續(xù)顯微觀察。

        1.5.5 實時熒光定量PCR(qRT-PCR) 參照OMEGA 公司 RNA 提取試劑盒說明書對接種白粉菌后0—5 d的葡萄葉片提取RNA,對提取的RNA使用天根試劑盒反轉(zhuǎn)錄為cDNA,作為qRT-PCR檢測模板,以葡萄為內(nèi)參基因,試驗結(jié)果取3次生物學(xué)重復(fù)的平均值,分析抗病基因的表達水平變化。qRT-PCR分析使用TaKaRa商品化定量試劑盒,樣品總體積20 μL,反應(yīng)混合液包括7.4 μL無菌水,0.8 μL引物(上游及下游引物),1 μL模板cDNA及10 μL SYBR Taq酶。

        2 結(jié)果

        2.1 白粉菌誘導(dǎo)下不同葡萄材料WRKY6的表達

        接種白粉菌后,中國野生毛葡萄‘商-24’6響應(yīng)白粉菌誘導(dǎo)表達變化最為明顯,且在12 h達到峰值,表達量是接菌前的17.7倍,遠高于其他3個材料,推測‘商-24’中在抗病途徑中發(fā)揮轉(zhuǎn)錄調(diào)控作用。在‘白河-35-1’中,接菌24 h開始響應(yīng)白粉菌誘導(dǎo),后續(xù)響應(yīng)不明顯?!嘞贾椤性?2—72 h有微弱響應(yīng)。在‘無核白’葉片中接種后12—120 h持續(xù)響應(yīng)白粉菌誘導(dǎo),72 h表達量達到峰值,為對照組的6.0倍(圖1)。

        2.2 中國野生毛葡萄‘商-24’中VqWRKY6的克隆與序列分析

        利用同源克隆技術(shù)從‘商-24’中分離獲得編碼區(qū)序列長度為1 029 bp,編碼342個氨基酸(圖2-a)。在葡萄基因組網(wǎng)站比對分析發(fā)現(xiàn),定位于葡萄第2號染色體,具體位置為1 228 115—1 229 951位點(圖2-b)。

        與歐洲葡萄中對應(yīng)的VvWRKY6進行氨基酸序列對比,發(fā)現(xiàn)有3處氨基酸位點發(fā)生突變(圖2-c),分別為蛋白序列第55處的異亮氨酸突變?yōu)榈鞍彼?,?13處的組氨酸突變?yōu)樘於0罚?00處的組氨酸突變?yōu)槔野彼帷?/p>

        a:商-24 Shang-24;b:白河-35-1 Baihe-35-1;c:赤霞珠Cabernet Sauvignon;d:無核白Thompson Seedless。Mock:無菌水處理葡萄葉片grape leavestreated with sterile water;PM-inoculation:白粉菌接種后葡萄葉片grape leaves inoculated with U. necator

        將克隆得到的氨基酸序列和擬南芥及歐洲葡萄中WRKY基因家族成員進行聚類分析,結(jié)果表明中國野生毛葡萄中的VqWRKY6屬于WRKY家族的group Ⅲ亞家族(圖2-d)。

        2.3 中國野生毛葡萄VqWRKY6轉(zhuǎn)錄因子轉(zhuǎn)錄自激活及亞細胞定位分析

        將的編碼序列構(gòu)建到酵母表達載體pGBKT7(BD),獲得pGBKT7-VqWRKY6融合載體。將融合載體轉(zhuǎn)化至酵母菌株Y2H在SD/-Trp+AbA+ X--Gal培養(yǎng)基上驗證。結(jié)果發(fā)現(xiàn),在SD/-Trp+AbA+ X--Gal培養(yǎng)基上菌斑全部變藍(圖3-a)。因此,VqWRKY6具有自激活活性。

        對VqWRKY6保留保守結(jié)構(gòu)域從N端短截124個氨基酸(圖3-b),構(gòu)建短截后的VqWRKY6-BD載體,進行轉(zhuǎn)錄自激活分析,發(fā)現(xiàn)自激活活性缺失,可用于后續(xù)蛋白互作驗證。

        將克隆得到的VqWRKY6的編碼序列去除終止密碼子,構(gòu)建到pCAMBIA2300-35S-GFP植物表達載體,得到融合載體pCAMBIA2300-VqWRKY6。利用實驗室前期構(gòu)建的35S-AtHY5-mCherry融合載體,與擬南芥中核定位蛋白AtHY5共定位分析。結(jié)果表明,VqWRKY6在細胞核發(fā)揮轉(zhuǎn)錄調(diào)控功能(圖3-c)。

        2.4 酵母雙雜交篩選驗證中國野生毛葡萄轉(zhuǎn)錄因子互作

        為了探究轉(zhuǎn)錄因子間是否可以相互作用,將構(gòu)建的pGBKT7-VqWRKY6、pGBKT7-VqMYB153、pGBKT7-VqERF110分別與pGADT7-VqbZIP1、pGADT7- VqWRKY6、pGADT7-VqWRKY53、pGADT7-VqMYB14進行互作驗證。將VqMYB153-BD/VqWRKY6-AD、VqMYB153-BD/VqWRKY53-AD、VqMYB153-BD/ VqbZIP1-AD、VqERF110-BD/VqWRKY6-AD、VqERF110- BD/VqMYB14-AD、VqWRKY6-BD/VqMYB14-AD、VqWRKY6-BD/VqMYB15-AD、VqWRKY6-BD/VqbZIP1- AD組合涂在酵母板子SD/-Leu/-Trp上培養(yǎng),之后取共轉(zhuǎn)化基因的單克隆,以及陰性和陽性對照在無菌蒸餾水中稀釋后取2.5 μl滴于SD/-Ade/-His/-Leu/-Trp+ AbA+X--gal培養(yǎng)基上生長,觀察發(fā)現(xiàn)VqWRKY6- BD/VqbZIP1-AD共轉(zhuǎn)菌斑生長并且顯藍(圖4)。

        a:M:DNA Marker;1:VqWRKY6克隆VqWRKY6 clone (1029 bp)。b:VqWRKY6定位于葡萄2號染色體,紅色標注區(qū)域為WRKY結(jié)構(gòu)域VqWRKY6 is located on the grape chromosome 2, and the red labeled area is the WRKY domain。c:中國野生毛葡萄VqWRKY6和歐洲葡萄VvWRKY6氨基酸序列對比,深藍色部分表示序列一致,黃色方框標注處表示氨基酸序列突變位置,紅色方框標注處為WRKY結(jié)構(gòu)域Comparison of the amino acid sequences of Chinese wild V. quinquangularis VqWRKY6 and V. vinifera VvWRKY6, the dark blue part indicates the same sequence, the yellow box indicates the mutation position of the amino acid sequence, and the red box indicates the WRKY domain。d:中國野生毛葡萄轉(zhuǎn)錄因子VqWRKY6與歐洲葡萄和擬南芥WRKY家族成員聚類分析。VqWRKY6用紅色箭頭和紅色字體標注,歐洲葡萄WRKY成員用紫色字體標注,擬南芥WRKY成員用黃色字體標注Cluster analysis of VqWRKY6 with WRKY family members from V. vinifera and A. thaliana. VqWRKY6 is marked with red arrow and red font, V. vinifera WRKY members are marked in purple font, and the WRKY members in A. thaliana are marked in yellow font

        a:VqWRKY6在酵母中轉(zhuǎn)錄激活功能分析,序列短截后的VqWRKY6轉(zhuǎn)錄自激活分析function analysis of transcriptional activation on VqWRKY6 in yeast, and transcription activation analysis on VqWRKY6 after sequence short-cutting;b:短截后的VqWRKY6與全長VqWRKY6的序列比對分析alignment of VqWRKY6 sequence in short-cutting and full-length;c:VqWRKY6在擬南芥原生質(zhì)體中的亞細胞定位subcellular localization of VqWRKY6 in A. thaliana protoplasts。GFP:綠色熒光信號green fluorescence signal;mCherry:紅色熒光信號red fluorescence signal;chloroplast:葉綠體自發(fā)熒光chloroplast autofluorescence;Bright field:明場圖bright field plot;Merged:組合圖combined graph

        2.5 中國野生毛葡萄VqWRKY6與VqbZIP1互作

        以歐亞種葡萄‘黑比諾’品系‘PN40024’基因組信息為參考??寺〕鲩L度為900 bp的,編碼299個氨基酸(圖5-a)。將轉(zhuǎn)錄因子VqbZIP1連接AD載體得到pGADT7-VqbZIP1載體,與pGBKT7- VqWRKY6共轉(zhuǎn)化酵母細胞進行酵母雙雜交驗證。發(fā)現(xiàn)融合載體pGADT7-VqWRKY6與pGBKT7-VqbZIP1共轉(zhuǎn)化的酵母菌株在四缺培養(yǎng)基SD/-Ade/-His/-Leu/ -Trp+X--Gal+AbA上能夠正常生長,形成菌斑且變藍(圖5-b)。說明在酵母系統(tǒng)中,VqWRKY6與VqbZIP1能夠發(fā)生相互作用形成轉(zhuǎn)錄調(diào)控復(fù)合體,推測這種互作現(xiàn)象可能存在于植物體中。為了進一步在植物細胞中驗證這種相互作用,將VqWRKY6與VqbZIP1的CDS全長序列去除終止密碼子,并構(gòu)建到pSPYNE和pSPYCE上得到融合載體,轉(zhuǎn)入擬南芥原生質(zhì)體進行雙分子熒光互補驗證。結(jié)果表明,在擬南芥原生質(zhì)體的細胞核內(nèi)檢測到Y(jié)FP的黃色熒光信號(圖5-c)。

        圖4 酵母雙雜交篩選中國野生毛葡萄轉(zhuǎn)錄因子間互作

        2.6 轉(zhuǎn)錄因子VqWRKY6和VqbZIP1瞬時表達與增強葡萄對白粉菌的抗性

        2.6.1 白粉菌接種觀察及抗病性分析 在單獨過表達的葉片,以及共同過表達和的葉片,相對于單獨過表達以及對照葉片白粉病癥不明顯,而在單獨過表達以及對照葉片上白粉菌菌絲體的生長則較為明顯,可以觀察到肉眼可見的白粉菌菌落(圖6-a)。根據(jù)觀察結(jié)果推測,單獨過表達、共同過表達與可以增強葡萄對白粉病的抗性。

        為了進一步探究VqWRKY6提高葡萄對白粉病抗性的機理,對瞬時轉(zhuǎn)化后的‘赤霞珠’葉片接種白粉菌,利用臺盼藍進行葡萄組織化學(xué)染色,觀察0—5 d內(nèi)白粉菌孢子萌發(fā)和菌絲發(fā)育進程。顯微觀察結(jié)果表明,共同過表達和的葉片組織菌絲生長發(fā)育進程較單獨過表達的葉片遲緩,而單獨過表達的葉片上菌絲生長發(fā)育狀況與對照組相比差異較小。在葉片接種白粉菌12 h后,單獨過表達與共同過表達和的葉片表面并未觀察到萌發(fā)的孢子,表明白粉菌孢子已附著于葉片表面;對照組和單獨過表達的葉片表面白粉菌孢子開始萌發(fā)伸出菌絲。在24—120 h觀察到單獨過表達和共同過表達和的葉片上白粉菌孢子陸續(xù)萌發(fā),但菌絲生長速率較對照組和單獨過表達的葉片顯著遲緩,且次生菌絲體較為稀疏(圖6-b)。

        上述結(jié)果表明,在葡萄中過表達能夠有效減緩白粉菌孢子的萌發(fā),減慢菌絲的生長,在葡萄中表達和可減緩白粉菌的菌絲發(fā)育進程,而VqWRKY6和VqbZIP1的協(xié)同互作能夠進一步增強葡萄對白粉病的抗性。

        在病原菌入侵過程中,活性氧作為抗病相關(guān)信號傳導(dǎo)途徑的重要組分發(fā)揮作用[35]。為了探究轉(zhuǎn)錄因子VqWRKY6及其互作蛋白VqbZIP1是否參與調(diào)控病原誘導(dǎo)下的活性氧產(chǎn)生和積累,對瞬時轉(zhuǎn)化后的‘赤霞珠’葉片進行白粉菌接種,取接種后5 d的葉片進行DAB染色,結(jié)果發(fā)現(xiàn),在過表達葉片組織接種區(qū)域均有不同程度的紅褐色加深狀況,單獨過表達的葉片紅褐色積累程度高于單獨過表達的葉片,說明單獨過表達的葉片活性氧含量高于單獨過表達的葉片。其中在共同過表達和的葉片上紅褐色程度最深,說明共同過表達和的葉片組織的活性氧含量高于單獨過表達和單獨過表達葉片(圖6-c)。

        2.6.2 過表達葡萄葉片在白粉菌誘導(dǎo)下抗病基因的表達情況 為了進一步探究VqWRKY6參與調(diào)控葡萄抗病性的分子機理,以及VqWRKY6與葡萄抗病基因在調(diào)控抗病進程中的關(guān)系,通過qRT-PCR分析瞬時轉(zhuǎn)化后的‘赤霞珠’葉片在接種白粉菌前后病程相關(guān)蛋白基因表達量的動態(tài)變化。結(jié)果表明,與對照組相比,在共同過表達和的葡萄葉片中,接種白粉菌72 h后的表達水平顯著上調(diào),是同時期對照組的30.9倍,而單獨過表達和單獨過表達的葡萄葉片中僅在24—48 h上調(diào)表達,而在接種后72 h表達水平恢復(fù)至常態(tài);接種白粉菌96 h后表達量明顯上調(diào),其中共同過表達和葉片中的表達量在96 h達到峰值,是同時期對照組的10.4倍,而單獨過表達和單獨過表達的葡萄葉片表達水平在96 h和120 h有微弱響應(yīng)(圖7)。

        a:M:DNA Marker;1:VqbZIP1克隆VqbZIP1 clone (900 bp)。b:酵母雙雜交驗證VqWRKY6與VqbZIP1的互作The yeast two-hybrid was carried out to verify the interaction between VqWRKY6 and VqbZIP1。c:雙分子熒光互補技術(shù)驗證VqWRKY6與VqbZIP1的互作。pSPYNE-VqWRKY6和pSPYCE-VqbZIP1共轉(zhuǎn)入擬南芥原生質(zhì)體,以pSPYNE-VqWRKY6和pSPYCE共轉(zhuǎn)入擬南芥原生質(zhì)體作為對照To confirm the interaction between VqbZIP1 and VqWRKY6, the assay of bimolecular fluorescence complementation was performed. pSPYNE-VqWRKY6 and pSPYCE-VqbZIP1 were co-transferred toA. thalianaprotoplasts, and pSPYNE-VqWRKY6 and pSPYCE were co-transferred to A. thaliana protoplasts as control

        3 討論

        3.1 WRKY轉(zhuǎn)錄因子增強抗病性

        在高等植物中WRKY轉(zhuǎn)錄因子是最大的轉(zhuǎn)錄因子家族之一,是植物先天免疫系統(tǒng)和后天系統(tǒng)獲得性抗性中的核心組件[10,36]。在眾多共調(diào)控擬南芥防御基因的啟動子中存在WRKY轉(zhuǎn)錄因子基因的結(jié)合位點(C/TTGACC/T,W box),這為證明鋅指型WRKY轉(zhuǎn)錄因子在調(diào)節(jié)防御中有廣泛而關(guān)鍵的作用提供了間接證據(jù)[37]。在過表達蘋果‘GL-3’株系中調(diào)控抗病性顯著增強[38];在蘋果愈傷組織過表達,提高了蘋果愈傷組織對輪紋病的抗性[39];擬南芥中異源表達,也顯著提高其對輪紋病的抗性[40]。PANDEY等[41]研究發(fā)現(xiàn)白粉病入侵時,擬南芥AtWRKY18和AtWRKY40的突變體中與植物抗毒素合成相關(guān)的關(guān)鍵基因和的表達量有顯著升高趨勢;LI等[42]研究表明,中國野生華東葡萄‘白河-35-1’中和響應(yīng)SA途徑和白粉菌誘導(dǎo)表達,在擬南芥中異源表達和轉(zhuǎn)基因株系對白粉病的抗性顯著提高;喬恒波[43]研究表明,在擬南芥中異源表達基因可提高對白粉病及DC3000的抗性。

        a:取瞬時轉(zhuǎn)化后24 h的葡萄葉片進行人工接種白粉菌,對接種后0—120 h的葉片進行觀察,紅色方框標示白粉菌菌絲體Grape leaves were inoculated with U. necator at 24 h after transient transformation, the observation on leaves was performed at 0-120 h after inoculation; Red box indicates the mycelium of U. necator;EV:空載體對照empty vector control;OE-VqbZIP1:單獨過表達VqbZIP1overexpressing of VqbZIP1 alone;OE-VqWRKY6:單獨過表達VqWRKY6 overexpressing of VqWRKY6alone;OE-VqWRKY6+OE-VqbZIP1:共同過表達VqWRKY6和VqbZIP1 Co-overexpressing of VqWRKY6 and VqbZIP1;hpi:白粉菌接種后時間Hours post inoculation。b:對瞬時轉(zhuǎn)化后24 h的葡萄葉片進行人工接種白粉菌,顯微觀察菌絲發(fā)育生長進程Grape leaves were inoculated with U. necator at 24 h after transient transformation, and hyphae development and growth process were microscopically observed;c:分生孢子conidium;hp:初級菌絲primary hypha。c:DAB染色檢測葡萄葉片組織中H2O2含量DAB staining is used to detect H2O2 content in grape tissues

        葡萄基因組共有59個WRKY轉(zhuǎn)錄因子成員,依據(jù)序列特征和系譜進化分Ⅰ、Ⅱ、Ⅲ 3個組。Ⅲ組基因包含C2HC鋅指結(jié)構(gòu)(C-X7-X23-H-X1-C),有6個屬于此組,分別為、、、、、[16]。將同源克隆獲得的中國野生毛葡萄VqWRKY6蛋白序列與擬南芥和歐洲葡萄的WRKY家族成員進行聚類分析,發(fā)現(xiàn)VqWRKY6屬于group Ⅲ族。group Ⅲ族的WRKY轉(zhuǎn)錄因子在植物抗逆和抗病上起重要作用。在棉花中WRKY group Ⅲ族基因廣泛參與應(yīng)對非生物脅迫[44];在潘那利番茄中,WRKY41會迅速響應(yīng)應(yīng)對不利環(huán)境[45];在擬南芥植株中異源表達WRKY group Ⅲ成員提高了對白粉病的抗性[46]。

        EV:空載體對照empty vector control;OE-VqbZIP1:單獨過表達VqbZIP1overexpressing of VqbZIP1 alone;OE-VqWRKY6:單獨過表達VqWRKY6 overexpressing of VqWRKY6alone;OE-VqWRKY6+OE-VqbZIP1:共同過表達VqWRKY6和VqbZIP1 Co-overexpressing of VqWRKY6 and VqbZIP1

        中國野生毛葡萄‘商-24’對白粉病具有顯著抗性[6]。對抗病和感病葡萄進行人工接種白粉菌,觀察的表達模式發(fā)現(xiàn),‘商-24’中迅速響應(yīng)白粉菌誘導(dǎo)表達,在12 h達到峰值,且后續(xù)也較對照組持續(xù)上調(diào)表達。在歐洲葡萄中,響應(yīng)白粉菌誘導(dǎo)表達弱于‘商-24’。且通過觀察接種白粉菌后葡萄葉片發(fā)病表征,發(fā)現(xiàn)過表達葡萄葉片白粉菌菌絲生長狀況不明顯。推測VqWRKY6與葡萄白粉病抗性調(diào)控相關(guān)。

        3.2 VqWRKY6與VqbZIP1互作促進活性氧積累

        活性氧作為信號分子參與應(yīng)對植物抵抗病原物入侵,對病原體攻擊部位防御最快的反應(yīng)是氧化爆發(fā),主要是超氧化物和過氧化氫[47]。積累的過氧化氫可能通過參與細胞壁強化,誘導(dǎo)防御基因表達等增強抗病性[35,48]。DAB染色結(jié)果發(fā)現(xiàn)在接種白粉菌位置,葡萄葉片顯色加深,共同過表達和的葉片紅褐色程度最深,表明其活性氧積累水平最高,推測和互作可以刺激葡萄組織活性氧的產(chǎn)生從而增強對白粉病抗性。

        3.3 VqWRKY6與VqbZIP1互作促進抗病基因表達

        WRKY轉(zhuǎn)錄因子可參與多種植物對不同脅迫響應(yīng)的激素信號傳導(dǎo)途徑[49]。擬南芥中轉(zhuǎn)錄因子WRKY70作為WRKY group Ⅲ亞族成員表達受SA誘導(dǎo),過表達的擬南芥對白粉病抗性增強[50-51]。VqWRKY52通過作用于SA介導(dǎo)信號傳導(dǎo)途徑增強抗病性[46]。葡萄中過表達可以上調(diào)JA途徑抗病相關(guān)基因表達,提高轉(zhuǎn)基因株系的抗病性[52]。受SA特異性誘導(dǎo),JA途徑誘導(dǎo)、[53-54]。定量結(jié)果發(fā)現(xiàn),WRKY6不僅能夠增強SA途徑的表達,也能增強JA途徑和的表達,說明WRKY6能夠通過參與SA和JA兩種抗病途徑,調(diào)控增強葡萄的抗病性。本研究中共同過表達和葡萄葉片中和的表達量顯著上升,推測VqWRKY6與VqbZIP1互作可能促進JA途徑表達,從而提高對白粉病抗性。

        4 結(jié)論

        中國野生毛葡萄‘商-24’中轉(zhuǎn)錄因子VqWRKY6與VqbZIP1互作調(diào)控葉片組織活性氧產(chǎn)生和積累,使菌絲發(fā)育進程變緩,抗病基因、顯著上調(diào)表達?!?24’VqWRKY6與VqbZIP1互作調(diào)控增強了抗病性,‘商-24’可作為葡萄抗病育種的種質(zhì)資源與材料。

        [1] 賀普超, 王躍進, 王國英, 任治邦, 和純成. 中國葡萄屬野生種抗病性的研究. 中國農(nóng)業(yè)科學(xué), 1991, 24(3): 50-56.

        HE P C, WANG Y J, WANG G Y, REN Z B, HE C C. The studies on disease-resistance ofwild species originated in China. Scientia Agricultura Sinica, 1991, 24(3): 50-56. (in Chinese)

        [2] ARMIJO G, SCHLECHTER R, AGURTO M, MUNOZ D, NUNEZ C, ARCE-JOHNSON P. Grapevine pathogenic microorganisms: understanding infection strategies and host response scenarios. Frontiers in Plant Science, 2016, 7: 382.

        [3] DéLYE C, LAIGRET F, CORIO-COSTET M F. A mutation in the 14-demethylase gene ofthat correlates with resistance to a sterol biosynthesis inhibitor. Applied and Environmental Microbiology, 1997, 63(8): 2966-2970.

        [4] DONALD T M, PELLERONE F, ADAM-BLONDON A F, BOUQUET A, THOMAS M R, DRY I B. Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical and Applied Genetics, 2002, 104(4): 610-618.

        [5] TAKSONYI P, KOCSIS L, MáTYAS K K, TALLER J. The effect of quinone outside inhibitor fungicides on powdery mildew in a grape vineyard in hungary. Scientia Horticulturae, 2013, 161: 233-238.

        [6] WANG Y, LIU Y, P H. E, CHEN J, LAMIKANRA O, LU J. Evaluation of foliar resistance toin Chinese wildspecies. Vitis, 1995, 34(3): 159-164.

        [7] XU W, MA F, LI R, ZHOU Q, YAO W, JIAO Y, ZHANG C, ZHANG J, WANG X, XU Y, WANG Y. VpSTS29/STS2 enhances fungal tolerance in grapevine through a positive feedback loop. Plant, Cell and Environment, 2019, 42(11): 2979-2998.

        [8] EULGEM T. Regulation of thedefense transcriptome. Trends in Plant Science, 2005, 10(2): 71-78.

        [9] RYU H S, HAN M, LEE S K, CHO J I, RYOO N, HEU S, LEE Y H, BHOO S H, WANG G L, HAHN T R, JEON J S. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Reports, 2006, 25(8): 836-847.

        [10] EULGEM T, SOMSSICH I E. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10(4): 366-371.

        [11] NAOUMKINA M A, HE X Z, DIXON R A. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in. BMC Plant Biology, 2008, 8: 132.

        [12] RIECHMANN J L, RATCLIFFE O J. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology, 2000, 3(5): 423-434.

        [13] 楚宗麗, 張睿男, 李亮杰, 孫君艷, 王付娟, 周強, 仝勝利. 小麥WRKY轉(zhuǎn)錄因子的鑒定及其在胚性愈傷組織形成中的表達分析. 麥類作物學(xué)報, 2021, 41(12): 1469-1478.

        CHU Z L, ZHANG R N, LI L J, SUN J Y, WANG F J, ZHOU Q, TONG S L. Identification of wheat WRKY transcription factor and its expression analysis in embryonic callus formation. Journal of Triticeae Crops, 2021, 41(12): 1469-1478. (in Chinese)

        [14] SRIVASTAVA R, KUMAR S, KOBAYASHI Y, KUSUNOKI K, Tripathi P, Kobayashi Y, Koyama H,SAHOO L. Comparative genome-wide analysis of WRKY transcription factors in two Asian legume crops: Adzuki bean and mung bean. Scientific Reports, 2018, 8(1): 16971.

        [15] GOFF S A, RICKE D O, LAN T H, PRESTING G G, WANG R, DUNN M, GLAZEBROOK J, SESSIONS A, OELLER P, VARMA H,. A draft sequence of the rice genome (L. ssp.). Science, 2002, 296(5565): 92-100.

        [16] GUO C L, GUO R R, XU X Z, GAO M, LI X Q, SONG J Y, ZHENG Y, WANG X P. Evolution and expression analysis of the grape (L.) WRKY gene family. Journal of Experimental Botany, 2014, 65(6): 1513-1528.

        [17] CHUJO T, MIYAMOTO K, OGAWA S, MASUDA Y, SHIMIZU T, KISHI-KABOSHI M, TAKAHASHI A, NISHIZAWA Y, MINAMI E, NOJIRI H, YAMANE H, OKADA K. Overexpression of phosphomimic mutatedleads to enhanced blast resistance in rice. Plos One, 2014, 9(6): e98737.

        [18] WANG D, JIANG C Y, LIU W D, WANG Y J. The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. Journal of experimental botany, 2020, 71(10): 3211-3226.

        [19] 吳鳳穎, 劉夢琦, 王躍進. 中國野生毛葡萄芪合酶基因抗白粉病功能分析. 園藝學(xué)報, 2020, 47(2): 205-219.

        WU F Y, LIU M Q, WANG Y J. Functional analysis of thestilbene synthase genesandof the resistance to powdery mildew in. Acta Horticulture Sinica, 2020, 47(2): 205-219. (in Chinese)

        [20] HU Y R, DONG Q Y, YU D Q.WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen. Plant Science, 2012, 185/186: 288-297.

        [21] BIRKENBIHL R P, DIEZEL C, SOMSSICH I E.WRKY33 is a key transcriptional regulator of hormonal and metabolic responses towardinfection. Plant Physiology, 2012, 159(1): 266-285.

        [22] MENG Y, WISE R P. HvWRKY10, HvWRKY19, and HvWRKY28 regulate Mla-triggered immunity and basal defense to barely powdery mildew. Molecular Plant-microbe Interactions, 2012, 25(11): 1492-1505.

        [23] BI M M, LI X Y, YAN X, LIU D, GAO G, ZHU P F, MAO H Y. Chrysanthemum WRKY15-1 promotes resistance toHenn. via the salicylic acid signaling pathway. Horticulture Research, 2021, 8: 6.

        [24] YIN W C, WANG X H, LIU H, WANG Y, NOCKER S, TU M X, FANG J H, GUO J Q, LI Z, WANG X P. Overexpression ofenhances powdery mildew resistance in grapevine by promoting salicylic acid signaling and specific metabolite synthesis. Horticulture Research, 2022, 9: uhab064.

        [25] CHRISTENSEN A B, CHO B H, N?SBY M, GREGERSEN P L, BRANDT J, MADRIZ-ORDE?ANA K, COLLINGE D B, THORDAL- CHRISTENSEN H. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Molecular plant pathology, 2002, 3(3): 135-144.

        [26] VAN LOON L C, REP M, PIETERSE C M J. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 2006, 44: 135-162.

        [27] HE M Y, XU Y, CAO J L, ZHU Z G, JIAO Y T, WANG Y J, GUAN X, YANG Y Z, XU W R, FU Z F. Subcellular localization and functional analyses of a PR10 protein gene fromin response toinfection.Protoplasma, 2013, 250(1): 129-140.

        [28] 馬輝. 中國野生華東葡萄基因的克隆與功能分析[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2014.

        MA H. Molecular cloning and functional analysis ofgene in Chinese wild[D]. Yangling: Northwest A&F University, 2014. (in Chinese)

        [29] 劉兵, 李夢媛, 張娜, 尚博興, 劉國甜, 徐炎. 中國野生葡萄抗霜霉病相關(guān)基因及其啟動子的克隆和功能分析. 園藝學(xué)報, 2021, 48(2): 265-275.

        LIU B, LI M Y, ZHANG N, SHANG B X, LIU G T, XU Y. Cloning and functional analysis of the CDS and promoter ofgene response to downy mildew in Chinese wild grape. Acta Horticulture Sinica, 2021, 48(2): 265-275. (in Chinese)

        [30] MA F L, Wang L, Wang Y J. Ectopic expression of, a stilbene synthase gene from, indicates STS presence in cytosolic oil bodies. Planta, 2018, 248(1): 89-103.

        [31] 姚文孔. 中國野生華東葡萄泛素連接酶基因功能研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2017.

        YAO W K. Function analyses of E3 ubiquitin ligase genefrom Chinese wild grape[D]. Yangling: Northwest A&F University, 2017. (in Chinese)

        [32] YOO S D, CHO Y H, SHEEN J.mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2007, 2(7): 1565-1572.

        [33] 王躍進, 賀普超, 張劍俠. 葡萄抗白粉病鑒定方法的研究. 西北農(nóng)林科技大學(xué)學(xué)報, 1999, 27(5): 6-10.

        WANG Y J, HE P C, ZHANG J X. Studies on the methods of resistance toin. Journal of Northwest A&F University, 1999, 27(5): 6-10. (in Chinese)

        [34] MICALI C, G?LLNER K, HUMPHRY M, CONSONNI C, PANSTRUGA R. The powdery mildew disease of: A paradigm for the interaction between plants and biotrophic fungi//TheBook. The American Society of Plant Biologists, 2008, 6: e0115.

        [35] LEVINE A, TENHAKEN R, DIXON R, LAMB C. H2O2from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 1994, 79(4): 583-593.

        [36] JIANG J J, MA S H, YE N H, JIANG M, CAO J S, ZHANG J H. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 2017, 59(2): 86-101.

        [37] SOMSSICH I E. Networks of transcriptional regulation underlying plant defense responses towards phytopathogens//Grasser K D. Regulation of Transcription in Plants. Blackwell Publishing, 2006: 266-284.

        [38] 張遠嬿. 蘋果基因的克隆與功能分析[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2018.

        ZHANG Y Y. Cloning and functional analysis ofgene in apple[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)

        [39] 周茜茜. 蘋果輪紋病激發(fā)的SA特異性誘導(dǎo)表達基因的抗病功能鑒定[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2019.

        ZHOU Q Q. Identification of disease resistance of sa-specific inducible genestimulated by[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)

        [40] 周茜茜, 邱化榮, 何曉文, 王憲璞, 劉秀霞, 李保華, 吳樹敬, 陳學(xué)森.介導(dǎo)提高蘋果與擬南芥對輪紋病菌的免疫抗性. 中國農(nóng)業(yè)科學(xué), 2018, 51(21): 4052-4064.

        ZHOU Q Q, QIU H R, HE X W, WANG X P, LIU X X, LI B H, WU S J, CHEN X S.mediated improvement of immune resistance of apple andto. Scientia Agricultura Sinica, 2018, 51(21): 4052-4064. (in Chinese)

        [41] PANDEY S P, ROCCARO M, SCHON M, LOGEMANN E, SOMSSICH I E. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of. The Plant Journal, 2010, 64(6): 912-923.

        [42] LI H, XU Y, XIAO Y, ZHU Z G, XIE X Q, ZHAO H Q, WANG Y J. Expression and functional analysis of two genes encoding transcription factors,and, isolated from Chinese wild. Planta, 2010, 232(6): 1325-1337.

        [43] 喬恒波. 中國野生毛葡萄轉(zhuǎn)錄因子基因克隆與功能研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2016.

        QIAO H B. Cloning and function analysis of atranscription factor in[D]. Yangling: Northwest A&F University, 2016. (in Chinese)

        [44] DOU L L, GUO Y N, ONDATI E, PANG C Y, WEI H L, SONG M Z, FAN S L, YU S X. Identification and expression analysis of group Ⅲ WRKY transcription factors in cotton. Journal of Integrative Agriculture, 2016, 15(11): 2469-2480.

        [45] 魏娟娟, 楊偉, 潘宇, 張興國, 李金華. 番茄41基因的克隆、表達分析與轉(zhuǎn)基因植株的獲得. 西南大學(xué)學(xué)報(自然科學(xué)版), 2017, 39(1): 46-54.

        WEI J J, YANG W, PAN Y, ZHANG X G, LI J H. Cloning and expression analysis of a41 gene in tomato and its transfer into a tomato cultivar. Journal of Southwest University (Natural Science Edition), 2017, 39(1): 46-54. (in Chinese)

        [46] WANG X, GUO R, TU M, WANG D, GUO C, WAN R, LI Z, WANG X. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 inenhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen. Frontiers in Plant Science, 2017, 8: 97.

        [47] APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399.

        [48] MADER M, FUSSL R. Role of peroxidase in lignification of tobacco cells.Ⅱ. Regulation by phenolic compounds. Plant Physiology, 1982, 70(4): 1132-1134.

        [49] FINATTO T, VIANA V E, WOYANN L G, BUSANELLO C, MAIA L C, OLIVEIRA A. Can WRKY transcription factors help plants to overcome environmental challenges? Genetics and Molecular Biology, 2018, 41(3): 533-544.

        [50] LI J, BRADER G, PALVA E T. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 2004, 16(2): 319-331.

        [51] LI J, BRADER G, KARIOLA T, PALVA E T. WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal,2006, 46(3): 477-491.

        [52] MARCHIVE C, MZID R, DELUC L, BARRIEU F, PIRRELLO J, GAUTHIER A, CORIO-COSTET M F, REGAD F, CAILLETEAU B, HAMDI S, Lauvergeat v. Isolation and characterization of atranscription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. Journal of Experimental Botany, 2007, 58(8): 1999-2010.

        [53] M?LLER S G, CHUA N H. Interactions and intersections of plant signaling pathways. Journal of Molecular Biology, 1999, 293(2): 219-234.

        [54] CHEONG Y H, CHANG H S, GUPTA R, WANG X, ZHU T, LUAN S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in. Plant Physiology, 2002, 129(2): 661-677.

        Functional analysis of the interaction between transcription factors VqWRKY6 and VqbZIP1 in regulating the resistance to powdery mildew in Chinese wild

        Zhang Jie, Jiang ChangYue, WANG YueJin

        College of Horticulture, Northwest Agriculture and Forestry University/State Key Laboratory of Crop Stress Biology in Arid Areas/Key Laboratory of Horticultural Plant Germplasm Resource Utilization in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi

        【Objective】As the world’smain cultured varieties,has the advantages of high yield and good quality, however, the resistance of.to disease is poor. Powdery mildew is a fungal disease that seriously endangers viticulture. The resources of Chinese wild grape are abundant, which can provide sufficient germplasm resources for disease-resistant breeding. This objective of this study is to screen grape transcription factor genes that regulate the resistance to powdery mildew, and to explore the mechanism of these genes regulating the resistance to powdery mildew, which can provide high-quality genetic resources for selection and breeding of grape disease-resistant varieties.【Method】was cloned from Chinese wild‘Shang-24’. The sequences were analyzed using DANMAN and MEGA-X software and subcellular localization analysis was adopted usingprotoplasts by PEG-mediated transformation, which was performed for the location of transcriptional regulation. The yeast two-hybrid and bimolecular fluorescence complementation were adopted to prove that VqWRKY6 can interact with the transcription factor VqbZIP1 to form a transcriptional complex. Taking the leaves of the disease-susceptible grape ‘Cabernet Sauvignon’ as the material, the transient transformation mediated bywas performed in the leaves of ‘Cabernet Sauvignon’. Afterinoculation on the leaves, the pathogenesis symptoms were observed, hyphal development progression was microscopically visualized with trypan blue staining, and reactive oxygen species (ROS) accumulation was visualized using DAB staining. Thedifferences between grape leaves co-overexpressing ofand, overexpressing ofalone, overexpressing ofalone, and the control group were compared. The qRT-PCR was used to analyze the expression level of anti-disease genes underinduction.【Result】is located on grape chromosome 2, encodes 342 amino acids and belongs to the group Ⅲ subfamily of the WRKY family. VqWRKY6 exerts a transcriptional regulatory function in nucleus. The propagation rate ofon the surface of ‘Cabernet Sauvignon’ leaves after co-overexpressing ofandwas significantly slower than that of leaves overexpressing ofaloneand overexpressing ofalone, and the ROS content in the leaf tissues co-overexpressing ofandwas significantly higher than that of leaves overexpressingofalone and overexpressingofalone. In addition, the synergistic regulation of VqWRKY6 and VqbZIP1 could activateandof the jasmonate (JA) pathway, and the gene expression levels were significantly upregulated.【Conclusion】The synergistic effect of VqWRKY6 and VqbZIP1 may improve the disease resistance of grape to powdery mildew by activating the JA pathway, promoting the production of ROS, enhancing the expression of disease-resistant genes to inhibit the growth of. VqWRKY6 and VqbZIP1 are important disease-resistant genetic resources, and ‘Shang-24’ is an important disease-resistant germplasm resource.

        Chinese wild; WRKY transcription factor; powdery mildew; transcriptional regulation

        10.3864/j.issn.0578-1752.2022.23.005

        2022-06-28;

        2022-08-08

        國家自然科學(xué)基金面上項目(31872055)

        張潔,E-mail:jiee@nwafu.edu.cn。通信作者王躍進,E-mail:wangyj@nwsuaf.edu.cn

        (責任編輯 岳梅)

        久久精品国产亚洲av沈先生| 手机看片久久国产免费| 亚洲人不卡另类日韩精品| 国产片三级视频播放| 色老板精品视频在线观看| 久草中文在线这里只有精品| 对白刺激的老熟女露脸| 国产乱人伦精品一区二区| 国产a√无码专区亚洲av| 一区二区午夜视频在线观看| 亚洲精品乱码久久久久99| 亚洲色偷拍区另类无码专区| 亚洲熟妇丰满多毛xxxx| 一区二区三区蜜桃av| 日韩av在线不卡一二三区| 五月丁香六月综合激情在线观看| 国产女人高潮视频在线观看| 国产国产精品人在线视| 在线亚洲日本一区二区| 亚洲女同系列高清在线观看 | 欧美日韩亚洲国产精品| 最新国产毛2卡3卡4卡| 人妖在线一区二区三区| 青青草伊人视频在线观看| 2021精品国产综合久久| 亚洲欧美日韩综合久久| 国产超碰人人爽人人做人人添 | aⅴ色综合久久天堂av色综合| 国产精品开放小视频| 亚洲处破女av日韩精品| 无码人妻一区二区三区兔费| 一区二区亚洲精品在线| 精品一区二区三区牛牛| 亚洲人妻中文字幕在线视频| 亚洲aⅴ无码国精品中文字慕| 欧美不卡视频一区发布| 国产精品亚洲欧美大片在线看| 亚洲国产精品无码av| 亚洲第一网站免费视频| 草青青视频手机免费观看| 美腿丝袜美腿国产在线|