亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        雞蛋與鴨蛋的蛋殼力學特性、超微結構及蛋殼組分的比較

        2022-02-02 03:09:08張亞男金永燕莊智威王爽夏偉光阮棟陳偉鄭春田
        中國農(nóng)業(yè)科學 2022年24期
        關鍵詞:結構

        張亞男,金永燕,莊智威,王爽,夏偉光,阮棟,陳偉,鄭春田

        雞蛋與鴨蛋的蛋殼力學特性、超微結構及蛋殼組分的比較

        張亞男,金永燕,莊智威,王爽,夏偉光,阮棟,陳偉,鄭春田

        廣東省農(nóng)業(yè)科學院動物科學研究所/畜禽育種國家重點實驗室/農(nóng)業(yè)農(nóng)村部華南動物營養(yǎng)與飼料重點實驗室/廣東省動物育種與營養(yǎng)公共實驗室/廣東省畜禽育種與營養(yǎng)研究重點實驗室,廣州 510640

        通過比較研究雞蛋與鴨蛋的蛋殼力學特性、超微結構和蛋殼組分的異同,為精準調控鴨蛋蛋殼品質提供科學依據(jù)。試驗選用45周齡海蘭灰蛋雞和龍巖山麻鴨所產(chǎn)蛋,選取平均蛋重接近生理蛋重的雞蛋和鴨蛋各160枚,隨機分為2個組,每組8個重復,每個重復20枚蛋。蛋雞和蛋鴨均飼喂玉米-豆粕型飼糧,營養(yǎng)水平參照國家標準配制。采用蛋殼強度儀測定蛋殼強度,數(shù)顯千分尺測定蛋殼膜和鈣化蛋殼的厚度,計算蛋殼比例和韌性。采用掃描電子顯微鏡觀察蛋殼的超微結構,測定蛋殼有效厚度、乳突厚度和寬度,計算總厚度、有效層和乳突層比例。觀察蛋殼乳突結構,對乳突結構的變異程度進行評分。蛋殼粉碎提取后,采用考馬斯亮藍方法測定基質蛋白含量,微波消解后,參照國標方法,測定蛋殼中鈣、磷、鎂、錳、銅、鋅含量。與雞蛋相比,鴨蛋的蛋重和蛋殼重更大(<0.01),蛋殼比例無顯著差異(>0.05);蛋殼強度、韌性和蛋殼膜厚度更大(<0.01),鈣化層厚度(不含殼膜)無顯著差異(>0.05)。超微結構中,鴨蛋殼的乳突厚度和單位乳突個數(shù)均顯著低于雞蛋殼(<0.01),乳突寬度和乳突層比例顯著高于雞蛋殼(<0.01);蛋殼總厚度和有效厚度無顯著差異(>0.05),鴨蛋殼有效層比例顯著高于雞蛋殼(<0.001)。乳突結構中,鴨蛋殼的乳突密度、B型和A型乳突、乳突的霰石、袖口和凹陷結構的評分均無顯著差異(>0.05),鴨蛋殼乳突的帽子結構、匯流程度、早期融合、晚期融合的評分及乳突結構的總評分顯著低于雞蛋殼(<0.05),表明雞蛋殼較鴨蛋殼有較為頻繁的乳突結構變異,鴨蛋殼帽子結構上溝壑狀痕跡較雞蛋殼更為深刻清晰,具有較為廣泛的早期融合,乳突層與殼膜纖維間的結合更致密。鴨蛋殼中磷、銅和錳的含量更高(<0.05),但鎂和基質蛋白含量較低(<0.001),鈣和鋅含量無顯著差異(>0.05)。雞蛋和鴨蛋具有相似的力學特性和超微結構,蛋殼比例、鈣化層厚度、蛋殼中鈣和鋅的含量無差異。與雞蛋殼相比,鴨蛋蛋殼力學特性較好,蛋殼強度和韌性較高,主要與鴨蛋殼具有較致密的超微結構和乳突結構有關,鴨蛋殼的有效厚度高、乳突排列更平整,具有較為廣泛的早期融合,相鄰乳突單元間致密性更好;蛋殼組分中磷、銅和錳含量高,鎂和基質蛋白含量低??赏ㄟ^調控蛋殼礦物元素及基質蛋白含量,影響蛋殼形成過程尤其是乳突和柵欄層中碳酸鈣的沉積,增加蛋殼有效層的厚度,改善乳突層結構,從而改善鴨蛋的蛋殼品質。

        雞蛋殼;鴨蛋殼;力學特性;超微結構;蛋殼組分

        0 引言

        【研究意義】禽蛋因富含優(yōu)質蛋白質、礦物質和維生素等營養(yǎng)物質,作為動物蛋白的重要來源受到消費者的廣泛青睞。雞蛋和鴨蛋是我國禽蛋的兩種重要來源。與雞蛋相比,鴨蛋產(chǎn)量小、多用于加工成咸蛋或皮蛋(90%)、附加值更高。在蛋禽生產(chǎn)和加工過程中,因蛋殼品質降低導致的蛋殼破損,成為制約蛋禽業(yè)健康發(fā)展和鴨蛋加工業(yè)的重要問題,蛋殼品質的改善也成為研究的熱點和難點。【前人研究進展】蛋殼品質是蛋禽重要的外觀和經(jīng)濟指標,蛋殼可保護蛋內(nèi)容物免受外界應力的損害和外界細菌等微生物的侵入,保證禽蛋品質。蛋殼主要在子宮內(nèi)形成。它是一種高度有序的鈣質結構,由95%的礦物質和3.5%的有機成分組成,鈣化礦物和有機基質相互作用嵌合,共同決定蛋殼的超微結構和力學性能[1-2]。蛋殼由內(nèi)向外分為殼膜、乳突、柵欄、垂直晶體層和膠護膜[3]。碳酸鈣構成蛋殼結構的骨架,有機基質主要包括基質蛋白、糖胺聚糖等,在子宮液中時序性分泌,與無機礦物質相互作用,形成特定蛋殼晶體結構和微觀結構[4]。子宮液中有機基質組成可精準調控晶體沉積速度、大小、形態(tài)和取向,從而影響蛋殼超微結構特征和力學特性[5]。除碳酸鈣和有機基質外,蛋殼組分中還含有其他礦物元素如磷、鎂、鋅、錳、銅等,共同影響蛋殼的形成和質量?!颈狙芯壳腥朦c】目前多數(shù)研究集中在雞蛋殼,鴨蛋殼的研究較少。對比研究雞蛋殼與鴨蛋殼的異同,可為更好地調控鴨蛋殼品質提供理論依據(jù)。【擬解決的關鍵問題】本試驗旨在研究雞蛋與鴨蛋的蛋殼力學特性、超微結構和蛋殼組分的異同,以期為精準調控鴨蛋蛋殼品質提供科學依據(jù)。

        1 材料與方法

        1.1 試驗材料

        試驗選用45周齡海蘭灰蛋雞和龍巖山麻鴨所產(chǎn)蛋,選取平均蛋重接近生理蛋重的雞蛋和鴨蛋各160枚,隨機分為2組,每組8個重復,每個重復20枚蛋。試驗時間為2020年12月至2021年3月,在廣東省農(nóng)業(yè)科學院動物科學研究所進行。試驗蛋雞和蛋鴨均飼喂玉米-豆粕型飼糧,蛋雞飼糧配方(表1)參照《家禽營養(yǎng)標準》(NY/T 33-2004)設計。蛋鴨飼糧配方(表2)參照《蛋鴨營養(yǎng)需要量》(GB/T 41189-2021)設計。

        1.2 指標測定與方法

        1.2.1 力學特性 蛋殼強度采用蛋殼強度儀(EFR- 01,ORKA Food Technology,以色列)測定,在48 h內(nèi)完成。將蛋殼洗凈自然干燥后稱重,計算蛋殼比例;分別于鈍端、赤道部、尖端各取2片蛋殼,分離蛋殼膜,采用數(shù)顯千分尺(MODEL-1061)測定蛋殼膜和鈣化蛋殼的厚度,取平均值。蛋殼韌性參照文獻[6]的方法計算而得:蛋殼韌性=0.777×(2.388+2.9934× 6/R)× (F/T3/2),F(xiàn)為蛋殼強度,T為蛋殼厚度,R為赤道半徑。

        1.2.2 超微結構 于蛋殼赤道部取蛋殼碎片(約4 mm×4 mm),置于雙蒸水中浸泡洗凈,清除蛋殼內(nèi)外表面污漬,自然晾干。將蛋殼碎片豎立固定于載物臺上,做一次噴金處理,利用掃描電子電鏡(S3400N,日立科學儀器有限公司,中國)在200倍視野下觀察蛋殼橫斷面超微結構。參照文獻[7]的方法測定蛋殼有效層厚度、乳突層厚度、乳突寬度及單位乳突個數(shù)。有效層厚度=柵欄層厚度+垂直晶體層厚度+膠護膜厚度;乳突寬度=視野內(nèi)乳突長度/乳突個數(shù);單位乳突個數(shù)=視野內(nèi)乳突個數(shù)/視野內(nèi)乳突總寬度;總厚度=乳突層厚度+有效層厚度;乳突層比例=乳突層厚度/總厚度×100%;有效層比例=有效層厚度/總厚度×100%。每重復隨機選取10枚蛋殼,每枚蛋殼選取赤道部取2片蛋殼碎片觀察測定,以10枚蛋殼測定值的平均值作為每個重復的測定值。

        表1 蛋雞基礎飼糧組成及營養(yǎng)水平

        ①每千克預混料含有:維生素A 12500 IU,維生素D34125 IU,維生素E 15 IU,維生素K 2 mg,硫胺素 1 mg,核黃素 8.5 mg,泛酸鈣 50 mg,煙酸 32.5 mg,吡哆醇 8 mg,生物素 2 mg,葉酸 5 mg,膽堿 500 mg,銅 8 mg,鐵 60 mg,鋅 60 mg,錳 65 mg,碘 1 mg,硒 0.3 mg;②營養(yǎng)成分均為計算值

        ①One kilogram of the premix contained: VA 12500 IU,VD34125 IU,VE 15 IU,VK 2 mg,VB11 mg,VB28.5 mg,Pantothenic acid 50 mg,Nicotinic acid 32.5 mg,Pyridoxine 8 mg,Biotin 2 mg,F(xiàn)olic acid 5 mg,Choline chloride 500 mg,Cu 8 mg,F(xiàn)e 60 mg,Zu 60 mg,Mn 65 mg,I 1 mg,Se 0.3mg; ②Nutrients are calculated

        表2 蛋鴨基礎飼糧組成及營養(yǎng)水平

        ①每千克預混料含有: 維生素A 7500 IU,維生素D32500 IU,維生素E 20 IU,維生素K 2.5 mg,維生素B13 mg,維生素B26 mg,氯化膽堿 600 mg,泛酸 20 mg,吡哆醇 2.5 mg,煙酸 27 mg,生物素 0. 2 mg,葉酸 1 mg,銅 20 mg,鐵 50 mg,鋅 70 mg,錳 70 mg,碘 0.4 mg,硒 0.3 mg。②營養(yǎng)成分均為計算值

        ①One kilogram of the premix contained: VA 7500 IU,VD32500 IU,VE 20 IU,VK 2.5 mg,VB13 mg,VB26 mg,Choline chloride 600 mg,Pantothenic acid 20 mg,Pyridoxine 2.5 mg,Nicotinic acid 27 mg,Biotin 0. 2 mg,F(xiàn)olic acid 1 mg,Cu 20 mg,F(xiàn)e 50 mg,Zu 70 mg,Mn 70 mg,I 0.4 mg,Se 0.3mg ②Nutrients are calculated

        取蛋殼赤道部蛋殼碎片(3 mm×5 mm),浸泡在雙蒸水中,輕輕除去內(nèi)表面殼膜及外表面污漬,置6%次氯酸鈉、4.12%氯化鈉和0.15%氫氧化鈉溶液中過夜,去除緊密結合的膜纖維,雙蒸水沖洗殘留試劑,晾干。蛋殼內(nèi)表面向上平貼于樣品臺上,噴金一次,置于掃描電子顯微鏡(S3400N,日立科學儀器有限公司,中國)下分別用100倍、160倍、500倍、750倍和2 000倍放大倍數(shù)觀測乳突超微結構。根據(jù)Bain等[8]的方法(表3),評估乳突結構變異的發(fā)生率,總分越低表明乳突結構越致密,結構變異越小。帽子結構以面積大、纖維軌跡深刻、似菜花狀為佳;匯流情況以廣泛匯合為佳;A型和B型乳突結構呈小球形,A型無基帽光滑,B型表面有較淺的纖維軌跡,A、B型乳突的出現(xiàn)對柵欄層無直接貢獻,出現(xiàn)頻率越高蛋殼質量越差;霰石是自由生長的方解石,形態(tài)多樣,對柵欄層無直接貢獻;早期融合表明各乳突間緊密相連,廣泛出現(xiàn)為佳,晚期融合則與之相反;袖口結合越緊密得分越低;凹陷作為一種結構缺陷與乳突結構的好壞呈現(xiàn)負相關;100倍視野下測定乳突密度,乳突密度指單位面積(mm2)乳突的個數(shù)。每重復隨機選取3枚蛋殼,每枚蛋殼取赤道部3片觀察測定,每3枚蛋殼測定值的平均值作為每重復的測定值。

        表3 乳突超微結構評分標準

        1.2.3 蛋殼中礦物元素和蛋白含量的測定 雞蛋和鴨蛋分別設8個重復,每個重復含20個蛋殼,將每個重復的20個蛋殼按照6﹕6﹕8分成3份粉碎,測定蛋殼中礦物元素和蛋白含量。用0.9%氧化鈉溶液漂洗蛋殼,晾干,用粉碎機粉碎成粉末,用網(wǎng)篩分離除去蛋殼膜,蛋殼粉至干燥器中,待測蛋殼中蛋白、鈣、磷、鎂、錳、銅、鋅含量。蛋殼中蛋白測定依據(jù)Panheleux等[9]的方法。準確稱取250 mg蛋殼粉,加入5 mL冰醋酸(20%),持續(xù)震蕩過夜(4 ℃),提取物中加入等量去離子水,冷凍干燥機(ALPHA 2-4,Chist)凍干得凍干粉。制備pH為5.8的萃取液,包含4 mol·L-1鹽酸胍、蛋白酶抑制劑(5 mmol·L-1鹽酸芐脒、0.1 mol·L-1己酸和0.1 mol·L-1苯甲基磺酰氟)、10 mmol·L-1EDTA、0.05 mol·L-1乙酸鈉和0.5%吐溫20,向凍干粉中加入4.5 mL萃取液4 ℃攪拌過夜,置于透析管中,用0.3 mol·L-1氯化鈉、25 mmol·L-1乙酸鈉和0.1%吐溫20溶液透析,3 500×離心20 min,取上清用于測定蛋白含量。蛋殼鈣含量依據(jù)國標GB/T 6436-2018《飼糧中鈣測定》,采用EDTA絡合滴定法測定;磷含量參照國標GB/T 6437-2018《飼料中總磷的測定分光光度法》使用分光光度計法測定;蛋殼中鎂、錳、銅、鋅含量分別參照國標GB/T 5009.90-2003《食品中鐵、鎂、錳的測定》、GB/T5009.13-2017《食品安全國家標準食品中銅的測定》及GB/T5009.14- 2017《食品安全國家標準食品中鋅的測定》,蛋殼粉微波消解,使用原子吸收分光光度計(TAS-990,北京普析通用儀器有限責任公司,中國)測定。

        1.3 數(shù)據(jù)處理與分析

        試驗數(shù)據(jù)采用SPSS 16.0統(tǒng)計軟件的T-檢驗分析,數(shù)據(jù)以平均值±標準誤差(Means ± Se)表示。以<0.05為差異性顯著水平。

        2 結果

        2.1 雞蛋與鴨蛋的蛋殼力學特性差異比較

        由表4可知,與雞蛋相比,鴨蛋的蛋重蛋殼重、蛋殼韌性、強度和蛋殼膜厚度更大(<0.05),蛋殼比例和蛋殼厚度無顯著差異(>0.05)。

        表4 雞蛋與鴨蛋的蛋殼力學特性的差異比較

        2.2 雞蛋與鴨蛋的蛋殼超微結構和乳突結構的差異比較

        由5表可知,與雞蛋相比,鴨蛋蛋殼超微結構的總厚度和有效厚度無顯著差異(>0.05),有效層比例更大(<0.05);乳突厚度及其比例較低(<0.05),單位毫米的乳突個數(shù)顯著減少(<0.001),乳突更寬(<0.001)。與雞蛋殼相比,鴨蛋殼有效層結構更為致密,乳突較寬較矮,雞蛋殼乳突較窄較高(圖1)。

        由表6可知,與雞蛋殼相比,鴨蛋殼的乳突密度、B型和A型乳突、乳突的霰石、袖口和凹陷結構的評分均無顯著差異(>0.05);但乳突帽子結構、匯流程度、早期融合和晚期融合的評分、及乳突結構的總評分顯著降低(<0.05)。與雞蛋殼相比,鴨蛋殼乳突排列更為平整,相鄰乳突單元之間致密性更好,具有較為廣泛的早期融合,B型乳突出現(xiàn)的頻率更低,帽子結構處與殼膜纖維連接的溝槽更為深刻清晰(圖2)。

        表5 雞蛋與鴨蛋的蛋殼超微結構的差異比較

        n=8, each treatment has 8 replicates each

        TT:蛋殼總厚度;ET:蛋殼有效厚度;MT:蛋殼乳突厚度 TT: Total thickness; ET: Effective thickness; MT: Mammillary thickness

        表6 雞蛋和鴨蛋的蛋殼乳突結構的差異比較

        n=8, each treatment has 8 replicates each

        2.3 雞蛋和鴨蛋蛋殼中礦物元素及蛋白含量的差異比較

        由表7可知,與雞蛋相比,鴨蛋蛋殼鈣和鋅含量無顯著差異(>0.05),但鴨蛋殼的磷、銅和錳的含量顯著升高(<0.05),鎂和蛋白的含量顯著降低(<0.001)。

        表7 雞蛋和鴨蛋的蛋殼中礦物元素及蛋白含量差異比較

        n=8, each treatment has 8 replicates each

        3 討論

        3.1 蛋殼力學特性差異

        蛋殼品質是禽蛋重要的經(jīng)濟和外觀性狀,不僅可保護禽蛋的內(nèi)在品質,還是減少蛋殼破損的重要指標。評價蛋殼力學特性的指標主要有蛋殼厚度、強度、韌性等[10]。本試驗結果表明,鴨蛋較雞蛋蛋殼品質好,表現(xiàn)在蛋殼強度、韌性及蛋殼膜厚度較高。蛋殼強度和韌性與蛋殼的超微結構密切相關,尤其是乳突層和柵欄層[11-12]。本試驗中,鴨蛋殼的乳突結構較雞蛋殼致密、有效厚度大,蛋殼強度和韌性高。此外,鴨蛋殼的殼膜更厚,鈣化蛋殼的厚度無顯著變化,可見,蛋殼膜厚度的較大是造成鴨蛋殼更厚的重要因素,可能也是導致蛋殼強度和韌性增加的重要原因。研究表明,蛋殼膜膠原纖維的彈性形變是蛋殼破損的首要因素,乳突核在蛋殼膜的沉積位點決定著乳突密度與間隙,影響外界應力的傳播速度[13]。綜上,鴨蛋蛋殼力學特性好,主要表現(xiàn)在蛋殼強度和韌性的大,可能與蛋殼膜厚、超微結構改變有關。

        3.2 蛋殼超微結構和乳突結構的差異

        蛋殼作為一種高度有序的結構,由內(nèi)到外依次包括:內(nèi)、外基質膜、乳突層、柵欄層、垂直晶體層和膠護膜,后三者在一起構成了蛋殼的有效層[6]。正是這種致密有序的結構,使得蛋殼具有一定的厚度和強度,抵抗外界應力的影響。因此,蛋殼超微結構決定著蛋殼力學特性,影響蛋殼質量[14-15]。乳突層是蛋殼形成過程中殼膜蛋白纖維開始鈣化的部位,乳突單元與殼膜的聯(lián)系、乳突之間排列是否規(guī)則整齊將直接影響蛋殼柵欄層的形成[16],乳突還是決定蛋殼強度的主要結構,乳突厚度及乳突間隙與蛋殼強度成反比[17]。柵欄層和晶體層是構成蛋殼厚度的主要結構,影響著蛋殼厚度[18],蛋殼晶體在有效層的致密程度也決定著蛋殼質量[19]。本試驗結果表明,鴨蛋殼的有效厚度比例較雞蛋殼增加,而乳突厚度及比例較雞蛋殼降低,這可能是鴨蛋蛋殼強度和韌性較雞蛋殼增加的重要原因。此外,關于乳突結構分析的結果表明,雞蛋殼較鴨蛋殼有較為頻繁的乳突結構變異。一方面,雞蛋殼在鄰近乳頭柱融合延遲或出現(xiàn)結構異常(如B型結構)的部位增加,應力擴散和延長會更頻繁、更迅速地發(fā)生[20]。雞蛋殼乳突融合較晚,袖口結構處較大間隙表明乳突節(jié)間的結合較弱,裂紋很容易從力點通過外殼向外擴展,因此損害了其抵抗外界應力的性能[7,19]。帽子結構是乳突晶體基質與殼膜纖維發(fā)生機械結合的地方,除去殼膜層后,可以清晰看見殼膜纖維在帽子結構上留下的溝壑狀痕跡,殼膜纖維與乳突層的這種結合有利于蛋殼結構的穩(wěn)定[21]。對比發(fā)現(xiàn),鴨蛋殼帽子結構上溝壑狀痕跡較雞蛋殼更為深刻清晰,乳突層與殼膜纖維之間這種結合使蛋殼結構更為堅固[22]。因此,蛋殼的超微結構變化,特別是乳突層的結構變化,可能是導致蛋殼力學性能不同的重要因素,鴨蛋殼較雞蛋殼蛋殼品質增加也主要是蛋殼超微結構和乳突結構改變的結果,而超微結構的不同可能與蛋殼形成過程中,碳酸鈣晶體沉積速度與定向,及有機基質的調控有關,需要進一步的研究。

        3.3 蛋殼中礦物元素和蛋白含量的差異

        鈣、磷是構成蛋殼的重要組分,是影響蛋殼品質的重要因素。研究表明,飼糧不同水平的鈣磷及其比例[23]、不同鈣源和粒度[24],可直接影響蛋殼品質。鎂是蛋殼組分中另一重要因素,在蛋殼形成過程中,Mg2+能激活子宮內(nèi)ATP酶,該酶作為Ca2+轉運載體參與調節(jié)血鈣轉入子宮,促進蛋殼形成。飼糧中缺鎂,抑制子宮對血鈣的動員導致蛋殼重、蛋殼厚度及蛋殼強度下降,添加3.0 g·kg-1鎂可提高蛋雞產(chǎn)蛋后期蛋殼強度,添加5.17 g·kg-1鎂可提高產(chǎn)蛋高峰期蛋殼重、蛋殼厚度及強度[25-26]。鋅、錳、銅是構成蛋殼的重要微量元素,作為酶的輔助因子參與蛋殼形成。鋅是碳酸酐酶的活性因子,碳酸酐酶可促進二氧化碳和水解離為碳酸氫根離子,從而促進碳酸鈣的形成。研究表明,飼糧缺乏鋅,蛋殼的破損率提高[27],添加鋅可提高后期蛋雞血漿和蛋殼腺的碳酸酐酶的活性,提高蛋殼厚度,促進蛋殼鈣沉積[28-29]。錳作為1,3-β葡萄糖醛酸基轉移酶的活性因子,可影響糖醛酸和蛋白聚糖的形成,參與調控晶體的成核和生長[16]。飼糧缺乏錳,蛋殼腺內(nèi)糖基轉移酶的基因和蛋白表達水平下降,蛋殼膜中糖胺聚糖和糖醛酸的含量降低,影響蛋殼超微結構,導致蛋殼強度下降[30]。飼糧添加錳可通過調控蛋殼腺內(nèi)蛋白的糖基化和聚糖代謝,提高蛋白聚糖和糖蛋白的表達,增加蛋殼乳突密度,改善超微結構而提高蛋殼品質[6]。銅可參與賴氨酰氧化酶的形成,而賴氨酰氧化酶對維持蛋殼膜的完整性具有顯著作用。研究表明,飼糧缺乏銅,可改變依賴賴氨酸的纖維交聯(lián),蛋殼膜變形而導致蛋殼破損[31]。本研究發(fā)現(xiàn),與雞蛋殼相比,鴨蛋殼銅、錳和磷含量升高,鎂含量下降。這可能與蛋鴨飼糧中的銅和錳水平均高于蛋雞飼糧有關。飼糧添加銅或錳等微量元素可促進其在蛋殼內(nèi)的沉積,而調控蛋殼品質[32]。銅和錳在維持蛋殼膜完整性,改善蛋殼超微結構中發(fā)揮著重要作用,鴨蛋蛋殼膜厚度和強度增加,乳突層結構致密,與蛋殼中錳和銅含量增加的結果一致。然而,鴨蛋殼磷含量顯著高于雞蛋殼,盡管蛋雞飼糧磷含量高于蛋鴨飼糧,這可能與磷的吸收利用率有關。呂娜等[33]研究發(fā)現(xiàn),十二指腸上皮細胞中Ⅱb型鈉磷協(xié)同轉運載體(NaPi-Ⅱb)的mRNA相對表達量會隨著磷濃度的升高呈現(xiàn)線性降低。蛋雞飼糧中磷水平的升高可能降低了腸道中NaPi-Ⅱb載體的表達量,抑制磷在腸道中的吸收,降低蛋殼形成過程對磷的利用。此外,飼糧中鎂和磷的消化吸收與其比例有關,過高的磷含量會降低鎂的吸收[34],這可能是導致蛋鴨蛋殼中鎂含量下降的原因。此外,對比高峰期和后期蛋雞蛋殼組分的差異發(fā)現(xiàn),蛋殼鈣、磷和基質蛋白的含量無顯著變化[35];但近期本課題組在蛋鴨上研究發(fā)現(xiàn),蛋殼鈣、磷、鎂和基質蛋白的含量在產(chǎn)蛋后期均顯著下降。可見,產(chǎn)蛋后期蛋殼品質的下降,在雞蛋與鴨蛋上的研究結果不同,營養(yǎng)素對蛋殼品質的調控作用也因蛋雞和蛋鴨有所不同,明確二者之間的異同,可為精準調控蛋殼品質提供科學依據(jù)。

        基質蛋白是有機基質的重要組分,廣泛存在于蛋殼中,貫穿著蛋殼形成的全過程,在蛋殼的生物礦化過程中起著基礎性的作用,決定著蛋殼的力學性能[36]。基質蛋白可調控蛋殼晶體的生長,對蛋殼的結構和功能具有積極作用[37],在蛋殼形成初期,子宮液中含有專門選擇方解石和穩(wěn)定碳酸鈣沉淀的特殊生物分子如蛋白受體等[38-39],他們會修飾蛋白質在方解石晶體表面的吸附或排斥機制,使得許多蛋殼蛋白優(yōu)先吸附在平行于c軸的方解石晶面上,從而改變了方解石晶體的生長形態(tài),使其沿c軸拉長。這些修飾影響了蛋殼的微觀結構(晶體的大小和取向),從而影響蛋殼的力學性能[40]。本研究發(fā)現(xiàn),在飼糧粗蛋白質水平相同的情況下,與雞蛋相比,鴨蛋蛋殼基質蛋白的含量顯著降低,這可能是影響鴨蛋蛋殼乳突和超微結構改變的重要原因,但具體基質蛋白的變化尚不清楚。研究表明,蛋殼內(nèi)含有多種基質蛋白,根據(jù)特點和功能不同主要分為通過磷酸化、糖基化形式、或與免疫功能相關基質蛋白,參與蛋殼形成[41],但本試驗中并未對具體的基質蛋白進行對比,雞蛋與鴨蛋蛋殼某種或某幾種基質蛋白的差異還有待進一步研究。

        4 結論

        綜上,雞蛋和鴨蛋具有相似的力學特性和超微結構,蛋殼比例、鈣化層厚度、蛋殼中鈣和鋅的含量無差異。與雞蛋殼相比,鴨蛋蛋殼力學特性較好,蛋殼強度和韌性較高,主要與鴨蛋殼具有較致密的超微結構和乳突結構有關,鴨蛋殼的有效厚度高、乳突排列更平整,具有較為廣泛的早期融合,相鄰乳突單元間致密性更好;蛋殼組分中磷、銅和錳含量高,鎂和基質蛋白含量低??赏ㄟ^調控蛋殼礦物元素及基質蛋白含量,影響蛋殼形成過程尤其是乳突和柵欄層中碳酸鈣的沉積,增加蛋殼有效層的厚度,改善乳突層結構,從而改善蛋殼品質。

        [1] WILSON P B. Recent advances in avian egg science: a review. Poultry Science, 2017, 96(10): 3747-3754. doi:10.3382/ps/pex187.

        [2] MA Y F, YAO J W, ZHOU S, MI Y L, LI J, ZHANG C Q. Improvement of eggshell quality by dietary N-carbamylglutamate supplementation in laying chickens. Poultry Science, 2020, 99(8): 4085-4095. doi:10.1016/j.psj.2020.04.004.

        [3] PARK J A, SOHN S H. The influence of hen aging on eggshell ultrastructure and shell mineral components. Korean Journal for Food Science of Animal Resources, 2018, 38(5): 1080-1091. doi:10.5851/ kosfa.2018.e41.

        [4] MARIE P, LABAS V, BRIONNE A, HARICHAUX G, HENNEQUET- ANTIER C, NYS Y, GAUTRON J. Quantitative proteomics and bioinformatic analysis provide new insight into protein function during avian eggshell biomineralization. Journal of Proteomics, 2015, 113: 178-193. doi:10.1016/j.jprot.2014.09.024.

        [5] GAUTRON J. Proteomics analysis of avian eggshell matrix proteins: toward new advances on biomineralization. Proteomics, 2019, 19(13): e1900120. doi:10.1002/pmic.201900120.

        [6] 張亞男. 飼糧錳調控雞蛋殼品質的作用機制研究[D]. 北京: 中國農(nóng)業(yè)科學院, 2017.

        ZHANG Y N. Dietary manganese supplementation modulated eggshell quality in laying hens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)

        [7] DUNN I C, RODRíGUEZ-NAVARRO A B, MCDADE K, SCHMUTZ M, PREISINGER R, WADDINGTON D, WILSON P W, BAIN M M. Genetic variation in eggshell crystal size and orientation is large and these traits are correlated with shell thickness and are associated with eggshell matrix protein markers. Animal Genetics, 2012, 43(4): 410-418. doi:10.1111/j.1365-2052.2011.02280.x.

        [8] BAIN M M. Eggshell strength: a mechanical/ultrastructural evaluation[D]. Glasgow: University of Glasgow, 1990.

        [9] PANHELEUX M, NYS Y, WILLIAMS J, GAUTRON J, BOLDICKE T, HINCKE M T. Extraction and quantification by ELISA of eggshell organic matrix proteins (ovocleidin-17, ovalbumin, ovotransferrin) in shell from young and old hens. Poultry Science, 2000, 79(4): 580-588. doi:10.1093/ps/79.4.580.

        [10] 張凱. 鴨蛋殼的力學特性及多孔超微結構的滲透特性研究[D]. 武漢: 華中農(nóng)業(yè)大學, 2012.

        ZHANG K. Research on mechanics of duck eggshells and its permeability of porous ultrastructure[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)

        [11] BAIN M M. Recent advances in the assessment of eggshell quality and their future application. World's Poultry Science Journal, 2005, 61(2): 268-277. doi:10.1079/wps200459.

        [12] RODRIGUEZ-NAVARRO A, KALIN O, NYS Y, GARCIA-RUIZ J M. Influence of the microstructure on the shell strength of eggs laid by hens of different ages. British Poultry Science, 2002, 43(3): 395-403. doi:10.1080/00071660120103675.

        [13] MACLEOD N, BAIN M M, HANCOCK J W. The mechanics and mechanisms of failure of hens’ eggs. International Journal of Fracture, 2006, 142(1/2): 29-41. doi:10.1007/s10704-006-9018-5.

        [14] KETTA M, T?MOVá E. Eggshell structure, measurements, and quality-affecting factors in laying hens: a review. Czech Journal of Animal Science, 2016, 61(7): 299-309. doi:10.17221/46/2015- cjas.

        [15] ATHANASIADOU D, JIANG W G, GOLDBAUM D, SALEEM A, BASU K, PACELLA M S, B?HM C F, CHROMIK R R, HINCKE M T, RODRíGUEZ-NAVARRO A B, VALI H, WOLF S E, GRAY J J, BUI K H, MCKEE M D. Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Science Advances, 2018, 4(3): eaar3219. doi:10.1126/sciadv.aar3219.

        [16] NYS Y, GAUTRON J, GARCIA-RUIZ J M, HINCKE M T. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins. Comptes Rendus Palevol, 2004, 3(6/7): 549-562. doi:10.1016/j.crpv.2004.08.002.

        [17] 章世元, 俞路, 王雅倩, 王志躍, 周衛(wèi)東, 楊海明. 蛋殼質量與元素組成、超微結構關系的研究. 動物營養(yǎng)學報, 2008, 20(4): 423-428.

        ZHANG S Y, YU L, WANG Y Q, WANG Z Y, ZHOU W D, YANG H M. Research on the relationships between the quality and elemental composition, ultra-microstructure of eggshell. Chinese Journal of Animal Nutrition, 2008, 20(4): 423-428. (in Chinese)

        [18] FATHI M M, ZEIN EL-DE A, EL-SAFTY S A, RADWAN L M. Using scanning electron microscopy to detect the ultrastructural

        variations in eggshell quality of fayoumi and dandarawi chicken breeds. International Journal of Poultry Science, 2007, 6(4): 236-241. doi:10.3923/ijps.2007.236.241.

        [19] RADWAN L M. Eggshell quality: a comparison between Fayoumi, Gimieizah and Brown Hy-Line strains for mechanical properties and ultrastructure of their eggshells. Animal Production Science, 2016, 56(5): 908. doi:10.1071/an14755.

        [20] ARIAS J I, JURE C, WIFF J P, FERNáNDEZ M S, FUENZALIDA V, ARIAS J L. Effect of sulfate content of biomacromolecules on the crystallization of calcium carbonate. MRS Proceedings, 2001, 711: HH1.7.1. doi:10.1557/proc-711-hh1.7.1.

        [21] RADWAN L M, FATHI M M, GALAL A, EL-DEIN A Z. Mechanical and ultrastructural properties of eggshell in two Egyptian native breeds of chicken. International Journal of Poultry Science, 2009, 9(1): 77-81. doi:10.3923/ijps.2010.77.81.

        [22] 陳金泉, 任祖方, 任奕林. 鴨蛋殼與雞蛋殼超微結構比較研究. 中國家禽, 2010, 32(24): 24-26, 31. doi:10.16372/j.issn.1004-6364.2010. 24.014.

        CHEN J Q, REN Z F, REN Y L. Comparative study on eggshell ultrastructure of duck and chicken. China Poultry, 2010, 32(24): 24-26, 31. doi:10.16372/j.issn.1004-6364.2010.24.014. (in Chinese)

        [23] Kü?üKYILMAZ K, ERKEK R, BOZKURT M. The effects of boron supplementation of layer diets varying in calcium and phosphorus concentrations on performance, egg quality, bone strength and mineral constituents of serum, bone and faeces. British Poultry Science, 2014, 55(6): 804-816. doi:10.1080/00071668.2014.975782.

        [24] WANG S, CHEN W, ZHANG H X, RUAN D, LIN Y C. Influence of particle size and calcium source on production performance, egg quality, and bone parameters in laying ducks. Poultry Science, 2014, 93(10): 2560-2566. doi:10.3382/ps.2014-03962.

        [25] KIM C H, PAIK I K, KIL D Y. Effects of increasing supplementation of magnesium in diets on productive performance and eggshell quality of aged laying hens. Biological Trace Element Research, 2013, 151(1): 38-42. doi:10.1007/s12011-012-9537-z.

        [26] BELKAMEH M M, SEDGHI M, AZARFAR A. The effect of different levels of dietary magnesium on eggshell quality and laying hen's performance. Biological Trace Element Research, 2021, 199(4): 1566-1573. doi:10.1007/s12011-020-02259-9.

        [27] ZAMANI A, RAHMANI H R, POURREZA J. Supplementation of a corn-soybean meal diet with manganese and zinc improves eggshell quality in laying hens. Pakistan Journal of Biological Sciences, 2005, 8(9): 1311-1317. doi:10.3923/pjbs.2005.1311.1317.

        [28] ZHANG Y N, ZHANG H J, WANG J, YUE H Y, QI X L, WU S G, QI G H. Effect of dietary supplementation of organic or inorganic zinc on carbonic anhydrase activity in eggshell formation and quality of aged laying hens. Poultry Science, 2017, 96(7): 2176-2183. doi:10.3382/ ps/pew490.

        [29] MIN Y N, LIU F X, QI X, JI S, MA S X, LIU X, WANG Z P, GAO Y P. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poultry Science, 2018, 97(10): 3587-3593. doi:10.3382/ps/pey203.

        [30] XIAO J F, ZHANG Y N, WU S G, ZHANG H J, YUE H Y, QI G H. Manganese supplementation enhances the synthesis of glycosaminoglycan in eggshell membrane: a strategy to improve eggshell quality in laying hens. Poultry Science, 2014, 93(2): 380-388. doi:10.3382/ps.2013- 03354.

        [31] 武書庚. 日糧中不同硫酸銅和檸檬酸銅添加水平及其組合對產(chǎn)蛋雞生產(chǎn)性能及蛋品質的影響[D]. 北京: 中國農(nóng)業(yè)科學院, 2001.

        WU S G. Effect of dietary supplementation of cupric salphate and citrate and their combination on performance and egg quality of laying hens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2001. (in Chinese)

        [32] 張亞男, 王晶, 武書庚, 張海軍, 齊廣海. 微量元素和飼料添加劑調控蛋殼品質的研究進展. 動物營養(yǎng)學報, 2016, 28(10): 3015-3024.

        ZHANG Y N, WANG J, WU S G, ZHANG H J, QI G H. Research progress of microelement and feed additives on eggshell quality regulation. Chinese Journal of Animal Nutrition, 2016, 28(10): 3015-3024. (in Chinese)

        [33] 呂娜, 呂林, 廖秀冬, 張麗陽, 羅緒剛. 低磷濃度下原代培養(yǎng)肉雞雞胚十二指腸上皮細胞對磷吸收及相關轉運載體表達的研究. 動物營養(yǎng)學報, 2019, 31(9): 4186-4193.

        Lü N, Lü L, LIAO X D, ZHANG L Y, LUO X G. Phosphorus absorption and related transporter expression under low phosphorus concentrations in primarily cultured duodenal epithelial cells of broiler embryos. Chinese Journal of Animal Nutrition, 2019, 31(9): 4186-4193. (in Chinese)

        [34] 初曉娜, 汪以真, 劉光富, 朱連勤. 高磷日糧對肉用仔雞體組織磷和鎂含量的影響. 中國畜牧雜志, 2004, 40(10): 15-16, 18.

        CHU X N, WANG Y Z, LIU G F, ZHU L Q. Effect of high - phosphorus diet on the Ca, P, Mg content in the broiler body tissue. Chinese Journal of Animal Science, 2004, 40(10): 15-16, 18. (in Chinese)

        [35] FENG J, ZHANG H J, WU S G, QI G H, WANG J. Uterine transcriptome analysis reveals mRNA expression changes associated with the ultrastructure differences of eggshell in young and aged laying hens. BMC Genomics, 2020, 21(1): 770. doi:10.1186/s12864- 020-07177-7.

        [36] HINCKE M T, NYS Y, GAUTRON J, MANN K, RODRIGUEZ- NAVARRO A B, MCKEE M D. The eggshell: structure, composition and mineralization. Frontiers in Bioscience (Landmark Edition), 2012, 17(4): 1266-1280. doi:10.2741/3985.

        [37] ROBERTS J R. Factors affecting egg internal quality and egg shell quality in laying hens. The Journal of Poultry Science, 2004, 41(3): 161-177. doi:10.2141/jpsa.41.161.

        [38] RODRíGUEZ-NAVARRO A B, MARIE P, NYS Y, HINCKE M T, GAUTRON J. Amorphous calcium carbonate controls avian eggshell mineralization: a new paradigm for understanding rapid eggshell calcification. Journal of Structural Biology, 2015, 190(3): 291-303. doi:10.1016/j.jsb.2015.04.014.

        [39] MARIE P, LABAS V, BRIONNE A, HARICHAUX G, HENNEQUET- ANTIER C, RODRIGUEZ-NAVARRO A B, NYS Y, GAUTRON J. Quantitative proteomics provides new insights into chicken eggshell matrix protein functions during the primary events of mineralization and the active calcification phase. Journal of Proteomics, 2015, 126: 140-154. doi:10.1016/j.jprot.2015.05.034.

        [40] 馮嘉. 蛋雞產(chǎn)蛋后期雞蛋蛋殼超微結構特征的形成機理與營養(yǎng)調控[D]. 北京: 中國農(nóng)業(yè)科學院, 2021.

        FENG J. Mechanism of eggshell ultrastructure formation and nutritional modulation in the late phase production of laying hens[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)

        [41] 張亞男, 陳偉, 阮棟, 鄭春田. 基質蛋白對蛋殼品質的調控. 動物營養(yǎng)學報, 2019, 31(1): 24-31.

        ZHANG Y N, CHEN W, RUAN D, ZHENG C T. Regulation of matrix proteins on eggshell quality. Chinese Journal of Animal Nutrition, 2019, 31(1): 24-31. (in Chinese)

        Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs

        ZHANG YaNan, JIN YongYan, ZHUANG ZhiWei, WANG Shuang, XIA WeiGuang, RUAN Dong, CHEN Wei, ZHENG ChunTian

        Guangdong Key Laboratory of Animal Breeding and Nutrition/State Key Laboratory of Livestock and Poultry Breeding/Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agriculture Science, Guangzhou 510640

        The research was conducted to study the comparison of shell mechanical property, ultrastructure and component between chicken and duck eggs.160 eggs at the average weight from laying hens (Hy-Line grey) or ducks (Longyan Shanma) in aged 45 weeks were randomly divided into 2 groups, respectively. Each group had 20 eggs with 8 replicates. The laying hens and ducks were fed with maize-soybean meal basal diet, and the nutritional levels were formulated according to the national standard. The eggshell strength was measured by eggshell strength analyzer, the thickness of eggshell membrane and calcified eggshell was measured by digital micrometer, and then the eggshell ratio and toughness were calculated. Scanning electron microscope (SEM) was used to observe the ultrastructure of eggshell and to measure the effective thickness, mammillary thickness and width, and then to calculate the total thickness, the ratio of effective or mammillary thickness relative to total thickness. The mammillary structure was also observed by SEM and the degree of variation was scored. After crushing and extracting the eggshell, the content of matrix protein was determined by Coomassie brilliant blue method. After microwave digestion, the content of calcium, phosphorus, magnesium, manganese, copper and zinc in eggshell were determined according to the national standard method.In comparison with chicken eggshell, the weight of duck egg and eggshell were increased (<0.01), but the shell ratio was not changed (>0.05); the eggshell breaking strength, toughness and eggshell membrane thickness were increased (<0.01), but the thickness of the calcified eggshell (without shell membrane) was not changed (>0.05). In respect to the ultrastructure, the thickness of mammillary layer and the number of mammillary knobs in per unit were decreased, but the mammillary knob width and mammillary layer ratio in duck eggshell were increased in relative to those of chicken eggs (<0.001). No differences were observed in total and effective thickness (>0.05), but the ratio of effective layer relative to total thickness was increased in duck eggshell (<0.001). About the ultrastructure of mammillary knobs, there were no significant differences in the mammillae density, type B, type A, aragonite, cuff and pitted structure scores of the duck eggshell (>0.05), the scores of the variations such as caps, early fusion and late fusion, and the total score of knobs were decreased in duck eggshell compared with chicken eggshell (<0.05). There was higher frequency of mammillary structure variation in the chicken eggshell than the duck eggshell. The groove-like traces on the cap structure of the duck eggshell were deeper and clearer, the early fusion was more extensive, and the bonding between the knobs and the shell membrane fibers were denser than that in chicken eggshell. The contents of phosphorus, copper and manganese in duck eggshell were increased (< 0.05), but the magnesium and matrix protein contents were decreased in duck eggshells relative to those in chicken eggshell (<0.001), and there were no significant differences in calcium and zinc content (>0.05).Above all, the eggshell quality of chicken and duck eggs were similar, and there were no differences in eggshell ratio, thickness of calcified layer, calcium and zinc content in eggshells. Compared with the chicken eggshell, the mechanical properties of duck eggshell were better, for shell breaking strength and toughness of duck eggshell were increased, which mainly due to the improvement of shell ultrastructure by increasing effective thickness and the ameliorate of mammillary knobs in duck eggshell. In addition, the phosphorus, copper and manganese content in duck eggshell were increased, but the content of magnesium and matrix proteins were decreased. In some content, the quality of duck eggshell could be improved by regulating the mineral elements and matrix protein content in eggshell, and modulated the process of eggshell formation, especially the deposition of calcium carbonate in the mammillary and palisade layers, and increased effective thickness and improved structure of the mammillary layer.

        chicken eggshell; duck eggshell; mechanical properties; ultrastructure; eggshell components

        2021-08-18;

        2022-10-23

        國家自然科學基金(31802082)、廣東省自然科學基金(2019A1515012231)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系(CARS-42-13)、江門市科技計劃(2020030102870009145)、重點實驗室開放課題(2021GZ05,YDWS202106)、廣東省農(nóng)業(yè)科學院高水平科技創(chuàng)新戰(zhàn)略建設專項資金(202106TD,R2017YJ-YB3005,R2021PY-QY005)

        張亞男,E-mail:zyn3299@126.com。金永燕,E-mail:jinyongyan20@stu.gdou.edu. cn。張亞男與金永燕為同等貢獻作者。通信作者陳偉,E-mail:chenwei@gdaas.cn。通信作者鄭春田,E-mail:zhengchuntian@gdaas.cn

        (責任編輯 林鑒非)

        猜你喜歡
        結構
        DNA結構的發(fā)現(xiàn)
        《形而上學》△卷的結構和位置
        哲學評論(2021年2期)2021-08-22 01:53:34
        論結構
        中華詩詞(2019年7期)2019-11-25 01:43:04
        新型平衡塊結構的應用
        模具制造(2019年3期)2019-06-06 02:10:54
        循環(huán)結構謹防“死循環(huán)”
        論《日出》的結構
        縱向結構
        縱向結構
        我國社會結構的重建
        人間(2015年21期)2015-03-11 15:23:21
        創(chuàng)新治理結構促進中小企業(yè)持續(xù)成長
        四虎影视在线观看2413| 亚洲综合网国产精品一区| 成年女人a级毛片免费观看| 欧美丰满熟妇aaaaa片| 国产一区二区精品久久凹凸| 国产伦一区二区三区久久| 国产成人自拍高清在线| 99在线精品免费视频九九视| 96免费精品视频在线观看| 日本最新在线一区二区| 在线播放亚洲丝袜美腿| 最爽无遮挡行房视频| 亚洲第一网站免费视频| 亚洲中文字幕有综合久久| 亚洲第一幕一区二区三区在线观看| 亚洲热妇无码av在线播放| 精品日韩国产欧美在线观看| 青青手机在线视频观看| 伊人久久大香线蕉av色婷婷色| 狠狠躁夜夜躁人人躁婷婷视频| 日本免费不卡一区| 一区二区三区四区日韩亚洲| 亚洲美女av一区二区在线| 亚洲色无码国产精品网站可下载| 中文字幕Aⅴ人妻一区二区苍井空| 久久国产女同一区二区| 又硬又粗进去好爽免费| 成人激情五月天| 男性一插就想射是因为啥| 亚洲成熟中老妇女视频| 人妻少妇乱子伦无码视频专区| 成年av动漫网站18禁| 无码人妻精品一区二区三区不卡| 秋霞日韩一区二区三区在线观看| 好看的中文字幕中文在线| 欧美国产激情二区三区| 国产主播一区二区三区在线观看 | 青青草视频网站在线观看| 在线 | 一区二区三区四区| 日韩高清无码中文字幕综合一二三区| 美腿丝袜网址亚洲av|