吳慧明,王海濤,宋振東,曹紅葉,武志強
無線信能同傳系統(tǒng)的吞吐量優(yōu)化研究
吳慧明,王海濤*,宋振東,曹紅葉,武志強
(深圳職業(yè)技術(shù)學院 建筑工程學院,廣東 深圳 518055)
本文研究了在下行網(wǎng)絡中,大規(guī)模多輸入單輸出(MISO)無線信息和能量同傳(SWIPT)系統(tǒng)的吞吐量優(yōu)化問題.在該場景下,發(fā)送端發(fā)送波束成型信號與用戶進行通信,接收端采用時間切換器進行信號分割,按照時隙切換分別進行信息和能量的收集.通過運用波束成型技術(shù),采取時間分配方案,提高能量獲取效率.為了簡化目標函數(shù),降低算法的復雜度,提高傳輸速率,提出了基于迫零準則的波束成型方案,并用拉格朗日對偶法將該非凸問題轉(zhuǎn)化為一個半定規(guī)化問題求解.最后,通過仿真驗證算法,仿真結(jié)果證明基于時間切換器的無線信息和能量同傳系統(tǒng)的正確性和合理性.
無線信能同傳;波束成型;拉格朗日對偶法
近年來,無線通信技術(shù)的發(fā)展給人們生產(chǎn)生活帶來巨大的改變,同時,科技的進步、人們需求的提高也推動著無線通信技術(shù)高頻快速地迭代更新,3G、4G、5G技術(shù)的不斷推進,未來高速度、低功耗、低時延無線網(wǎng)絡將成為市場的主流.據(jù)預測,到2025年連接新一代無線網(wǎng)絡的設備將達千億[1].新興事物的快速發(fā)展,也帶來一些前所未有的問題,比如移動網(wǎng)絡和移動終端能耗的問題,以往手機充電可用一周,如今的智能手機在電池容量不斷提高的情況下,也幾乎要一天一充;移動網(wǎng)絡也是一樣,上海浦東國際機場防入侵系統(tǒng)要鋪設3萬多傳感節(jié)點,其電池更換會帶來極大的工作量和環(huán)境影響.有些還有安全性問題,有些傳感器和充電設備所處的環(huán)境比較惡劣,如礦井、油井、水下等高溫、高壓、有毒等環(huán)境中,更換電池非常困難,并且給相關(guān)人員帶來一定的人身危險.此外還有壽命問題,綠色環(huán)保問題等等,因此,如何能降低能耗,延長壽命,持續(xù)穩(wěn)定地供電成為研究的重點問題.對此,學術(shù)界利用SWIPT思想,提出了無線信息和能量同傳技術(shù).
利用電磁波可在空間中自由傳播并傳輸能量的特點,人們想到了無線能量傳輸(Wire-less Energy Transfer,WET)[2,3].然而,電磁波不僅可以用來傳輸能量,還可以用來傳遞信息,將二者相結(jié)合的研究已成為當下熱點,無線信息和能量同傳技術(shù)(SWIPT)相應而生.2008年,美國麻省理工大學的Varshney教授率先提出了無線信能同傳,并進行了詳細的分析和公式推導[4].在SWIPT系統(tǒng)中,一些研究提出了用半正定規(guī)劃松弛的方法解決遇到的非凸優(yōu)化問題,從而實現(xiàn)提高信干噪比和保證足夠的能量獲取[5-8].在降低計算的復雜度方面,Q. Shi提出了迫零(Zero Forcing,ZF)算法,利用迫零波束成型技術(shù)降低復雜度,消除多用戶間的相互干擾[9,10].Z. Xiang提出了魯棒波束成型,他構(gòu)建的模型是最簡單的3點MU-MISO系統(tǒng),在信道具有范數(shù)約束的不確定的情況下最大化獲取能量,設計魯棒波束成型,這個問題是一個非凸問題,最后通過半正定松弛來求解[11].根據(jù)接收信息不能同時用于信息收集和能量收集這一現(xiàn)實情況,R. Zhang等提出了兩種解決方案,一種是時間切換型(time-switching)接收機,一種是功率分配型(power-splitting)接收機.時間切換型接收機是將接收到的信號按照時隙切換分別進行信息和能量的收集;功率分配型接收機是將接收到的信號分開,分別進行信息和能量的收集[12].隨后,無線信息和能量同傳的應用逐漸推廣,研究的模型包括多用戶系統(tǒng),多輸入單輸出(Multiple Input Single Output,MISO)系統(tǒng),多輸入多輸出(Multiple Input Multiple Output,MIMO)系統(tǒng),全雙工系統(tǒng)(Full Duplex,F(xiàn)D)等[13-27].本文提出了一種基于時間切換器的無線信息和能量同傳系統(tǒng),在本系統(tǒng)模型中,研究的是吞吐量的最大化設計,為實現(xiàn)吞吐量的最大化,我們建立的模型為滿足波束成形的總功率小于其最大的發(fā)送功率條件下,系統(tǒng)總速率的最大化.
圖1為系統(tǒng)模型示意圖,在本系統(tǒng)中,發(fā)送端為多天線,其配有K根發(fā)送天線,接收端為單天線用戶.
圖1 基于時間切換器系統(tǒng)模型示意圖
發(fā)送端采用波束成型技術(shù)為其對應的接收端發(fā)送信號,接收端在接收天線處引入加性高斯白噪聲.在時間切換模式下,接收端配有時間切換器,信號在被接收后,不同的時間段送接收端不同的接收機,在時間切換器的作用下,將接收到的信號按照時間進行切換.以一個周期為總的信號持續(xù)接收時間,在該時間段內(nèi),第一個階段為,其中為時間切換系數(shù),且在這一時間段內(nèi),用戶接收信號并將其用于信息解調(diào);在這個周期的剩余時間段內(nèi),用戶接收信號并將其用于能量收集.信號表示為:
將(2)式代入(3)得:
在一個持續(xù)接收時間周期T內(nèi),用戶收集的平均功率為:
通過“迫零”設計波束成型策略,使得除目標用戶以外的所有用戶的信道均與目標用戶的波束成型向量正交,從而達到解決相關(guān)干擾的目的,大大優(yōu)化了SINR,提升了速率.
由此可知,原問題可轉(zhuǎn)化為:
目標函數(shù)通過KKT條件求解:
式(17)中,前3式是拉格朗日(Karush-Kuhn-Tucker)KKT互補松弛條件,5式和6式是拉格朗日KKT導數(shù)約束條件,7式和8式是原約束條件,最后1式是拉格朗日KKT對偶問題的約束條件.通過計算得:
由式(18)、(19)解得:
上式表明,如果用戶的信道狀態(tài)越好,那么分配給該用戶的波束成型向量的功率就越高,同時,在時間切換的一個周期內(nèi),用于信息解調(diào)的時間可以更長,從而可以更充分地利用條件更好的信道.反之,如果用戶的信道狀態(tài)較差,那么分配給該用戶的波束成型向量的功率就相對較少,在時間切換的一個周期內(nèi),用于信息解調(diào)的時間相對較短.
在本節(jié)中,對基于時間切換器的無線信能同傳系統(tǒng)進行仿真驗證.仿真中,考慮該系統(tǒng)網(wǎng)絡由1個基站、4根發(fā)射天線、4根接收天線和3個用戶組成.假設信道噪聲和信息轉(zhuǎn)換引入的噪聲均為加性高斯白噪聲,且噪聲的方差為-50dBm,假設系統(tǒng)的能量轉(zhuǎn)換效率為0.7,在此情況下,研究系統(tǒng)的性能.通過MATLAB搭建基于時間切換器的無線信能同傳系統(tǒng)的仿真環(huán)境,經(jīng)過10000次蒙特卡羅仿真.
圖2 不同距離時,系統(tǒng)吞吐量與發(fā)射功率的關(guān)系曲線
圖3 系統(tǒng)最佳時間切換系數(shù)與發(fā)射功率的關(guān)系曲線
[1] Ericsson White Paper, More than 50 billion connected devices[R]. Ericsson Tech. Rep. 2011.
[2] CARVALHO N B, GEORAIADIS A, COSTANZO A. Wireless power transmission: R&D activities within Europe[J]. IEEE Transactions on Theory and Techniques, 2014,62(4):1031-1045.
[3] LU X, WANG P, NIYATO D. Wireless networks with RF energy harvesting: a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2015,17(20):757-789.
[4] Varshney L R. Transporting information and energy simultaneously[C]. Proc. IEEE International Symposium on Information Theory. Toronto, Canada, 2008:1612-1616.
[5] Zhang R, Ho C K. MIMO broadcasting for simultaneous wireless information and power transfer [J]. IEEE Transactions on Wireless Communications, 2013,12:1989-2001.
[6] Xu J, Liu L, Zhang R. Multiuser MISO beamforming forsimultaneous wireless information and power transfer[J]. IEEE Transactions on Signal Processing, 2015,62(18):4798-4810.
[7] NG D, W K, SCHOBER R. Resource allocation for secure Communication in systems with wireless information and power transfer[C]. IEEE Globecom Workshops. 2013:1251-1257.
[8] Hong Y, Marzetta T. Performance of Conjugate and Zero-Forcing Beamforming in Large-Scale Antenna Systems[J]. IEEE Journal on Selected Areas in Communications,2013,31(2):172-179.
[9] Shi Q, Liu L, Xu W, et al. Joint transmit beamfor- mingand receive power splitting for MISO SWIPT systems[J]. IEEE Transactions on Wireless Communications, 2014,18(4):600-603.
[10] Shi Q, Peng C, Xu W. Energy efficiency optimization for MISO SWIPT systems[J]. IEEE Transactions on Signal Processing, 2016,64(4):842-854.
[11] Xiang Z, Tao M. Robust beamforming for wireless information and power transmission[J]. IEEE Wireless Communications Letters, 2012,4(1):372-375.
[12] Zhang H, Song K, Huang Y, et al. Energy harvesting balancing technique for robust beam-forming in multiuser MISO SWIPT system[J]. Proc. IEEE Int. Conf. WCSP, Hangzhou, China, 24-26 Oct, 2013.
[13] Zong Z, Feng H, Yu F. Optimal Transceiver Design for SWIPT in K-User MIMO Interference Channels[J]. IEEE Transactions on Wireless Communications, 2016,15(1):430-445.
[14] Li B, Rong Y, Sun J, et al. A distributionally robustlinear receiver design for multi-access space- time block coded MIMO systems[J]. IEEE Transactions on Wireless Communications, 2017,16(1):464-474.
[15] Bi S, Ho C K, Zhang R. Wireless powered communi- cation: opportunities and challenges[J]. IEEE Communi- cations Magazine, 2014,53(4):117-125.
[16] TANG J, DANIEK C L, ZHAO N. Energy efficiency optimization with SWIPT in MIMO broadcast channels for Internet of Things[J]. IEEE Internet of Things Journal, 2018,5(4):2605-2619.
[17] HUANG Y, LIU M, LIU Y. Energy efficient SWIPT in distributed antenna systems[J]. IEEE Internet of Things Journal, 2018,5(4):2646-2656.
[18] CUI Q, YUAN T, TAO X. Energy efficiency analysis of two-way DF relay system with nonideal power amplifiers[J]. IEEE Communications Letters, 2014,18(7):1254-1257.
[19] KHAFAGY M G, TAMMAM A, ALOUINI M S. Efficient cooperative protocols for full-duplex relaying over Nakagamim fading channels[J]. IEEE Transactions on Wireless Communications, 2015,14(6):3456-3470.
[20] CHENG X, LOU N, LI S. Spatially sparse beamforming training for millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2017,16(5):3385-3400.
[21] LIU P, LI Y, ZHANG Z. Multiple fan-beam antenna array for massive MIMO applications[J]. Journal of Communications and Information Networks, 2018,3(1):38-42.
[22] MOLISCH F, RATNAM V, HAN S, et al. Hybrid beamforming for massive MIMO: a survey[J]. IEEE Communications Magazine, 2017,55(9):134-141.
[23] LIU A, LAU V K N, ZHAO M J. Stochastic successive convex optimization for two-timescale hybrid precoding in massive MIMO[J]. IEEE Journal of Selected Topics in Signal Processing, 2018,12(3):432-444.
[24] GAO Y, KHALIEL M, ZHENG F, et al. Rotman lens based hybrid analog-digital beamforming in massive MIMO systems: array architectures,beam selection algorithms and experiments[J]. IEEE Transactions on Vehicular Technology, 2017,66(10):9134-9148.
[25] MASCHIETTI F, GESBERT D, DE K P, et al. Robust location-aided beam alignment in millimeter wave massive MIMO[C]//Proceedings of 2017 IEEE Global Communications Conference (GLOBECOM). Sing- apore: IEEE, 2017:1-6.
[26] ZHU Y, ZHANG Q, YANG T. Low-complexity hybrid precoding with dynamic beam assignment in mm WaveOFDM systems[J]. IEEE Transactions on Vehicular Technology, 2018,67(4):3685-3689.
[27]王世強,邢建春,李決龍,等.面向無線傳感器網(wǎng)絡的無線攜能通信研究[J].傳感器與微系統(tǒng),2015(8):46-53.
On Throughput Optimization Based on SWIPT Technology
WU Huiming, WANG Haitao*, SONG Zhendong, CAO Hongye, WU Zhiqiang
()
This paper studies the throughput optimization of Multiple Input Single Output (MISO) Simultaneous Wire-less Information and Power Transfer (SWIPT) system in downlink networks. In this scenario, the transmitter sends beam-forming to communicate with the user, the receiver uses time switch to segment the signal, and collects information and power according to the time slot switching. By using beamforming technology, time allocation scheme is adopted to improve the efficiency of energy acquisition. In order to simplify the objective function, reduce the complexity of the algorithm and improve the transmission rate, a beamforming scheme based on zero forcing criterion is proposed, and the nonconvex problem is transformed into a semi definite programming problem by Lagrange dual method. Finally, the algorithm is verified by simulation. Simulation results show that the simultaneous interpreting system based on time switcher is correct and efficient.
SWIPT; Beam-forming; Lagrangian dual method
TN929
A
1672-0318(2022)01-0015-06
10.13899/j.cnki.szptxb.2022.01.004
2021-09-22
2020國家自然科學基金聯(lián)合基金重點項目(U1913213).
吳慧明,山東新泰人,碩士研究生,副教授,主要研究方向為控制、通信、職教等.
王海濤,男,黑龍江齊齊哈爾,博士,講師,超精密加工,流體力學.
(責任編輯:羅歡)