吳 鵬,曹 地,朱光輝,柳雪青,李 勇,李洋冰,胡維強(qiáng),劉再振,孔 為,費(fèi)景亮
鄂爾多斯盆地東緣臨興地區(qū)海陸過渡相頁巖氣地質(zhì)特征及成藏潛力
吳 鵬1,曹 地2,3,朱光輝1,柳雪青2,3,李 勇4,李洋冰2,3,胡維強(qiáng)2,3,劉再振2,3,孔 為2,費(fèi)景亮2,3
(1. 中聯(lián)煤層氣有限責(zé)任公司,北京 100011;2. 中海油能源發(fā)展股份有限公司工程技術(shù)分公司,天津 300452;3. 中海油能源發(fā)展股份有限公司非常規(guī)勘探開發(fā)重點實驗室,天津 300452;4. 中國礦業(yè)大學(xué)(北京) 地球科學(xué)與測繪工程學(xué)院,北京 100083)
海陸過渡相頁巖氣是我國頁巖氣增儲上產(chǎn)的重要接替領(lǐng)域,基于鄂爾多斯盆地東緣臨興地區(qū)海陸過渡相頁巖實驗和研究資料,選取山西組、太原組和本溪組頁巖層系為研究對象,從沉積環(huán)境、頁巖展布、有機(jī)地球化學(xué)特征、礦物學(xué)特征、物性特征和含氣性特征等方面,系統(tǒng)總結(jié)解剖研究區(qū)海陸過渡相頁巖氣地質(zhì)特征,分析其富集成藏潛力。結(jié)果表明:鄂爾多斯盆地在晚石炭世–早二疊世受區(qū)域內(nèi)部構(gòu)造活動影響,水體環(huán)境變化頻繁,形成多期次的濱淺海–三角洲前緣–濱淺湖組合的沉積旋回,沉積多套海陸過渡相富有機(jī)質(zhì)頁巖;臨興地區(qū)位于鄂爾多斯盆地東部晉西撓折帶的中北地區(qū),區(qū)內(nèi)沉積環(huán)境穩(wěn)定,海陸過渡相富有機(jī)質(zhì)頁巖廣泛分布;巖性主要為灰白色–淺灰色細(xì)粒砂巖和暗色泥頁巖互層發(fā)育,垂向上頁巖累計厚度大,為60~180 m;頁巖有機(jī)質(zhì)類型為Ⅱ2–Ⅲ型干酪根,總有機(jī)質(zhì)碳含量較高,平均TOC質(zhì)量分?jǐn)?shù)為3.07%,處于成熟生氣階段;頁巖礦物成分以石英和黏土類礦物為主,長石和碳酸鹽巖類礦物含量較少;宏觀上主要孔隙類型為無機(jī)孔隙和有機(jī)質(zhì)孔隙,裂縫不發(fā)育,微觀上孔隙受黏土礦物控制,孔隙形態(tài)多為開放狹縫狀的微孔和介孔。研究區(qū)海陸過渡相頁巖具有低孔低滲的物性特征,但平均含氣量為1.15 m3/t,具有較好的含氣特征,確定研究區(qū)內(nèi)山西組北部、太原組東北部、本溪組東部和北部為頁巖氣潛力區(qū)。研究認(rèn)識為該區(qū)后期頁巖氣勘探開發(fā)提供理論據(jù)。
晚石炭–早二疊世;頁巖氣;海陸過渡相;鄂爾多斯盆地;資源潛力
2000年以來全球天然氣需求量逐年攀升,作為戰(zhàn)略資源,天然氣在化石能源的地位不斷升高,而頁巖氣勘探開發(fā)是天然氣資源的重要補(bǔ)充[1-4]。目前全球頁巖氣勘探和開發(fā)主要放在海相頁巖層系,在中國南方長寧區(qū)塊龍馬溪組海相頁巖的成功開發(fā)更是促進(jìn)了這一趨勢[3-4]。中國頁巖氣資源儲量豐富、類型多樣,海陸過渡相和陸相頁巖氣同樣具有資源潛力,其中海陸過渡相頁巖氣資源量約為19.8萬億m3,占中國頁巖氣資源總量的四分之一,鄂爾多斯盆地和四川盆地海陸過渡相頁巖氣地質(zhì)資源量合計為13.5萬億m3,占全國地質(zhì)資源量的68%,是中國海陸過渡相頁巖氣資源的主體[5-10]。南方海相頁巖氣的中深層勘探開發(fā)和開采技術(shù)已經(jīng)成熟,勘探深度已由中深層轉(zhuǎn)向深層。北方海陸過渡相頁巖埋深為1 500~2 500 m,遠(yuǎn)小于海相頁巖埋深,勘探和開發(fā)難度低于深層海相頁巖[11-13]。近年來在全國多地投入了大量鉆探試井開展對海陸過渡相頁巖氣的試采和研究,鄂爾多斯盆地西北部的鄂頁1井和東南部大吉地區(qū)的5口直井在二疊系獲得工業(yè)氣流,沁水盆地壽陽Y01、漣源盆地湘頁1井和四川盆地川東2口頁巖井等都在二疊系取得良好的頁巖氣顯示[13-20]。鉆探結(jié)果揭示了中國海陸過渡相頁巖具有顯著的勘探開發(fā)潛力,鄂爾多斯盆地最有望實現(xiàn)海陸過渡相頁巖氣勘探開發(fā)的突破,形成規(guī)?;a(chǎn)能,進(jìn)而為全國海陸過渡相頁巖氣勘探開發(fā)提供理論實踐依據(jù),增加我國天然氣資源的戰(zhàn)略儲備[21-24]。雖然南方海相頁巖氣的成功開發(fā)已經(jīng)提供了大量的理論和技術(shù)參考,但北方海陸過渡相頁巖氣在構(gòu)造演化、沉積環(huán)境、頁巖氣成因、巖石礦物學(xué)特征、地球化學(xué)特征、儲層特征和頁巖氣成藏模式等與海相頁巖存在較大差異,海相頁巖氣的理論和技術(shù)不能完全適用,當(dāng)前急需建立海陸過渡相頁巖氣地質(zhì)理論和評價體系,明確頁巖氣有利層段和“甜點”區(qū),進(jìn)而開發(fā)高效適用的鉆井和儲層改造技術(shù),實現(xiàn)海陸過渡相頁巖氣規(guī)?;拈_發(fā)和開采。
鄂爾多斯盆地海陸過渡相頁巖主要發(fā)育在石炭–二疊系,已有部分專家學(xué)者根據(jù)鄂爾多斯盆地西北部和東南部的鉆探井結(jié)果,取得了初步的地質(zhì)認(rèn)識,肯定了鄂爾多斯盆地二疊系海陸過渡相頁巖氣的資源潛力[22-25]。受限于資料數(shù)據(jù)的稀缺和區(qū)域性問題,鄂爾多斯盆地海陸過渡相頁巖氣研究一直未取得系統(tǒng)性結(jié)論。為此,筆者擬通過系統(tǒng)梳理鄂爾多斯盆地東緣臨興地區(qū)本溪組–太原組–山西組海陸過渡相頁巖氣儲層地質(zhì)特征,明確研究區(qū)內(nèi)有利頁巖氣儲層層段分布,以期為鄂爾多斯盆地海陸過渡相頁巖氣未來的勘探開發(fā)提供理論依據(jù)和借鑒。
研究區(qū)位于鄂爾多斯盆地東北部,晉西撓褶帶的中北地區(qū),北至興縣,南抵臨縣,構(gòu)造上為北東–南西向單斜,地層整體西傾[21-30]。本次研究對象為上石炭統(tǒng)本溪組、下二疊統(tǒng)太原組和山西組地層,其中,山西組的巖性為灰白–淺灰白含礫中–細(xì)砂巖、粉砂巖和粉砂質(zhì)泥巖,偶見薄煤層,頁巖沉積往往與細(xì)粉砂巖互層,但整體沉積厚度較大;太原組主要發(fā)育含礫中砂巖、細(xì)砂巖和粉砂巖,偶見薄煤層,部分地區(qū)頁巖沉積較厚;本溪組受海相沉積影響較大,巖性特征復(fù)雜,灰色細(xì)粒砂巖、灰色灰?guī)r和暗色頁巖互層沉積,偶見薄煤層和煤線發(fā)育[24, 31-36](圖1)。
圖1 鄂爾多斯盆地臨興區(qū)塊地理位置及巖性綜合柱狀圖(據(jù)匡立春等[24],修改)
研究區(qū)內(nèi)地層發(fā)育特征受控于鄂爾多斯盆地的沉積構(gòu)造演化,中奧陶世區(qū)塊整體隆升,上部地層發(fā)生剝蝕缺失;晚石炭世–早二疊世,鄂爾多斯盆地沉積穩(wěn)定,廣泛發(fā)育一套海相、海陸過渡相沉積層系,部分地區(qū)伴生有煤層。受區(qū)域內(nèi)部構(gòu)造活動影響,水體環(huán)境變化頻繁,形成多期次的濱淺海–三角洲前緣–濱淺湖組合的沉積旋回,沉積多套海陸過渡相富有機(jī)質(zhì)頁巖,累計厚度60~180 m。本文研究目的地層為上石炭統(tǒng)本溪組、下二疊統(tǒng)太原組和山西組,主要巖性為暗色頁巖、灰色砂巖和碳酸鹽巖,其中暗色頁巖為海陸過渡相富有機(jī)質(zhì)頁巖。研究區(qū)內(nèi)本溪組時期主要為濱淺海、淺水陸棚沉積,向上到太原組,水體環(huán)境逐漸變淺,濱岸相沉積增多,到山西組時期,沉積水深持續(xù)變淺,開始以三角洲相和濱淺湖相沉積為主[31-40]。對比研究區(qū)山西組、太原組和本溪組累計頁巖厚度可以發(fā)現(xiàn),山西組頁巖累計厚度為12.50~54.65 m,平均厚度為34.51 m,平面上呈自南向北逐漸增厚的趨勢,表明山西組海陸過渡相頁巖沉積發(fā)育時期,北側(cè)水體更深;太原組頁巖累計厚度為29.00~76.02 m,平均厚度為49.03 m,平面上呈南北厚中間薄的展布特征;本溪組頁巖累計厚度為20.00~59.03 m,平均厚度為38.05 m,平面上呈中間厚南北薄和西薄東厚的趨勢,但整體厚度差距不大(圖2)。
根據(jù)研究區(qū)山西組、太原組和本溪組3套地層143個頁巖樣品測試數(shù)據(jù),山西組頁巖總有機(jī)碳質(zhì)量分?jǐn)?shù)為0.04%~37.3%,平均2.26%,主頻段為0~1%和1%~2%,共占山西組樣品總數(shù)的72%,主頻段均值為0.85%,有28%的頁巖樣品總有機(jī)碳含量大于2%;太原組頁巖總有機(jī)碳質(zhì)量分?jǐn)?shù)為0.26%~34.7%,平均3.8%,主頻段為0~1%、1%~2%和2%~3%,共占太原組樣品總數(shù)的80%,主頻段均值為1.73%,有60%的頁巖樣品總有機(jī)碳質(zhì)量分?jǐn)?shù)大于2%;本溪組頁巖總有機(jī)碳質(zhì)量分?jǐn)?shù)為0.09%~20.6%,平均3.17%,主頻段為0~1%、1%~2%和2%~3%,共占本溪組樣品總數(shù)的77.2%,主頻段均值為1.38%,有41%的頁巖樣品總有機(jī)碳質(zhì)量分?jǐn)?shù)大于2%(圖3)。
圖2 目的層累計頁巖厚度等值線
圖3 頁巖TOC分布頻率
對比研究區(qū)山西組、太原組和本溪組3套地層頁巖樣品的殘余氯仿瀝青“A”含量可知,山西組頁巖樣品氯仿瀝青“A”質(zhì)量分?jǐn)?shù)為0.006 6%~0.250 4%,平均0.093 7%;太原組頁巖樣品氯仿瀝青“A”質(zhì)量分?jǐn)?shù)為0.033 5%~0.203 9%,平均0.080 0%;本溪組頁巖樣品氯仿瀝青“A”質(zhì)量分?jǐn)?shù)為0.0208%~0.0506%,平均0.0385%。依據(jù)SY/T 5739—1995《陸相烴源巖地球化學(xué)評價方法》,殘余氯仿瀝青“A”質(zhì)量分?jǐn)?shù)在0.05%~0.10%時都為中等。山西組和太原組頁巖樣品有機(jī)質(zhì)豐度都為中等,且太原組的數(shù)據(jù)更為穩(wěn)定。
利用偏光顯微鏡和顯微分光光度計對頁巖樣品進(jìn)行鏡下顯微組分觀察與特征描述。研究區(qū)山西組、太原組和本溪組頁巖干酪根顯微組分中殼質(zhì)組最發(fā)育,其次為鏡質(zhì)組和惰質(zhì)組,腐泥組最不發(fā)育。其中殼質(zhì)組體積分?jǐn)?shù)為11%~83%,平均61%,鏡質(zhì)組體積分?jǐn)?shù)為7%~76%,平均為29%。依照四分法范式圖解作研究區(qū)頁巖干酪根顯微組分三角圖(圖4),由圖中可知,山西組頁巖樣品落在腐殖型區(qū)域,太原組和本溪組頁巖樣品落在混合型區(qū)域。綜上研究認(rèn)為研究區(qū)暗色頁巖具有2種干酪根類型,山西組以Ⅲ型為主,太原組和本溪組以Ⅱ2(偏腐殖型)為主(圖4)。
圖4 頁巖干酪根顯微組分三角圖
本文對選取的107個頁巖樣品進(jìn)行成熟度分析,進(jìn)行鏡質(zhì)體反射率測試實驗。測試結(jié)果表明山西組37個頁巖樣品有機(jī)質(zhì)成熟度ran值為0.92%~1.11%,平均1.03%;太原組34個頁巖樣品ran值為1.01%~1.09%,平均1.06%;本溪組36個頁巖樣品ran=1.06%~1.30%,平均1.15%;有機(jī)質(zhì)熱演化程度與埋藏深度呈正相關(guān)性,由山西組向下至本溪組,暗色頁巖的有機(jī)質(zhì)成熟度逐漸遞增。研究區(qū)整體頁巖有機(jī)質(zhì)成熟度ran值為0.92%~1.30%,處于成熟熱演階段,具有可觀的生烴能力。與四川盆地龍馬溪組、美國Marcellus和Ohio海相頁巖對比,不同于龍馬溪組頁巖的高成熟度特征,研究區(qū)暗色頁巖的成熟度與美國的海相頁巖更相近,仍具有很高的生氣潛力。
對研究區(qū)184個頁巖樣品進(jìn)行鏡下薄片鑒定和X-衍射分析,鏡下薄片鑒定結(jié)果表明:①研究區(qū)暗色頁巖中碎屑成分主要為石英、長石、酸性噴出巖和變質(zhì)巖,少量的云母等巖屑,其中,石英體積分?jǐn)?shù)為1.0%~93.0%,平均40.0%。②膠結(jié)物有泥質(zhì)、鐵方解石、方解石、鐵白云石、菱鐵礦和黃鐵礦等,以泥質(zhì)為主,其余膠結(jié)物含量極少。③由于黃鐵礦和碳酸鹽礦物含量較少,選擇石英和長石作為脆性礦物,對比研究區(qū)山西組、太原組和本溪組的礦物脆性指數(shù)特征。山西組暗色頁巖平均脆性指數(shù)為47.08%,本溪組平均脆性指數(shù)最小,為39.37%,太原組介于二者之間,為42.28%,說明山西組頁巖儲層的后期可壓裂性更好(圖5,表1)。
圖5 頁巖礦物含量三角圖
表1 X-全巖衍射實驗礦物質(zhì)量分?jǐn)?shù)及脆性指數(shù)特征
注:脆性指數(shù)=(石英+長石)/(石英+長石+碳酸鹽巖類礦物+黏土礦物)×100%
研究區(qū)頁巖樣品巖心物性(圖6)分析表明,山西組66.7%的頁巖樣品滲透率小于0.05×10–3μm2,孔隙率為1.15%~3.03%,平均2.14%;太原組75%的頁巖樣品滲透率小于0.10×10–3μm2,孔隙率為0.79%~ 3.62%,平均1.97%;本溪組66.7%的頁巖樣品滲透率小于0.01×10–3μm2,孔隙率全部小于1.0%,平均0.53%。研究區(qū)海陸過渡相暗色頁巖整體孔隙率和滲透率較低,最高孔隙率為3.62%,平均2.06%。初步表明研究區(qū)整體上海陸過渡相頁巖物性較差,且山西組和太原組差距不大。
采用氬離子拋光–掃描電鏡定性觀察頁巖孔隙類型,采用低溫氮氣吸附–脫附實驗定量化表征頁巖孔隙結(jié)構(gòu)。研究區(qū)內(nèi)選取了68個頁巖樣品進(jìn)行氬離子拋光–掃描電鏡實驗,162個頁巖樣品進(jìn)行低溫氮氣吸附–脫附實驗[41-43]。
3.3.1 孔隙類型定性表征
氬離子拋光–掃描電鏡實驗結(jié)果表明,研究區(qū)海陸過渡相頁巖發(fā)育微納米級孔隙,主要由無機(jī)孔隙和有機(jī)質(zhì)孔隙兩類共同構(gòu)成,其中無機(jī)孔隙較為發(fā)育,有機(jī)質(zhì)孔隙發(fā)育程度較低。無機(jī)孔隙主要包括黏土礦物片間孔、長石溶蝕孔和礦物邊緣孔。頁巖中含有的少量長石和碳酸鹽礦物遭受侵蝕后,容易發(fā)生礦物溶解,產(chǎn)生礦物溶蝕孔隙,但由于礦物本身含量較少,溶蝕孔隙發(fā)育規(guī)模也不大,孔徑一般在幾十至幾百納米,呈圓形、橢圓形和不規(guī)則形,主要發(fā)育在礦物顆粒的粒間和粒內(nèi)。黏土礦物片間孔發(fā)育在絲縷狀伊利石或書頁狀高嶺石中,形態(tài)呈扁平狹縫,沿黏土礦物層理近平行排列,孔徑為微納米級。還有部分發(fā)育在兩種礦物顆?;虻V物顆粒和有機(jī)質(zhì)之間的礦物邊緣孔,孔徑呈納米級,孔隙形態(tài)為縫狀、條帶狀或不規(guī)則狀,但在研究區(qū)頁巖內(nèi)極少發(fā)育(圖7)。
受頁巖熱演化階段的影響,研究區(qū)海陸過渡相頁巖有機(jī)質(zhì)孔隙發(fā)育程度較低,主要為原始有機(jī)質(zhì)結(jié)構(gòu)孔隙和有機(jī)質(zhì)內(nèi)部生烴孔隙,部分與黃鐵礦伴生。孔隙形態(tài)呈圓形、橢圓形、三角形或不規(guī)則形,孔徑為幾至幾百納米,連通性較好(圖7)。
3.3.2 孔隙結(jié)構(gòu)定量表征
根據(jù)國際應(yīng)用化學(xué)聯(lián)合會(IUPAC)對孔隙的分類,孔徑小于2 nm的為微孔,2~50 nm的為介孔,大于50 nm的為宏孔。選用低溫氮氣吸附–脫附實驗來定量表征研究區(qū)頁巖孔隙結(jié)構(gòu)特征,結(jié)果表明,研究區(qū)頁巖孔隙主要為介孔,其中山西組頁巖孔隙孔徑為6.35~24.47 nm,平均孔徑為12.69 nm;太原組頁巖孔隙孔徑為9.37~16.94 nm,平均孔徑為13.87 nm;本溪組頁巖孔隙孔徑為11.32~25.84 nm,平均孔徑最大,為16.29 nm。
圖6 孔隙率與滲透率分布頻率直方圖
圖7 頁巖孔隙類型
低溫氮氣吸附–脫附曲線的回滯環(huán)曲線形態(tài)一定程度上反映了孔隙的形態(tài)特征。參照IUPAC的氮氣吸附–脫附曲線分類方案,研究區(qū)海陸過渡相頁巖樣品回滯曲線為H3和H4兩類。
H3型回滯曲線在低壓段吸附和脫附曲線基本重合,表明微孔徑范圍內(nèi)為一段封閉的不透氣氣孔;中壓段出現(xiàn)明顯拐點,遲滯環(huán)變寬大,說明孔隙結(jié)構(gòu)復(fù)雜,類型多樣;高壓段曲線斜率增大,說明大孔徑范圍存在縫狀開放型孔隙,可能與黏土礦物片間孔有關(guān)(圖8)。
H4型回滯曲線在低壓和中壓段吸附曲線和脫附曲線基本重合,高壓段吸附曲線和脫附曲線斜率明顯增大,說明孔隙類型主要為開放型圓筒狀孔隙,含狹窄裂隙孔(圖8)。
針對研究區(qū)4口井79塊不同層位的頁巖樣品現(xiàn)場解吸數(shù)據(jù),過去采用的直線擬合法計算損失氣,計算結(jié)果低于實際數(shù)值。結(jié)合現(xiàn)場解吸數(shù)據(jù),考慮到頁巖取心周期長,氣體損失時間增加和氣體損失速率的動態(tài)變化,本文采用多項式法計算總含氣量。研究區(qū)山西組總含氣量為0.60~2.49 m3/t,平均1.04 m3/t;太原組總含氣量為0.48~2.46 m3/t,平均含氣量為1.30 m3/t;本溪組總含氣量為0.61~1.74 m3/t,平均1.11 m3/t。研究區(qū)海陸過渡相頁巖表現(xiàn)良好的含氣性特征,且太原組優(yōu)于山西組和本溪組(圖9)。
圖8 研究區(qū)頁巖氮氣吸附–脫附特征曲線
圖9 頁巖含氣量分布直方圖
不同類型頁巖氣的基本地質(zhì)條件,如埋深、有效頁巖厚度、有機(jī)質(zhì)類型、有機(jī)質(zhì)成熟度、有機(jī)質(zhì)豐度、物性、孔隙結(jié)構(gòu)、含氣性、壓力系數(shù)等參數(shù)存在明顯差異,尤其在四川盆地海相頁巖氣勘探開發(fā)取得重大成功,相應(yīng)綜合潛力評價方法和標(biāo)準(zhǔn)也陸續(xù)建立,而海陸過渡相頁巖氣盡管表現(xiàn)出良好的勘探前景,但近年來始終未取得革命性突破,相應(yīng)評價方法和標(biāo)準(zhǔn)也沒有建立。與四川盆地龍馬溪組海相頁巖相比,臨興地區(qū)海陸過渡相頁巖在有機(jī)質(zhì)豐度、有機(jī)質(zhì)成熟度、孔隙率、脆性指數(shù)等多項地質(zhì)參數(shù)都處于劣勢,這極大地影響了頁巖氣的勘探潛力。但海陸過渡相頁巖同樣有優(yōu)勢性地質(zhì)特征,Ⅱ2、Ⅲ型干酪根意味著海陸過渡相頁巖不需要頁巖有機(jī)質(zhì)熱演化程度達(dá)到過熟就能大量產(chǎn)氣,有效頁巖厚度大和埋深淺同樣意味著海陸過渡相頁巖不僅有較好的儲集性能,也更方便未來的勘探和開發(fā)。
本文依據(jù)鄂爾多斯盆地東緣臨興地區(qū)海陸過渡相頁巖基本地質(zhì)特征,參考海相頁巖評價方法和GB/T 31483—2015《頁巖氣地質(zhì)評價方法》,從烴源巖、儲集性和產(chǎn)能3個方面出發(fā),選取TOC、有機(jī)質(zhì)成熟度ran、有機(jī)質(zhì)類型、礦物脆性指數(shù)、孔隙率、含氣量和有效頁巖厚度等多個參數(shù)[41-45],初步提出相對有利區(qū)劃分指標(biāo),指示研究區(qū)海陸過渡相頁巖相對有利區(qū)分布特征(表2)。臨興地區(qū)海陸過渡相頁巖有利區(qū)主要位于研究區(qū)的北部、東部和東北部,其中山西組北部、太原組東北部、本溪組東部和北部是主要的相對有利區(qū)。整體而言,說明研究區(qū)北部片區(qū)頁巖氣綜合潛力較大,可以作為未來主要勘探區(qū)域(圖10)。
表2 海陸過渡相頁巖評價參數(shù)及指標(biāo)
圖10 臨興地區(qū)海陸過渡相頁巖相對有利區(qū)分布
a. 鄂爾多斯盆地東緣臨興地區(qū)山西組、太原組和本溪組以三角洲、潮坪等海陸過渡相沉積為主,地層穩(wěn)定,發(fā)育頁巖與砂巖韻律互層,夾薄煤層,頁巖單層厚度小,但累計厚度大;有機(jī)質(zhì)類型為Ⅱ2、Ⅲ型,頁巖ran值為0.92%~1.30%,處于成熟熱演階段,具有較強(qiáng)的生氣能力;是頁巖孔隙類型主要為黏土礦物片間孔、長石溶蝕孔、礦物邊緣孔和有機(jī)質(zhì)孔,孔徑以微孔和介孔為主,是頁巖氣主要的儲集場所和運(yùn)移通道;頁巖礦物以石英和黏土礦物為主,碳酸鹽礦物和長石次之,山西組的礦物脆性指數(shù)最大,具有良好的可壓裂性。
b. 與四川盆地龍馬溪組海相頁巖相比,臨興地區(qū)海陸過渡相頁巖在有機(jī)質(zhì)豐度、有機(jī)質(zhì)成熟度、孔隙率、脆性指數(shù)等多項地質(zhì)參數(shù)都處于劣勢,但其Ⅱ2、Ⅲ型的有機(jī)質(zhì)類型、有效頁巖厚度大和埋深淺意味著海陸過渡相頁巖同樣具有較好的儲集性能和生烴潛力。
c. 依據(jù)鄂爾多斯盆地東緣臨興地區(qū)海陸過渡相頁巖基本地質(zhì)特征,參考南方海相頁巖評價方法和GB/T 31483—2015《頁巖氣地質(zhì)評價方法》,從烴源巖、儲集性和產(chǎn)能3個方面出發(fā),選取TOC、有機(jī)質(zhì)成熟度ran、有機(jī)質(zhì)類型、礦物脆性指數(shù)、孔隙率、含氣量和有效頁巖厚度等多個參數(shù),初步嘗試劃分臨興地區(qū)目的層海陸過渡相頁巖相對有利區(qū)分布特征。結(jié)果表明,山西組北部、太原組東北部、本溪組東部和北部是主要有利分布區(qū)。整體而言,研究區(qū)北部片區(qū)頁巖氣綜合潛力較大,可以作為未來主要勘探區(qū)域。
[1] 郭旭升,胡東風(fēng),劉若冰,等. 四川盆地二疊系海陸過渡相頁巖氣地質(zhì)條件及勘探潛力[J]. 天然氣工業(yè),2018,38(10):11–18.
GUO Xusheng,HU Dongfeng,LIU Ruobing,et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry,2018,38(10):11–18.
[2] 董大忠,王玉滿,李新景,等. 中國頁巖氣勘探開發(fā)新突破及發(fā)展前景思考[J]. 天然氣工業(yè),2016,36(1):19–32.
DONG Dazhong,WANG Yuman,LI Xinjing,et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry,2016,36(1):19–32.
[3] 鄒才能,董大忠,王玉滿,等. 中國頁巖氣特征、挑戰(zhàn)及前景(二)[J]. 石油勘探與開發(fā),2016,43(2):166–178.
ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China:Characteristics,challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development,2016,43(2):166–178.
[4] 鄒才能,董大忠,王社教,等. 中國頁巖氣形成機(jī)理、地質(zhì)特征及資源潛力[J]. 石油勘探與開發(fā),2010,37(6):641–653.
ZOU Caineng,DONG Dazhong,WANG Shejiao,et al. Geological characteristics,formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development,2010,37(6):641–653.
[5] 李勇,王延斌,倪小明,等. 煤層氣低效井成因判識及治理體系構(gòu)建研究[J]. 煤炭科學(xué)技術(shù),2020,48(2):185–193.
LI Yong,WANG Yanbin,NI Xiaoming,et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology,2020,48(2):185–193.
[6] 陳新軍,包書景,侯讀杰,等. 頁巖氣資源評價方法與關(guān)鍵參數(shù)探討[J]. 石油勘探與開發(fā),2012,39(5):566–571.
CHEN Xinjun,BAO Shujing,HOU Dujie,et al. Methods and key parameters of shale gas resources evaluation[J]. Petroleum Exploration and Development,2012,39(5):566–571.
[7] LI Yong,YANG Jianghao,PAN Zhejun,et al. Unconventional natural gas accumulations in stacked deposits:A discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin,China[J]. Acta Geologica Sinica(English Edition),2019,93(1):111–129.
[8] 陳世悅,張順,王永詩,等. 渤海灣盆地東營凹陷古近系細(xì)粒沉積巖巖相類型及儲集層特征[J]. 石油勘探與開發(fā),2016,43(2):198–208.
CHEN Shiyue,ZHANG Shun,WANG Yongshi,et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag,Bohai Bay Basin[J]. Petroleum Exploration and Development,2016,43(2):198–208.
[9] LI Yong,WANG Zhuangsen,PAN Zhejun,et al. Pore structure and its fractal dimensions of transitional shale:A cross-section from east margin of the Ordos Basin,China[J]. Fuel,2019,241:417–431.
[10] LI Yong,WANG Zhuangsen,GAN Quan,et al. Paleoenvironmental conditions and organic matter accumulation in Upper Paleozoic organic-rich rocks in the east margin of the Ordos Basin,China[J]. Fuel,2019,252:172–187.
[11] 薛純琦,吳建光,鐘建華,等.海陸交互相沉積泥頁巖發(fā)育特征研究:以鄂爾多斯盆地臨興地區(qū)太原組為例[J].中國礦業(yè)大學(xué)學(xué)報,2019,48(4):870–881.
XUE Chunqi,WU Jianguang,ZHONG Jianhua,et al. Characteristics of the marine-terrigenous interdepositional shale:A case study of Taiyuan Formation in Linxing area of Ordos Basin[J]. Journal of China University of Mining & Technology,2019,48(4):870–881.
[12] 薛純琦,吳建光,鐘建華,等. 海陸交互相與陸相頁巖儲層差異性特征:以鄂爾多斯盆地東北部臨興–神府工區(qū)山西組為例[J]. 中南大學(xué)學(xué)報(自然科學(xué)版),2020,51(4):998–1011.
XUE Chunqi,WU Jianguang,ZHONG Jianhua,et al. Characteristics of reservoir variability of transitional and continental shale,Shanxi Formation,Linxing and Shenfu area,northeastern Ordos Basin[J]. Journal of Central South University(Science Technology),2020,51(4):998–1011.
[13] 吳陳君,張明峰,劉艷,等. 四川盆地古生界泥頁巖的地球化學(xué)特征[J].煤炭學(xué)報,2013,38(5):794–799.
WU Chenjun,ZHANG Mingfeng,LIU Yan,et al. Geochemical characteristics of Paleozoic shale in Sichuan Basin and their gas content features[J]. Journal of China Coal Society,2013,38(5):794–799.
[14] 高波. 四川盆地龍馬溪組頁巖氣地球化學(xué)特征及其地質(zhì)意義[J]. 天然氣地球科學(xué),2015,26(6):1173–1182.
GAO Bo. Geochemical characteristics of shale gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and its geological significance[J]. Natural Gas Geoscience,2015,26(6):1173–1182.
[15] 曹春輝,張銘杰,湯慶艷,等. 四川盆地志留系龍馬溪組頁巖氣氣體地球化學(xué)特征及意義[J]. 天然氣地球科學(xué),2015,26(8):1604–1612.
CAO Chunhui,ZHANG Mingjie,TANG Qingyan,et al. Geochemical characteristics and implications of shale gas in Longmaxi Formation,Sichuan Basin,China[J]. Natural Gas Geoscience,2015,26(8):1604–1612.
[16] 汪生秀,焦偉偉,方光建,等. 渝東南地區(qū)五峰組—龍馬溪組頁巖氣地球化學(xué)特征及其成因分析[J]. 海相油氣地質(zhì),2017,22(4):77–84.
WANG Shengxiu,JIAO Weiwei,F(xiàn)ANG Guangjian,et al. Geochemical features and genesis of shale gas of Wufeng-Longmaxi Formation in southeastern Chongqing[J]. Marine Origin Petroleum Geology,2017,22(4):77–84.
[17] 韓輝,鐘寧寧,陳聰,等. 西北地區(qū)中小型盆地侏羅系陸相泥頁巖的含氣性[J]. 科學(xué)通報,2014,59:809–815.
HAN Hui,ZHONG Ningning,CHEN Cong,et al. The gas potential of Jurassic continental shale in the middle-small basins,northwest China[J]. Chinese Science Bulletin,2014,59(9):809–815.
[18] 徐紅衛(wèi),李賢慶,周寶剛,等. 延長探區(qū)延長組陸相頁巖氣地球化學(xué)特征和成因[J]. 礦業(yè)科學(xué)學(xué)報,2017,2(2):99–108.
XU Hongwei,LI Xianqing,ZHOU Baogang,et al. Geochemical characteristics and genesis of the Yanchang Formation terrestrial shale gas in the Yanchang exploration area[J]. Journal of Mining Science and Technology,2017,2(2):99–108.
[19] 李勇,王延斌,孟尚志,等. 煤系非常規(guī)天然氣合采地質(zhì)基礎(chǔ)理論進(jìn)展及展望[J]. 煤炭學(xué)報,2020,45(4):1406–1418.
LI Yong,WANG Yanbin,MENG Shangzhi,et al. Theoretical basis and prospect of coal measure unconventional natural gas coproduction[J]. Journal of China Coal Society,2020,45(4):1406–1418.
[20] LIANG Qingshao,ZHANG Xiang,TIAN Jingchun,et al. Geological and geochemical characteristics of transitional shale from the Lower Permian Taiyuan Formation,Taikang Uplift,southern North China Basin[J]. Marine and Petroleum Geology,2018,98:229–242.
[21] LUO Wen,HOU Mingcai,LIU Xinchun,et al. Geological and geochemical characteristics of transitional shale from the Upper Permian Longtan Formation,northwestern Guizhou,China[J]. Marine and Petroleum Geology,2018,89:58–67.
[22] LIU Shunxi,WU Caifang,LI Teng,et al. Multiple geochemical proxies controlling the organic matter accumulation of the marine-continental transitional shale:A case study of the Upper Permian Longtan Formation,western Guizhou,China[J]. Journal of Natural Gas Science and Engineering,2018,56:152–165.
[23] 肖佃師,盧雙舫,房大志,等. 海相高成熟頁巖氣儲層孔隙連通關(guān)系:以彭水地區(qū)龍馬溪組為例[J]. 油氣藏評價與開發(fā),2019,9(5):45–53.
XIAO Dianshi,LU Shuangfang,F(xiàn)ANG Dazhi,et al. Pore connectivity of marine high-maturity shale gas reservoirs:A case study in Longmaxi Formation,Pengshui area[J]. Reservoir Evaluation and Development,2019,9(5):45–53.
[24] 匡立春,董大忠,何文淵,等. 鄂爾多斯盆地東緣海陸過渡相頁巖氣地質(zhì)特征及勘探開發(fā)前景[J]. 石油勘探與開發(fā),2020,47(3):435–446.
KUANG Lichun,DONG Dazhong,HE Wenyuan,et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin,NW China[J]. Petroleum Exploration and Development,2020,47(3):435–446.
[25] 胡維強(qiáng),趙靖舟,李軍,等. 鄂爾多斯盆地西南部上古生界烴源巖特征及其對天然氣藏形成與分布的控制作用[J]. 天然氣地球科學(xué),2015,26(6):1068–1075.
HU Weiqiang,ZHAO Jingzhou,LI Jun,et al. Characteristics of source rocks and its controls on the formation and distribution of gas from Upper Paleozoic in southwest Ordos Basin[J]. Natural Gas Geoscience,2015,26(6):1068–1075.
[26] 范文田,胡國華,王濤. 鄂爾多斯盆地東緣海陸過渡相頁巖孔隙結(jié)構(gòu)定量化表征[J]. 中國科技論文,2019,14(4):429–434.
FAN Wentian,HU Guohua,WANG Tao. Quantitative characterization of pore structure of marine-continental transitional facies shale in the eastern margin of Ordos Basin[J]. China Sciencepaper,2019,14(4):429–434.
[27] 姚涇利,胡新友,范立勇,等. 鄂爾多斯盆地天然氣地質(zhì)條件資源潛力及勘探方向[J]. 天然氣地球科學(xué),2018,29(10):1465–1474.
YAO Jingli,HU Xinyou,F(xiàn)AN Liyong,et al. The geological conditions,resource potential and exploration direction of natural gas in Ordos Basin[J]. Natural Gas Geoscience,2018,29(10):1465–1474.
[28] 郗兆棟,田忠斌,唐書恒. 鄂爾多斯盆地東緣海陸過渡相頁巖氣儲層孔隙特征及影響因素[J]. 中國地質(zhì),2016,43(6):2059–2069.
XI Zhaodong,TIAN Zhongbin,TANG Shuheng. Characteristics and main controlling factors of shale gas reservoirs in transitional facies on the eastern margin of Ordos Basin[J]. Geology in China,2016,43(6):2059–2069.
[29] 楊俊杰. 鄂爾多斯盆地構(gòu)造演化與油氣分布規(guī)律[M]. 北京:石油工業(yè)出版社,2002.
YANG Junjie. Tectonic evolution and oil–gas reservoirs distribution in Ordos Basin[M]. Beijing:Petroleum Industry Press,2002.
[30] 胡維強(qiáng),李洋冰,陳鑫,等. 鄂爾多斯盆地臨興地區(qū)上古生界天然氣成因及來源[J]. 天然氣地球科學(xué),2020,31(1):26–36.
HU Weiqiang,LI Yangbing,CHEN Xin,et al . Origin and source of natural gas in the Upper Paleozoic in Linxing area,Ordos Basin[J]. Natural Gas Geoscience,2020,31(1):26–36.
[31] 鄭定業(yè),姜福杰,劉鐵樹,等. 鄂爾多斯盆地東緣臨興地區(qū)天然氣成因類型及氣源分析[J]. 地球科學(xué)與環(huán)境學(xué)報,2018,40(2):203–214.
ZHENG Dingye,JIANG Fujie,LIU Tieshu,et al. Genetic types and sources of natural gas in Linxing area,the eastern margin of Ordos Basin,China[J]. Journal of Earth Sciences and Environment,2018,40(2):203–214.
[32] 謝英剛,孟尚志,萬歡,等. 臨興地區(qū)煤系地層多類型天然氣儲層地質(zhì)條件分析[J]. 煤炭科學(xué)技術(shù),2015,43(9):71–75.
XIE Yinggang,MENG Shangzhi,WAN Huan,et al. Analysis on geological conditions of multi type natural gas reservoir in coal measure strata of Linxing area[J]. Coal Science and Technology,2015,43(9):71–75.
[33] 謝英剛,孟尚志,高麗軍,等. 臨興地區(qū)深部煤層氣及致密砂巖氣資源潛力評價[J]. 煤炭科學(xué)技術(shù),2015,43(2):21–24.
XIE Yinggang,MENG Shangzhi,GAO Lijun,et al. Assessments on potential resources of deep coalbed methane and compact sandstone gas in Linxing area[J]. Coal Science and Technology,2015,43(2): 21–24.
[34] 吳鵬,高計縣,郭俊超,等. 鄂爾多斯盆地東緣臨興地區(qū)太原組橋頭砂巖層序地層及沉積特征[J]. 石油與天然氣地質(zhì),2018,39(1):66–76.
WU Peng,GAO Jixian,GUO Junchao,et al. Sequence stratigraphy and sedimentary characteristic analysis of Qiaotou sandstone of Taiyuan Formation in Linxing area,eastern margin of Ordos Basin[J]. Oil & Gas Geology,2018,39(1):66–76.
[35] 趙俊斌,唐書恒,孫振飛,等. 鄂爾多斯盆地東緣興縣地區(qū)山西組高分辨率層序地層與聚煤規(guī)律[J]. 中國煤炭地質(zhì),2015,27(4):1–7.
ZHAO Junbin,TANG Shuheng,SUN Zhenfei,et al. Shanxi Formation high-resolution sequence stratigraphy and coal accumulation pattern in Xingxian area,Ordos Basin eastern margin[J]. Coal Geology of China,2015,27(4):1–7.
[36] 師晶,黃文輝,呂晨航,等. 鄂爾多斯盆地臨興地區(qū)上古生界泥巖地球化學(xué)特征及地質(zhì)意義[J]. 石油學(xué)報,2018,39(8):876–889.
SHI Jing,HUANG Wenhui,LYU Chenhang,et al. Geochemical characteristics and geological significance of the Upper Paleozoic mudstones from Linxing area in Ordos Basin[J]. Acta Petrolei Sinica,2018,39(8):876–889.
[37] 胡維強(qiáng),劉玉明,李洋冰,等. 鄂爾多斯盆地臨興地區(qū)上古生界烴源巖特征及其生排烴史研究[J]. 長江大學(xué)學(xué)報(自科版),2018,15(19):1–5.
HU Weiqiang,LIU Yuming,LI Yangbing,et al . The characteristics and generation–expulsion history of hydrocarbon source rocks of the Upper Paleozoic in Linxing area of Ordos Basin[J]. Journal of Yangtze University(Natural Science Edition),2018,15(19):1–5.
[38] 林俊峰,胡海燕,黎祺. 川東焦石壩地區(qū)頁巖氣特征及其意義[J]. 地球科學(xué),2017,42(7):1124–1133.
LIN Junfeng,HU Haiyan,LI Qi. Geochemical characteristics and implications of shale gas in Jiaoshiba,eastern Sichuan,China[J]. Earth Science,2017,42(7):1124–1133.
[39] 趙磊,賀永忠,楊平,等. 黔北下古生界烴源層系特征與頁巖氣成藏初探[J]. 中國地質(zhì),2015,42(6):1931–1943.
ZHAO Lei,HE Yongzhong,YANG Ping,et al. Characteristics of Lower Palaeozoic hydrocarbon source strata and a primary study of the shale gas accumulation in northern Guizhou Province[J]. Geology in China,2015,42(6):1931–1943.
[40] 魏祥峰,郭彤樓,劉若冰. 涪陵頁巖氣田焦石壩地區(qū)頁巖氣地球化學(xué)特征及成因[J]. 天然氣地球科學(xué),2016,27(3):539–548.
WEI Xiangfeng,GUO Tonglou,LIU Ruobing. Geochemical features of shale gas and their genesis in Jiaoshiba block of Fuling shale gasfield,Chongqing[J]. Natural Gas Geoscience,2016,27(3):539–548.
[41] 姜呈馥,王香增,張麗霞,等. 鄂爾多斯盆地東南部延長組長7段陸相頁巖氣地質(zhì)特征及勘探潛力評價[J]. 中國地質(zhì),2013,40(6):1880–1888.
JIANG Chengfu,WANG Xiangzeng,ZHANG Lixia,et al. Geological characteristics of shale and exploration potential of continental shale gas in 7th member of Yanchang Formation,southeast Ordos Basin[J]. Geology in China,2013,40(6):1880–1888.
[42] LIU Quanyou,JIN Zhijun,MENG Qingqiang,et al. Genetic types of natural gas and filling patterns in Daniudi gas field,Ordos Basin,China[J]. Journal of Asian Earth Sciences,2015,107:1–11.
[43] 宋文輝,劉磊,孫海,等. 基于數(shù)字巖心的頁巖油儲層孔隙結(jié)構(gòu)表征與流動能力研究[J]. 油氣藏評價與開發(fā),2021,11(4):497–505.
SONG Wenhui,LIU Lei,SUN Hai,et al. Pore structure characterization and flow ability of shale oil reservoir based on digital cores[J]. Petroleum Reservoir Evaluation and Development,2021,11(4):497–505.
[44] 李華兵,姚征,李寧,等. 神府礦區(qū)5-2煤層富油煤賦存特征及資源潛力評價[J]. 煤田地質(zhì)與勘探,2021,49(3):26–32.
LI Huabing,YAO Zheng,LI Ning,et al. Occurrence characteristics and resource potential evaluation of tar-rich coal for No.5-2 coal seam in Shenfu mining area[J]. Coal Geology & Exploration,2021,49(3):26–32.
[45] 楊燕青,張小東,許亞坤,等. 豫東地區(qū)煤系烴源巖有機(jī)質(zhì)特征與煤系氣資源潛力[J]. 煤田地質(zhì)與勘探,2019,47(2):111–120.
YANG Yanqing,ZHANG Xiaodong,XU Yakun,et al. The characteristics of organic matter in coal-measure source rocks and coal-measure gas resource potential in eastern Henan Province[J]. Coal Geology & Exploration,2019,47(2):111–120.
Geological characteristics and reservoir-forming potential of shale gas of transitional facies in Linxing area, eastern margin of Ordos Basin
WU Peng1, CAO Di2,3, ZHU Guanghui1, LIU Xueqing2,3, LI Yong4, LI Yangbing2,3, HU Weiqiang2,3, LIU Zaizhen2,3, KONG Wei2, FEI Jingliang2,3
(1. China United Coalbed Methane Company Limited, Beijing 100011, China; 2. CNOOC Energy Tech-Drilling & Production Co., Tianjin 300452, China; 3. Key Laboratory for Exploration & Development of Unconventional Resources, CNOOC Energy Technology & Services CO., Ltd., Tianjin 300452, China; 4. School of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China)
Shale gas of transitional facies is the important replacing area for increase of shale gas reserves and production. On the basis of the experiment and research data of shale of transitional facies of Linxing area in the eastern margin of Ordos Basin, by selecting the strata series of Shanxi Formation, Taiyuan Formation and Benxi Formation as the research object, from the sedimentary environments, shale distribution, organic geochemical characteristics, mineralogy, physical characteristics and gas-bearing characteristics, etc., the geology characteristics of the shale gas transitional facies in the study area were summarized and dissected systematically to analyze its enrichment and reservoir-forming potential. During the Late Carboniferous to the Early Permian, the Ordos Basin was affected by the active tectonic activities in the region, and the water environment changed frequently, resulting in the formation of multiple sedimentary cycles of littoral shallow sea, delta front and littoral shallow lake assemblages, and many sets of organic-rich shales of marine-continental transition facies were deposited. The study area is located in the north-central area of the western Shanxi flexural belt in the eastern part of the Ordos Basin, where the sedimentary environments are stable and organic-rich transitional shale is widely distributed. The rock characteristics of the shale are mainly interbedded gray-light gray fine-grained sandstone and dark mudstone, and the accumulated vertical thickness of the shale is big(60-180 m). The organic matter types of the organic-rich transitional shale in the study area are Ⅱ2-Ⅲ type kerogen, and the total organic matter carbon content is high, with TOC 3.07% which is in the mature gas generation stage. The mineral composition of the shale is mainly quartz and clay, and the content of feldspar and carbonate minerals is low. Macroscopically, the main types of pores are inorganic pores and organic pores, and the fractures are not developed. Microscopically, the pores are controlled by clay minerals, and the pore morphology is mostly open slit micropores and mesopores. The shale of the transitional facies in the study area has the physical characteristics of low porosity and low permeability, but has good gas-bearing characteristics, the average gas content is 1.15 m3/t. The comprehensive analysis of the shales’ characteristics shows that the shale gas in the study area has great potential, providing a theoretical basis for the exploration and development of shale gas in the later stage of the area.
Late Carboniferous-Early Permian; shale gas; transitional facies; Ordos Basin; resource potential
語音講解
TP028.8
A
1001-1986(2021)06-0024-11
2021-05-20;
2021-09-28
國家自然科學(xué)基金項目(42072194);國家科技重大專項項目(2016ZX05066)
吳鵬,1988年生,男,山東泰安人,博士,高級工程師,從事非常規(guī)油氣勘探與開發(fā)工作. E-mail:wupeng19@cnooc.com.cn
曹地,1993年生,男,河南濮陽人,碩士,助理工程師,從事非常規(guī)油氣勘探與開發(fā)工作. E-mail:caodi19931116@163.com
吳鵬,曹地,朱光輝,等. 鄂爾多斯盆地東緣臨興地區(qū)海陸過渡相頁巖氣地質(zhì)特征及成藏潛力[J]. 煤田地質(zhì)與勘探,2021,49(6):24–34. doi: 10.3969/j.issn.1001-1986.2021.06.003
WU Peng,CAO Di,ZHU Guanghui,et al. Geological characteristics and reservoir-forming potential of shale gas of transitional facies in Linxing area, eastern margin of Ordos Basin[J]. Coal Geology & Exploration,2021,49(6):24–34. doi: 10.3969/ j.issn.1001-1986.2021.06.003
移動閱讀
(責(zé)任編輯 范章群)