陳 鑫,吳 鵬,高計(jì)縣,胡維強(qiáng),丁萬(wàn)貴,李洋冰,柳雪青,馬立濤,劉 成,孔 為,曹 地,陳建奇,李 勇
臨興地區(qū)海陸過(guò)渡相頁(yè)巖及頁(yè)巖氣地球化學(xué)特征
陳 鑫1,2,吳 鵬3,高計(jì)縣3,胡維強(qiáng)1,2,丁萬(wàn)貴3,李洋冰1,2,柳雪青1,2,馬立濤1,2,劉 成1,2,孔 為1,2,曹 地1,2,陳建奇4,李 勇4
(1. 中海油能源發(fā)展股份有限公司工程技術(shù)分公司,天津 300452;2. 中海油能源發(fā)展股份有限公司非常規(guī)勘探開(kāi)發(fā)重點(diǎn)實(shí)驗(yàn)室,天津 300452;3.中聯(lián)煤層氣有限責(zé)任公司,北京 100011;4.中國(guó)礦業(yè)大學(xué)(北京) 地球科學(xué)與測(cè)繪工程學(xué)院,北京 100083)
為揭示鄂爾多斯盆地東緣上古生界海陸過(guò)渡相頁(yè)巖及頁(yè)巖氣地球化學(xué)特征,選取臨興地區(qū)頁(yè)巖樣,開(kāi)展薄片鑒定、全巖和黏土含量、掃描電鏡、有機(jī)碳、巖石熱解、干酪根顯微組分和干酪根碳同位素測(cè)試,分析頁(yè)巖解吸氣的氣體組分和碳同位素組成。結(jié)果表明:臨興地區(qū)過(guò)渡相頁(yè)巖礦物組分主要是石英和黏土礦物,含少量方解石、斜長(zhǎng)石、鉀長(zhǎng)石、白云石和黃鐵礦等。受礦物成因、沉積環(huán)境等多方面的影響,不同礦物組分與有機(jī)質(zhì)賦存方式各異。石英與有機(jī)質(zhì)存在2種賦存方式,黏土礦物存在3種賦存方式,黃鐵礦存在4種賦存方式。有機(jī)質(zhì)類型為Ⅱ2–Ⅲ型,有機(jī)碳含量平均值大于2.0%,干酪根碳同位素介于–24.5‰~–23.2‰。鏡質(zhì)體反射率介于0.92%~1.30%,max值介于427~494℃,有機(jī)質(zhì)熱演化達(dá)到成熟階段。頁(yè)巖氣中烴類氣以甲烷為主,含有少量乙烷、丙烷,總體屬于干氣。甲烷碳同位素均值為–40.0‰,介于海相頁(yè)巖氣和陸相頁(yè)巖氣甲烷碳同位素之間;乙烷碳同位素值介于–26.8‰~–22.56‰,均大于–29‰,整體呈現(xiàn)出13C1<13C2<13C3正碳序列。研究認(rèn)為,該區(qū)頁(yè)巖具備大量生成頁(yè)巖氣的潛力,頁(yè)巖氣主要來(lái)源于上古生界偏腐殖型頁(yè)巖,屬于由干酪根裂解而生成的有機(jī)熱成因煤成氣。
鄂爾多斯盆地東緣;海陸過(guò)渡相;頁(yè)巖氣;地球化學(xué);成因類型
隨著非常規(guī)油氣的勘探開(kāi)發(fā),頁(yè)巖氣已經(jīng)逐漸發(fā)展為一種重要的非常規(guī)天然氣資源[1-3]。頁(yè)巖氣具有其獨(dú)特的賦存方式,主要以游離和吸附狀態(tài)賦存于頁(yè)巖孔裂隙中,具有典型的“自生自儲(chǔ),原地成藏”的特點(diǎn)[4-9]。根據(jù)沉積環(huán)境,富有機(jī)質(zhì)頁(yè)巖主要分為海相頁(yè)巖、海陸過(guò)渡相頁(yè)巖和陸相頁(yè)巖三大類。目前,四川盆地五峰組–龍馬溪組的海相頁(yè)巖氣勘探開(kāi)發(fā)取得巨大成功[10-12],民和盆地窯街組、雅布賴盆地新河組以及鄂爾多斯盆地延長(zhǎng)組的陸相頁(yè)巖氣勘探開(kāi)發(fā)也取得長(zhǎng)足進(jìn)展[13-15],而海陸過(guò)渡相頁(yè)巖氣勘探開(kāi)發(fā)還處于起步階段,研究工作相對(duì)較少。近年來(lái),我國(guó)先后在鄂爾多斯盆地、柴達(dá)木盆地以及四川盆地等圍繞海陸過(guò)渡相頁(yè)巖地層進(jìn)行鉆探,氣測(cè)顯示良好,部分頁(yè)巖段壓裂測(cè)試獲得工業(yè)氣流,表明海陸過(guò)渡相頁(yè)巖氣具有良好的勘探開(kāi)發(fā)前景[16-22]。
中國(guó)海陸過(guò)渡相頁(yè)巖主要發(fā)育于石炭–二疊系,分布在西北的柴達(dá)木盆地、準(zhǔn)噶爾盆地,華北的鄂爾多斯盆地、沁水盆地和南華北盆地的石炭–二疊系和南方地區(qū)的四川盆地和中下?lián)P子地區(qū)的二疊系[16-24]??锪⒋旱萚24]研究認(rèn)為,鄂爾多斯盆地東緣有望在海陸過(guò)渡相頁(yè)巖氣領(lǐng)域率先實(shí)現(xiàn)突破,形成規(guī)模化產(chǎn)能,進(jìn)而成為中國(guó)天然氣產(chǎn)業(yè)新的戰(zhàn)略接替資源。筆者通過(guò)對(duì)鄂爾多斯盆地東緣臨興地區(qū)的5口鉆井頁(yè)巖巖心樣品現(xiàn)場(chǎng)解吸含氣性、碳同位素測(cè)試以及頁(yè)巖地球化學(xué)參數(shù)等測(cè)試,探討頁(yè)巖地球化學(xué)特征及其成因類型,并與典型的海相、陸相頁(yè)巖氣地球化學(xué)特征差異進(jìn)行對(duì)比分析,以期為該區(qū)塊頁(yè)巖氣資源勘探評(píng)價(jià)與開(kāi)發(fā)提供借鑒。
鄂爾多斯盆地是我國(guó)華北地臺(tái)西部的一個(gè)大型含油氣克拉通盆地[25-26]。臨興地區(qū)地處晉西撓褶帶上(圖1a),總體為簡(jiǎn)單的東高西低單斜構(gòu)造[27-28]。在早白堊世,由于中東部紫金山巖體的侵入,形成紫金山隆起區(qū),導(dǎo)致其周圍斷層裂縫較為發(fā)育[29-30],且導(dǎo)致研究區(qū)中部地層傾角顯著大于周邊,中部等深線更密集。在晚古生代古地理演化過(guò)程中主要經(jīng)歷了陸表海盆地為主的海相沉積、近海湖盆為主的海陸過(guò)渡相沉積以及內(nèi)陸坳陷湖盆為主的陸相沉積[31-33]。受紫金山隆起和區(qū)域地質(zhì)構(gòu)造運(yùn)動(dòng)的影響,水體動(dòng)蕩較為頻繁,主要形成濱淺海—三角洲前緣—濱淺湖相多期沉積旋回,發(fā)育多套海相和海陸過(guò)渡相沉積地層,并夾有多套煤層。含煤沉積地層自下而上依次為本溪組(C2)、太原組(P1)和山西組(P1)[5,22,24,33]。在本溪組—太原組主要發(fā)育陸表海環(huán)境下的潮汐三角洲–障壁海岸沉積體系,隨后發(fā)生海退,山西組主要發(fā)育海陸過(guò)渡環(huán)境下的淺水三角洲沉積體系。
圖1 研究區(qū)位置及樣品采集點(diǎn)
臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖主要為富有機(jī)質(zhì)暗色頁(yè)巖和炭質(zhì)頁(yè)巖,累計(jì)頁(yè)巖厚度90~120 m,平均頁(yè)巖厚度105 m[34]。上古生界海陸過(guò)渡相煤系頁(yè)巖與致密砂巖、煤層頻繁交互沉積,導(dǎo)致頁(yè)巖單層沉積厚度較薄、累積沉積厚度較大,為該區(qū)頁(yè)巖氣生成與富集奠定了良好的物質(zhì)基礎(chǔ)。
本次共采集臨興地區(qū)5口頁(yè)巖氣井(圖1b)26個(gè)氣樣,300余個(gè)頁(yè)巖樣品。鉆井取心后,立即將頁(yè)巖巖心樣品放入頁(yè)巖專用解吸罐內(nèi),然后將解吸罐放入與地層溫度一致的45℃的恒溫水浴鍋中進(jìn)行恒溫加熱解吸。按照SY/T 6940—2020《頁(yè)巖含氣量測(cè)定方法》對(duì)頁(yè)巖氣現(xiàn)場(chǎng)解吸,得到現(xiàn)場(chǎng)解吸氣量,并將巖心和頁(yè)巖解吸氣樣均運(yùn)回實(shí)驗(yàn)室用于后續(xù)實(shí)驗(yàn)。
將采集到的氣樣進(jìn)行頁(yè)巖氣組分分析和頁(yè)巖氣碳同位素測(cè)試;頁(yè)巖樣進(jìn)行熱解、有機(jī)碳、鏡質(zhì)體反射率、氯仿瀝青“A”、干酪根顯微組分和碳同位素分析,以上測(cè)試均由中海油能源發(fā)展股份有限公司工程技術(shù)分公司非常規(guī)實(shí)驗(yàn)中心完成。利用Agilent 7890B氣相色譜儀對(duì)26樣次的頁(yè)巖解吸氣進(jìn)行組分分析,Agilent 7890B氣相色譜儀與Elementar isoprime vision同位素測(cè)定儀聯(lián)測(cè)對(duì)26樣次的頁(yè)巖解吸氣進(jìn)行穩(wěn)定碳同位素分析,Rock-Eval 6熱解分析儀對(duì)107樣次的頁(yè)巖進(jìn)行巖石熱解分析,CS-744碳硫分析儀對(duì)107樣次頁(yè)巖進(jìn)行有機(jī)碳含量分析,CRAIC 508PV顯微鏡光度計(jì)對(duì)42樣次頁(yè)巖進(jìn)行鏡質(zhì)體反射率分析,YSB2全自動(dòng)多功能抽提儀對(duì)19樣次頁(yè)巖進(jìn)行氯仿瀝青“A”分析,DM4P生物熒光顯微鏡對(duì)7樣次頁(yè)巖干酪根進(jìn)行顯微組分鑒定,Vario MICRO cube有機(jī)元素分析儀與Elementar isoprime vision同位素測(cè)定儀聯(lián)測(cè)對(duì)7樣次頁(yè)巖干酪根進(jìn)行碳同位素測(cè)定。
3.1.1 頁(yè)巖礦物組成
臨興地區(qū)上古生界頁(yè)巖段的巖性主要為黑色–灰黑色炭質(zhì)頁(yè)巖、深灰色暗色頁(yè)巖夾粉砂巖、粉砂質(zhì)泥巖、泥質(zhì)粉砂巖等,其中粉砂巖和泥質(zhì)粉砂巖主要以?shī)A層或條帶狀形式發(fā)育。通過(guò)對(duì)頁(yè)巖樣品進(jìn)行薄片鑒定和X-衍射全巖黏土分析表明,研究區(qū)頁(yè)巖中礦物成分主要為石英和黏土礦物,含少量長(zhǎng)石和碳酸鹽巖類礦物,偶見(jiàn)黃鐵礦,有機(jī)質(zhì)呈紋層狀分布(圖2a),見(jiàn)部分炭屑、炭質(zhì)條帶。石英質(zhì)量分?jǐn)?shù)主要介于25%~52%,均值為37.0%。黏土礦物主要介于25%~73%,均值為52.7%。碳酸鹽巖類礦物含量較少,偶見(jiàn)方解石充填微裂縫(圖2b)、鐵白云石膠結(jié)交代碎屑顆粒(圖2c)。膠結(jié)物主要為泥質(zhì),在顆粒間呈不均勻分布,主要呈紋層狀、條帶狀或斑狀聚集(圖2d)。
3.1.2 礦物與有機(jī)質(zhì)賦存關(guān)系
1) 石英與有機(jī)質(zhì)
研究區(qū)頁(yè)巖石英成因主要有2種:陸源石英和成巖自生石英。不同的石英成因類型,導(dǎo)致其與有機(jī)質(zhì)賦存方式不同。陸源石英的顆粒較大,其邊緣主要呈次圓狀—次棱角狀,有機(jī)質(zhì)充填于顆粒間,有機(jī)質(zhì)與陸源石英顆粒呈突變接觸,具有清晰的邊界線(圖3a)。早期有機(jī)質(zhì)通過(guò)塑性流動(dòng)充填在陸源石英顆粒之間,后期經(jīng)過(guò)熱裂解呈固定形態(tài)。在成巖過(guò)程中,蒙脫石向伊利石轉(zhuǎn)化析出的硅質(zhì)形成成巖自生石英,自生石英主要以微米級(jí)的顆粒鑲嵌于有機(jī)質(zhì)中(圖3b)。
圖3 頁(yè)巖中石英與有機(jī)質(zhì)賦存關(guān)系
2) 黏土礦物與有機(jī)質(zhì)
研究區(qū)上古生界頁(yè)巖黏土礦物主要以3種方式充填于有機(jī)質(zhì)中。第一種充填方式是黏土礦物層間充填有相對(duì)較硬的固體顆粒,如自生石英、黃鐵礦等(圖4a),黃鐵礦顆粒呈條帶狀,且形態(tài)各異,與黏土礦物呈緊密接觸,支撐片狀黏土礦物,為烴類充注提供儲(chǔ)存空間;第二種充填方式是黏土礦物層間充填少量或者無(wú)固體顆粒,主要呈定向性的片狀堆積,通常會(huì)富集部分無(wú)定形有機(jī)質(zhì)分散于相對(duì)較大粒徑的固體顆粒之間(圖4b)。第三種充填方式是固體顆粒間的黏土礦物多呈現(xiàn)混亂而無(wú)定向堆積充填于大片連續(xù)有機(jī)質(zhì)中(圖4c)。
3) 黃鐵礦與有機(jī)質(zhì)
黃鐵礦一般是在強(qiáng)還原環(huán)境下形成,其分布與有機(jī)質(zhì)有著密切的關(guān)系。研究區(qū)頁(yè)巖中黃鐵礦以多種形態(tài)存在,如莓狀單體、莓狀集合體、自形晶體、自形晶集合體、他形晶體及他形晶體集合體等形態(tài)。莓狀單體及其集合體黃鐵礦的內(nèi)部存在有機(jī)質(zhì)(圖5a);自形晶體黃鐵礦通常分布于黏土礦物層間,被有機(jī)質(zhì)包圍(圖5b);自形晶集合體及其內(nèi)部富集有機(jī)質(zhì)(圖5c);在有機(jī)質(zhì)附近,可見(jiàn)大小不一的他形顆粒狀黃鐵礦(圖5d)。
3.2.1 有機(jī)質(zhì)豐度
有機(jī)質(zhì)豐度是衡量和評(píng)價(jià)頁(yè)巖生烴潛力的一個(gè)關(guān)鍵性指標(biāo)。本文利用總有機(jī)碳含量(TOC)和生烴潛量(1+2)來(lái)進(jìn)行綜合評(píng)價(jià)。通過(guò)對(duì)臨興地區(qū)上古生界頁(yè)巖樣品總有機(jī)碳、巖石熱解進(jìn)行測(cè)試分析(表1)表明,山西組頁(yè)巖TOC質(zhì)量分?jǐn)?shù)主要分布于0.52%~8.63%,中位值為1.58%;(1+2)主要分布于0.31~17.50 mg/g,中位值為1.17 mg/g。太原組頁(yè)巖TOC質(zhì)量分?jǐn)?shù)主要分布于0.51%~7.87%,中位值為2.12%;1+2主要分布于0.26~11.090 mg/g,中位值為1.68 mg/g。本溪組頁(yè)巖TOC質(zhì)量分?jǐn)?shù)主要分布于0.56%~17.10%,中位值為1.73%;1+2主要分布于0.20~31.60 mg/g,中位值為1.17 mg/g。從整體來(lái)看,研究區(qū)頁(yè)巖有機(jī)質(zhì)豐度較高,主要分布于1.0%~3.0%,為生成大量頁(yè)巖氣奠定物質(zhì)基礎(chǔ)。
圖4 頁(yè)巖中黏土礦物與有機(jī)質(zhì)賦存關(guān)系
圖5 頁(yè)巖中黃鐵礦與有機(jī)質(zhì)賦存關(guān)系
表1 臨興地區(qū)上古生界頁(yè)巖有機(jī)質(zhì)豐度分布
注:0.52~8.63/1.58(37)表示最小~最大值/中位值(樣品數(shù)),下文同。
3.2.2 有機(jī)質(zhì)類型
不同有機(jī)質(zhì)類型的生烴門限、產(chǎn)物類型和生烴潛力等方面存在較大差異,是頁(yè)巖生氣能力評(píng)價(jià)的一個(gè)重要指標(biāo)。本文利用巖石熱解參數(shù)、干酪根鏡檢參數(shù),以及干酪根碳同位素參數(shù)等來(lái)綜合判識(shí)研究區(qū)有機(jī)質(zhì)類型。臨興地區(qū)上古生界頁(yè)巖熱解實(shí)驗(yàn)表明,氫指數(shù)主要分布于24.15~287.38 mg/g,其中氫指數(shù)小于150 mg/g的占99%,僅有1%的樣品氫指數(shù)介于150~350 mg/g,表明其有機(jī)質(zhì)類型以腐殖型為主,含有少量腐泥–腐殖型。
研究區(qū)干酪根顯微組分鑒定及碳同位素測(cè)定結(jié)果(表2)顯示,臨興地區(qū)山西組頁(yè)巖干酪根顯微組分以鏡質(zhì)組為主,其次是惰質(zhì)組和殼質(zhì)組,含有少量腐泥組,干酪根類型指數(shù)小于0,干酪根碳同位素13C值主要分布于–23.00‰~–24.00‰(表2),表明其母質(zhì)類型主要來(lái)源于陸生高等植物,具有腐殖型特征,屬于Ⅲ型。太原組–本溪組頁(yè)巖干酪根顯微組分以殼質(zhì)組為主,其次是鏡質(zhì)組,含有少量惰質(zhì)組和腐泥組,干酪根類型指數(shù)介于0~40,干酪根碳同位素13C值主要分布于–23.00‰~–25.00‰(表2),表明其母質(zhì)具有偏腐殖型特征,屬于Ⅱ2型。綜合分析認(rèn)為,臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖有機(jī)質(zhì)類型不單一,主要為腐殖型,含有部分腐泥–腐殖型,有機(jī)質(zhì)整體屬于Ⅱ2–Ⅲ型,為頁(yè)巖生氣提供多元有機(jī)質(zhì),具有生成大量頁(yè)巖氣的潛力。
3.2.3 有機(jī)質(zhì)成熟度
有機(jī)質(zhì)熱演化成熟度是富含有機(jī)質(zhì)頁(yè)巖生氣條件評(píng)價(jià)的一個(gè)重要參數(shù)。本文利用頁(yè)巖干酪根鏡質(zhì)體隨機(jī)反射率(ran)和頁(yè)巖最高熱解峰溫(max)來(lái)進(jìn)行綜合評(píng)價(jià)。臨興地區(qū)上古生界頁(yè)巖ran和max測(cè)試結(jié)果(表3)表明,ran值主要介于0.92%~1.30%,均值為1.07%;max介于427~494℃,均值為466.9℃。其中,山西組頁(yè)巖ran值介于0.92%~1.11%,均值為1.02%,max介于427~486℃,均值為464.1℃;太原組頁(yè)巖ran值介于1.01%~1.09%,均值為1.06%,max介于451~481℃,均值為465.4℃;本溪組頁(yè)巖ran值介于1.06%~1.30%,均值為1.15%,max介于428~494℃,均值為470.9℃。根據(jù)有機(jī)質(zhì)成熟度階段劃分標(biāo)準(zhǔn)[35-36],研究區(qū)頁(yè)巖有機(jī)質(zhì)處于成熟階段,有利于生成大量頁(yè)巖氣。
表2 臨興地區(qū)上古生界頁(yè)巖干酪根鏡檢和碳同位素測(cè)試結(jié)果
表3 臨興地區(qū)上古生界頁(yè)巖Rran和tmax值統(tǒng)計(jì)結(jié)果
臨興地區(qū)受區(qū)域地質(zhì)構(gòu)造運(yùn)動(dòng)的影響,水體動(dòng)蕩較為頻繁,主要形成濱淺?!侵耷熬墶獮I淺湖相多期沉積旋回,發(fā)育多套海相和海陸過(guò)渡相沉積地層,并夾有多套煤層,有利于頁(yè)巖氣資源富集。本溪組—太原組發(fā)育一套潮汐三角洲–障壁海岸沉積頁(yè)巖層系,隨后發(fā)生海退,在山西組發(fā)育一套淺水三角洲沉積頁(yè)巖層系。
由于海陸過(guò)渡相頁(yè)巖沉積與煤層、煤線、炭質(zhì)泥巖、粉砂巖、砂巖互層,并且橫向變化較快,導(dǎo)致海陸過(guò)渡相頁(yè)巖TOC值一般高于海相和陸相頁(yè)巖。臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖與國(guó)內(nèi)海相、陸相及海陸過(guò)渡相頁(yè)巖地球化學(xué)特征對(duì)比(表4)表明,海陸過(guò)渡相、海相及陸相頁(yè)巖有機(jī)碳含量均較高,其均值都大于2%,具有良好的生氣基礎(chǔ)。從有機(jī)質(zhì)類型來(lái)看,由于沉積環(huán)境不同,母源物質(zhì)來(lái)源不同,導(dǎo)致有機(jī)質(zhì)類型各異。臨興地區(qū)海陸過(guò)渡相頁(yè)巖與國(guó)內(nèi)民和盆地、雅布賴盆地及延長(zhǎng)探區(qū)陸相頁(yè)巖相似,主要是Ⅱ2–Ⅲ型,以生氣為主,而海相頁(yè)巖有機(jī)質(zhì)主要是Ⅰ型,初始階段以生油為主,熱演化程度升高,一方面是原油發(fā)生裂解,另一方面,有機(jī)質(zhì)由生油逐漸轉(zhuǎn)變?yōu)樯鷼?。從有機(jī)質(zhì)熱演化程度來(lái)看,由于地層時(shí)代、埋深、地質(zhì)構(gòu)造運(yùn)動(dòng)等原因,導(dǎo)致不同地方不同沉積環(huán)境的有機(jī)質(zhì)熱演化差別較大,從成熟–高成熟–過(guò)成熟頁(yè)巖都有分布。一般海陸過(guò)渡相頁(yè)巖處于成熟–高成熟階段,海相頁(yè)巖處于高成熟–過(guò)成熟階段,陸相頁(yè)巖處于低成熟–成熟階段。對(duì)比發(fā)現(xiàn),臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖處于成熟階段,遠(yuǎn)遠(yuǎn)低于四川盆地龍馬溪組和黔北地區(qū)牛蹄塘組海相頁(yè)巖,而高于民和盆地窯街組和雅布賴盆地新河組陸相頁(yè)巖,有利于生成頁(yè)巖氣。參考頁(yè)巖氣地質(zhì)評(píng)價(jià)方法[36]對(duì)比分析臨興地區(qū)海陸過(guò)渡相頁(yè)巖氣有利區(qū)劃分條件指標(biāo)表明,臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖埋深主要介于1 700~2 300 m,泥地比大于70%,總含氣量主要介于0.52~2.49 m3/t,均值為1.11 m3/t,有機(jī)碳質(zhì)量分?jǐn)?shù)平均值為2.58%,ran值均大于0.9%,有機(jī)質(zhì)類型為Ⅱ2–Ⅲ型,頁(yè)巖氣有一定厚度的上覆地層,構(gòu)造穩(wěn)定,保存條件良好,具有良好生成頁(yè)巖氣的物質(zhì)基礎(chǔ)。
表4 臨興地區(qū)海陸過(guò)渡相頁(yè)巖與海相、陸相頁(yè)巖地球化學(xué)特征對(duì)比
3.3.1 頁(yè)巖氣組分
臨興地區(qū)上古生界頁(yè)巖現(xiàn)場(chǎng)解吸含氣量測(cè)試共26個(gè),取樣深度主要分布在1 721.9~2 231.05 m,屬于中深含氣層。由于海陸過(guò)渡相頁(yè)巖具有很強(qiáng)的非均質(zhì)性,導(dǎo)致頁(yè)巖中的含氣量差異性較大。通過(guò)現(xiàn)場(chǎng)頁(yè)巖氣解吸,解吸樣品含氣量主要介于0.10~ 0.56 m3/t,均值為0.25 m3/t。
臨興地區(qū)上古生界頁(yè)巖烷烴氣組分含量測(cè)試結(jié)果(表5)表明,主要是烴類氣(CH4、C2H6、C3H8、C4H10)和非烴類氣(CO2和N2)。
研究區(qū)頁(yè)巖解吸氣樣品烴類氣體中,以甲烷為主,含有少量其余烴類氣。其中,甲烷占比90.75%~ 98.74%,平均值為96.53%,甲烷氣含量分布范圍較廣,表明該區(qū)頁(yè)巖含氣性非均質(zhì)性較強(qiáng)。除了甲烷氣外,其余烴類氣體含量較少,其中乙烷占比0.91%~8.05%,均值為3.06%,丙烷占比0.14%~ 1.04%,均值為0.35%,C4以上的烷烴氣不超過(guò)0.1%,沒(méi)有檢測(cè)出C5+以上的組分。研究區(qū)干燥系數(shù)(C1/C1-5)介于0.907~0.987,均值為0.965,其中干燥系數(shù)大于0.95的頁(yè)巖氣占88%以上,屬于干氣,僅有3個(gè)頁(yè)巖氣樣品屬于濕氣。
表5 臨興地區(qū)上古生界頁(yè)巖氣中烴類氣體組成統(tǒng)計(jì)結(jié)果
3.3.2 頁(yè)巖氣碳同位素
臨興地區(qū)上古生界頁(yè)巖氣碳同位素測(cè)試結(jié)果(表6)表明,13C1平均值本溪組最大,山西組其次,太原組最??;13C2平均值太原組最大,本溪組其次,山西組最?。?3C3平均值山西組最大,太原組其次,本溪組最小。研究區(qū)海陸過(guò)渡相頁(yè)巖氣甲烷碳同位素值均小于–30‰,并且整體呈現(xiàn)出13C1<13C2<13C3的現(xiàn)象(表6),屬于有機(jī)成因氣。
通過(guò)臨興地區(qū)海陸過(guò)渡相與中國(guó)海相、陸相頁(yè)巖氣碳同位素對(duì)比(表6)表明,臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖氣13C1主要介于–43.7‰~–35.1‰,13C2主要介于–26.8‰~–18.6‰;四川盆地焦石壩地區(qū)龍馬溪組、五峰組–龍馬溪組和東北地區(qū)下寒武統(tǒng)、宜昌地區(qū)水井沱組海相頁(yè)巖氣13C1主要介于–33.8‰~–28.36‰,13C2主要介于–39.2‰ ~–33.6‰;鄂爾多斯盆地延長(zhǎng)組陸相頁(yè)巖氣13C1主要介于–53.4‰~–44.9‰,13C2主要介于–41.1‰~–31.1‰。綜合分析以上3種不同沉積環(huán)境頁(yè)巖氣碳同位素對(duì)比顯示,陸相頁(yè)巖氣的13C1最輕,海相頁(yè)巖氣的13C1最重,海陸過(guò)渡相頁(yè)巖氣的13C1介于它們之間。
表6 臨興地區(qū)海陸過(guò)渡相與海相、陸相頁(yè)巖氣碳同位素對(duì)比表
注:–43.7~–36.3/–40.0表示最小~最大值/平均值。
頁(yè)巖氣屬于非常規(guī)天然氣,其成因類型主要有3種:生物成因氣、熱成因氣和混合成因氣[42-44]。前人對(duì)天然氣組分相關(guān)研究結(jié)果[45]表明,干酪根裂解氣和原油裂解氣的1/2值和2/3值呈現(xiàn)出不同變化趨勢(shì)。其中,干酪根裂解氣表現(xiàn)出1/2值快速增大,2/3值基本上保持不變;原油裂解氣表現(xiàn)出1/2值基本上保持不變;2/3值迅速增大。鑒于不同成因天然氣的1/2值和2/3值的不同表現(xiàn)形式,可以利用ln(1/2)和ln(2/3) 的變化關(guān)系來(lái)判識(shí)成因。從臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖氣的ln(1/2)和ln(2/3)關(guān)系圖(圖6)來(lái)看,ln(1/2) 值與ln(2/3)值相差不大,樣品點(diǎn)主要分布在干酪根初次裂解范圍內(nèi),表明研究區(qū)頁(yè)巖氣主要是干酪根初次裂解氣。
圖6 臨興地區(qū)上古生界頁(yè)巖氣ln(C1/C2)和ln(C2/C3)關(guān)系
通常天然氣組分及其碳同位素是判識(shí)天然氣成因類型的重要參數(shù)[46-48]。根據(jù)不同成因的天然氣組分和碳同位素的關(guān)系,國(guó)內(nèi)外許多研究學(xué)者建立了相應(yīng)的天然氣成因判識(shí)圖版。其中,張義綱[49]建立的13C1–(13C2–13C1)天然氣成因類型判識(shí)圖版和M. J. Whiticar(1999)建立的13C1–1/(2+3)天然氣成因鑒別圖版[50]顯示,臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖氣樣品數(shù)據(jù)點(diǎn)均散落在熱成因氣范圍內(nèi)(圖7),表明研究區(qū)頁(yè)巖氣均屬于有機(jī)熱成因氣。另外,據(jù)圖8顯示,樣品點(diǎn)基本上都分布在Ⅱ–Ⅲ型干酪根附近,表明研究區(qū)頁(yè)巖氣主要來(lái)源于腐殖型有機(jī)質(zhì),這與前文分析的頁(yè)巖有機(jī)質(zhì)類型一致。
圖7 臨興地區(qū)上古生界頁(yè)巖氣δ13C1–(δ13C2–δ13C1)關(guān)系(圖版據(jù)張義綱[49],1991)
圖8 臨興地區(qū)上古生界頁(yè)巖氣δ13C1–C1/(C2+C3)關(guān)系(圖版據(jù)M. J. Whiticar[50],1999)
有機(jī)熱成因氣主要分為煤成氣、油型氣和煤成氣與油型氣的混合氣。根據(jù)前人的研究成果[46-52],天然氣中13C2的特征主要是繼承了其母質(zhì)干酪根碳同位素特征,所以天然氣13C2是研究判識(shí)天然氣成因類型的一個(gè)重要參數(shù)。其中,13C2>–29‰屬于煤成氣,13C2<–30‰屬于油型氣,13C2為–30‰~ –29‰屬于煤成氣與油型氣的混合氣。臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖干酪根碳同位素分布于–23.2‰~–24.5‰,頁(yè)巖氣13C2為–26.8‰~ –22.56‰,均大于–29‰,繼承了干酪根碳同位素特征,屬于自生自儲(chǔ)的煤成氣。利用戴金星等(2012)建立的天然氣中13C1–(13C2–13C3)有機(jī)成因鑒別圖版[51]顯示(圖9),臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖氣絕大部分分布在煤成氣區(qū)域,僅有少部分散落在煤成氣、油型氣和混合氣區(qū)。根據(jù)孫少平(2012)建立的13C2–13C1天然氣成因類型判識(shí)圖版[52]表明(圖10),臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖氣均屬于成熟煤成氣。
圖9 臨興地區(qū)上古生界頁(yè)巖氣δ13C1–δ13C2–δ13C3關(guān)系(圖版據(jù)戴金星等[51],2012)
圖10 臨興地區(qū)上古生界頁(yè)巖氣δ13C2–δ13C1關(guān)系(圖版據(jù)孫平安等[52],2012修改)
a.臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖礦物組分主要是石英和黏土礦物,含少量方解石、斜長(zhǎng)石、鉀長(zhǎng)石、白云石和黃鐵礦等。石英與有機(jī)質(zhì)存在2種賦存方式,有機(jī)質(zhì)主要賦存于石英顆粒間;黏土礦物存在3種賦存方式,有機(jī)質(zhì)主要賦存于黏土礦物層間;黃鐵礦存在4種賦存方式,有機(jī)質(zhì)主要賦存于莓狀黃鐵礦集合體。
b. 臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖有機(jī)碳質(zhì)量分?jǐn)?shù)含量平均值為2.58%,大于海陸過(guò)渡相頁(yè)巖生氣下線;干酪根碳同位素介于–24.5‰~–23.2‰,整體屬于Ⅱ2–Ⅲ型,為頁(yè)巖生氣提供多元有機(jī)質(zhì);鏡質(zhì)體反射率值介于0.92%~1.30%,max值介于427~ 494℃,有機(jī)質(zhì)整體處于成熟階段,具備生成大量頁(yè)巖氣的潛力。
c. 臨興地區(qū)上古生界海陸過(guò)渡相頁(yè)巖氣烴類氣體中以甲烷為主,含有少量乙烷和丙烷,總體屬于干氣。頁(yè)巖氣甲烷碳同位素值介于–43.7‰~ –35.1‰,均小于–30‰,介于海相頁(yè)巖氣和陸相頁(yè)巖氣甲烷碳同位素之間;乙烷碳同位素值介于–26.8‰~–22.56‰,均大于–29‰,并且整體呈現(xiàn)出13C1<13C2<13C3正碳序列。頁(yè)巖氣主要來(lái)源于上古生界偏腐殖型頁(yè)巖的干酪根初次裂解氣,整體屬于自生自儲(chǔ)的有機(jī)熱成因煤成氣。
d. 對(duì)比臨興地區(qū)海陸過(guò)渡相頁(yè)巖不同礦物組成與有機(jī)質(zhì)賦存方式、有機(jī)質(zhì)豐度、類型、成熟度、氣體組成和碳同位素等參數(shù)指標(biāo),綜合分析頁(yè)巖生烴潛力和頁(yè)巖氣成因類型,預(yù)測(cè)該區(qū)擁有較好的頁(yè)巖氣成藏條件,具備良好的頁(yè)巖氣資源前景,值得進(jìn)一步深入研究,為研究區(qū)后期海陸過(guò)渡相頁(yè)巖氣勘探開(kāi)發(fā)提供重要指導(dǎo)依據(jù)。
[1] 郭旭升,胡東風(fēng),劉若冰,等. 四川盆地二疊系海陸過(guò)渡相頁(yè)巖氣地質(zhì)條件及勘探潛力[J]. 天然氣工業(yè),2018,38(10):11–18.
GUO Xusheng,HU Dongfeng,LIU Ruobing,et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry,2018,38(10):11–18.
[2] 董大忠,王玉滿,李新景,等. 中國(guó)頁(yè)巖氣勘探開(kāi)發(fā)新突破及發(fā)展前景思考[J]. 天然氣工業(yè),2016,36(1):19–32.
DONG Dazhong,WANG Yuman,LI Xinjing,et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry,2016,36(1):19–32.
[3] 鄒才能,董大忠,王玉滿,等. 中國(guó)頁(yè)巖氣特征、挑戰(zhàn)及前景(二)[J]. 石油勘探與開(kāi)發(fā),2016,43(2):166–178.
ZOU Caineng,DONG Dazhong,WANG Yuman,et al. Shale gas in China:Characteristics,challenges and prospects(Ⅱ)[J]. Petroleum Exploration and Development,2016,43(2):166–178.
[4] 李勇,王延斌,倪小明,等. 煤層氣低效井成因判識(shí)及治理體系構(gòu)建研究[J]. 煤炭科學(xué)技術(shù),2020,48(2):185–193.
LI Yong,WANG Yanbin,NI Xiaoming,et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology,2020,48(2):185–193.
[5] 薛純琦,吳建光,鐘建華,等. 海陸交互相沉積泥頁(yè)巖發(fā)育特征研究:以鄂爾多斯盆地臨興地區(qū)太原組為例[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2019,48(4):870–881.
XUE Chunqi,WU Jianguang,ZHONG Jianhua,et al. Characteristics of the marine-terrigenous interdepositional shale:A case study of Taiyuan Formation in Linxing area of Ordos Basin[J]. Journal of China University of Mining & Technology,2019,48(4):870–881.
[6] 吳陳君,張明峰,劉艷,等. 四川盆地古生界泥頁(yè)巖的地球化學(xué)特征[J]. 煤炭學(xué)報(bào),2013,38(5):794–799.
WU Chenjun,ZHANG Mingfeng,LIU Yan,et al. Geochemical characteristics of Paleozoic shale in Sichuan Basin and their gas content features[J]. Journal of China Coal Society,2013,38(5):794–799.
[7] 曹濤濤,鄧模,劉虎,等. 湘中與湘東南巖關(guān)階組和龍?zhí)督M頁(yè)巖氣潛力[J]. 煤田地質(zhì)與勘探,2019,47(4):94–103.
CAO Taotao,DENG Mo,LIU Hu,et al. Shale gas potential of Yanguanjie Formation and Longtan Formation in central and southeastern Hunan Province[J]. Coal Geology & Exploration,2019,47(4):94–103.
[8] 魏建光,唐書恒,張松航,等. 寧武盆地山西組過(guò)渡相頁(yè)巖孔隙特征及影響因素[J]. 煤田地質(zhì)與勘探,2018,46(1):78–85.
WEI Jianguang,TANG Shuheng,ZHANG Songhang,et al. Analysis on characteristics and influence factors of transitional facies shale pore in Ningwu Basin[J]. Coal Geology & Exploration,2018,46(1):78–85.
[9] 劉嬌男,朱炎銘,劉宇,等. 海陸過(guò)渡相泥頁(yè)巖儲(chǔ)層特征研究:以沁水盆地為例[J]. 煤田地質(zhì)與勘探,2015,43(6):23–28.
LIU Jiaonan,ZHU Yanming,LIU Yu,et al. Characteristics of the mud shale reservoirs of transitional facies:With Qinshui Basin as an example[J]. Coal Geology & Exploration,2015,43(6):23–28.
[10] 高波. 四川盆地龍馬溪組頁(yè)巖氣地球化學(xué)特征及其地質(zhì)意義[J]. 天然氣地球科學(xué),2015,26(6):1173–1182.
GAO Bo. Geochemical characteristics of shale gas from Lower Silurian Longmaxi Formation in the Sichuan Basin and its geological significance[J]. Natural Gas Geoscience,2015,26(6):1173–1182.
[11] 曹春輝,張銘杰,湯慶艷,等. 四川盆地志留系龍馬溪組頁(yè)巖氣氣體地球化學(xué)特征及意義[J]. 天然氣地球科學(xué),2015,26(8):1604–1612.
CAO Chunhui,ZHANG Mingjie,TANG Qingyan,et al. Geochemical characteristics and implications of shale gas in Longmaxi Formation,Sichuan Basin,China[J]. Natural Gas Geoscience,2015,26(8):1604–1612.
[12] 汪生秀,焦偉偉,方光建,等. 渝東南地區(qū)五峰組–龍馬溪組頁(yè)巖氣地球化學(xué)特征及其成因分析[J]. 海相油氣地質(zhì),2017,22(4):77–84.
WANG Shengxiu,JIAO Weiwei,F(xiàn)ANG Guangjian,et al. Geochemical features and genesis of shale gas of Wufeng–Longmaxi Formation in southeastern Chongqing[J]. Marine Origin Petroleum Geology,2017,22(4):77–84.
[13] 韓輝,鐘寧寧,陳聰,等. 西北地區(qū)中小型盆地侏羅系陸相泥頁(yè)巖的含氣性[J]. 科學(xué)通報(bào),2014,59(9):809–815.
HAN Hui,ZHONG Ningning,CHEN Cong,et al. The gas potential of Jurassic continental shale in the middle-small basins,Northwest China[J]. Chinese Science Bulletin,2014,59(9):809–815.
[14] 徐紅衛(wèi),李賢慶,周寶剛,等. 延長(zhǎng)探區(qū)延長(zhǎng)組陸相頁(yè)巖氣地球化學(xué)特征和成因[J]. 礦業(yè)科學(xué)學(xué)報(bào),2017,2(2):99–108.
XU Hongwei,LI Xianqing,ZHOU Baogang,et al. Geochemical characteristics and genesis of the Yanchang Formation terrestrial shale gas in the Yanchang exploration area[J]. Journal of Mining Science and Technology,2017,2(2):99–108.
[15] 杜燕,于波,徐敏. 伊陜斜坡東南部延長(zhǎng)組頁(yè)巖氣地球化學(xué)特征分析[J]. 西安科技大學(xué)學(xué)報(bào),2015,35(1):63–71.
DU Yan,YU Bo,XU Min. Geochemical characteristics of shale gas from Yanchang Formation in southeastern Yishan slope[J]. Journal of Xi’an University of Science and Technology,2015,35(1):63–71.
[16] 孫則朋,王永莉,魏志福,等. 海陸過(guò)渡相頁(yè)巖含氣性及氣體地球化學(xué)特征:以鄂爾多斯盆地山西組頁(yè)巖為例[J]. 中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2017,46(4):859–868.
SUN Zepeng,WANG Yongli,WEI Zhifu,et al. Shale gas content and geochemical characteristics of marine-continental transitional shale:A case from the Shanxi Formation of Ordos Basin[J]. Journal of China University of Mining and Technology,2017,46(4):859–868.
[17] 曹軍,劉成林,馬寅生,等. 柴達(dá)木盆地東部石炭系海陸過(guò)渡相煤系頁(yè)巖氣地球化學(xué)特征及成因[J]. 地學(xué)前緣,2016,23(5):158–166.
CAO Jun,LIU Chenglin,MA Yinsheng,et al. Geochemical characteristics and genesis of shale gas for carboniferous marine-continental transitional facies coal measure strata in eastern Qaidam Basin[J]. Earth Science Frontiers,2016,23(5):158–166.
[18] 吳小力,李榮西,李尚儒,等. 下?lián)P子地區(qū)海陸過(guò)渡相頁(yè)巖氣成藏條件與主控因素:以萍樂(lè)坳陷二疊系樂(lè)平組為例[J]. 地質(zhì)科技情報(bào),2018,37(1):160–168.
WU Xiaoli,LI Rongxi,LI Shangru,et al. Accumulation conditions and main factors of marine-continental transitional shale gas in the Lower Yangtze area of China:A case of Permian Leping Formation in the Pingle depression[J]. Geological Science and Technology Information,2018,37(1):160–168.
[19] LIANG Qingshao,ZHANG Xiang,TIAN Jingchun,et al. Geological and geochemical characteristics of marine-continental transitional shale from the Lower Permian Taiyuan Formation,Taikang Uplift,southern North China Basin[J]. Marine and Petroleum Geology,2018,98:229–242.
[20] LUO Wen,HOU Mingcai,LIU Xinchun,et al. Geological and geochemical characteristics of marine-continental transitional shale from the Upper Permian Longtan Formation,northwestern Guizhou,China[J]. Marine and Petroleum Geology,2018,89:58–67.
[21] LIU Shunxi,WU Caifang,LI Teng,et al. Multiple geochemical proxies controlling the organic matter accumulation of the marine-continental transitional shale:A case study of the Upper Permian Longtan Formation,western Guizhou,China[J]. Journal of Natural Gas Science and Engineering,2018,56:152–165.
[22] LI Yong,YANG Jianghao,PAN Zhejun,et al. Unconventional natural gas accumulations in stacked deposits:A discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin,China[J]. Acta Geologica Sinica,2019,93(1):111–129.
[23] 張國(guó)濤,陳孝紅,張保民,等. 湘中邵陽(yáng)凹陷二疊系龍?zhí)督M頁(yè)巖含氣性特征與氣體成因[J]. 地球科學(xué),2019,44(2):539–550.
ZHANG Guotao,CHEN Xiaohong,ZHANG Baomin,et al. Gas-bearing characteristics and origin analysis of shale gas in Longtan Formation,Permian,Shaoyang Sag,Central Hunan[J]. Earth Science,2019,44(2):539–550.
[24] 匡立春,董大忠,何文淵,等. 鄂爾多斯盆地東緣海陸過(guò)渡相頁(yè)巖氣地質(zhì)特征及勘探開(kāi)發(fā)前景[J]. 石油勘探與開(kāi)發(fā),2020,47(3):435–446.
KUANG Lichun,DONG Dazhong,HE Wenyuan,et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin,NW China[J]. Petroleum Exploration and Development,2020,47(3):435–446.
[25] 胡維強(qiáng),趙靖舟,李軍,等. 鄂爾多斯盆地西南部上古生界烴源巖特征及其對(duì)天然氣藏形成與分布的控制作用[J]. 天然氣地球科學(xué),2015,26(6):1068–1075.
HU Weiqiang,ZHAO Jingzhou,LI Jun,et al. Characteristics of source rocks and its controls on the formation and distribution of gas from Upper Paleozoic in southwest Ordos Basin[J]. Natural Gas Geoscience,2015,26(6):1068–1075.
[26] 姚涇利,胡新友,范立勇,等. 鄂爾多斯盆地天然氣地質(zhì)條件、資源潛力及勘探方向[J]. 天然氣地球科學(xué),2018,29(10):1465–1474.
YAO Jingli,HU Xinyou,F(xiàn)AN Liyong,et al. The geological conditions,resource potential and exploration direction of natural gas in Ordos Basin[J]. Natural Gas Geoscience,2018,29(10):1465–1474.
[27] 胡維強(qiáng),李洋冰,陳鑫,等. 鄂爾多斯盆地臨興地區(qū)上古生界天然氣成因及來(lái)源[J]. 天然氣地球科學(xué),2020,31(1):26–36.
HU Weiqiang,LI Yangbing,CHEN Xin,et al . Origin and source of natural gas in the Upper Paleozoic in Linxing area,Ordos Basin[J]. Natural Gas Geoscience,2020,31(1):26–36.
[28] 鄭定業(yè),姜福杰,劉鐵樹,等. 鄂爾多斯盆地東緣臨興地區(qū)天然氣成因類型及氣源分析[J]. 地球科學(xué)與環(huán)境學(xué)報(bào),2018,40(2):203–214.
ZHENG Dingye,JIANG Fujie,LIU Tieshu,et al. Genetic types and sources of natural gas in Linxing area,the eastern margin of Ordos Basin,China[J]. Journal of Earth Sciences and Environment,2018,40(2):203–214.
[29] 曹代勇,聶敬,王安民,等. 鄂爾多斯盆地東緣臨興地區(qū)煤系氣富集的構(gòu)造–熱作用控制[J]. 煤炭學(xué)報(bào),2018,43(6):1526–1532.
CAO Daiyong,NIE Jing,WANG Anmin,et al. Structural and thermal control of enrichment conditions of coal measure gases in Linxing block of eastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1526–1532.
[30] 葛巖,朱光輝,萬(wàn)歡,等. 鄂爾多斯盆地東緣紫金山侵入構(gòu)造對(duì)上古生界致密砂巖氣藏形成和分布的影響[J]. 天然氣地球科學(xué),2018,29(4):491–499.
GE Yan,ZHU Guanghui,WAN Huan,et al. The influence of Zijinshan structural belt to the formation and distribution of tight sandstone gas reservoir in Upper Paleozoic,in the eastern Ordos Basin[J]. Natural Gas Geoscience,2018,29(4):491–499.
[31] 吳鵬,高計(jì)縣,郭俊超,等. 鄂爾多斯盆地東緣臨興地區(qū)太原組橋頭砂巖層序地層及沉積特征[J]. 石油與天然氣地質(zhì),2018,39(1):66–76.
WU Peng,GAO Jixian,GUO Junchao,et al. Sequence stratigraphy and sedimentary characteristic analysis of Qiaotou sandstone of Taiyuan in Linxing area,eastern margin of Ordos Basin[J]. Oil & Gas Geology,2018,39(1):66–76.
[32] 趙俊斌,唐書恒,孫振飛,等. 鄂爾多斯盆地東緣興縣地區(qū)山西組高分辨率層序地層與聚煤規(guī)律[J]. 中國(guó)煤炭地質(zhì),2015,27(4):1–7.
ZHAO Junbin,TANG Shuheng,SUN Zhenfei,et al. Shanxi Formation high-resolution sequence stratigraphy and coal accumulation pattern in Xingxian area,Ordos Basin eastern margin[J]. Coal Geology of China,2015,27(4):1–7.
[33] 師晶,黃文輝,呂晨航,等. 鄂爾多斯盆地臨興地區(qū)上古生界泥巖地球化學(xué)特征及地質(zhì)意義[J]. 石油學(xué)報(bào),2018,39(8):876–889.
SHI Jing,HUANG Wenhui,LYU Chenhang,et al. Geochemical characteristics and geological significance of the Upper Paleozoic mudstones from Linxing area in Ordos Basin[J]. Acta Petrolei Sinica,2018,39(8):876–889.
[34] 胡維強(qiáng),劉玉明,李洋冰,等. 鄂爾多斯盆地臨興地區(qū)上古生界烴源巖特征及其生排烴史研究[J]. 長(zhǎng)江大學(xué)學(xué)報(bào)(自科版),2018,15(19):1–5.
HU Weiqiang,LIU Yuming,LI Yangbing,et al. The characteristics and generation-expulsion history of hydrocarbon source rocks of the Upper Paleozoic in Linxing area of Ordos Basin[J]. Journal of Yangtze University(Natural Science Edition),2018,15(19):1–5.
[35] 盧雙舫,張敏. 油氣地球化學(xué)[M]. 北京:石油工業(yè)出版社,2008.
LU Shuangfang,ZHANG Min. Petroleum geochemistry[M]. Beijing:Petroleum Industry Press,2008.
[36] 中華人民共和國(guó)國(guó)家標(biāo)準(zhǔn). 頁(yè)巖氣地質(zhì)評(píng)價(jià)方法:GB/T 31483—2015[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2015.
National Standards of the People’s Republic of China. Geological evaluation methods for shale gas:GB/T 31483—2015[S]. Beijing:Standards Press of China,2015.
[37] 林俊峰,胡海燕,黎祺. 川東焦石壩地區(qū)頁(yè)巖氣特征及其意義[J]. 地球科學(xué),2017,42(7):1124–1133.
LIN Junfeng,HU Haiyan,LI Qi. Geochemical characteristics and implications of shale gas in Jiaoshiba,eastern Sichuan,China[J]. Earth Science,2017,42(7):1124–1133.
[38] 趙磊,賀永忠,楊平,等. 黔北下古生界烴源層系特征與頁(yè)巖氣成藏初探[J]. 中國(guó)地質(zhì),2015,42(6):1931–1943.
ZHAO Lei,HE Yongzhong,YANG Ping,et al. Characteristics of Lower Palaeozoic hydrocarbon source strata and a primary study of the shale gas accumulation in northern Guizhou Province[J]. Geology in China,2015,42(6):1931–1943.
[39] 魏祥峰,郭彤樓,劉若冰. 涪陵頁(yè)巖氣田焦石壩地區(qū)頁(yè)巖氣地球化學(xué)特征及成因[J]. 天然氣地球科學(xué),2016,27(3):539–548.
WEI Xiangfeng,GUO Tonglou,LIU Ruobing. Geochemical features of shale gas and their genesis in Jiaoshiba block of Fuling shale gasfield,Chongqing[J]. Natural Gas Geoscience,2016,27(3):539–548.
[40] 韓輝,李大華,馬勇,等. 四川盆地東北地區(qū)下寒武統(tǒng)海相頁(yè)巖氣成因:來(lái)自氣體組分和碳同位素組成的啟示[J]. 石油學(xué)報(bào),2013,34(3):453–459.
HAN Hui,LI Dahua,MA Yong,et al. The origin of marine shale gas in the northeastern Sichuan Basin,China:Implications from chemical composition and stable carbon isotope of desorbed gas[J]. Acta Petrolei Sinica,2013,34(3):453–459.
[41] 羅勝元,陳孝紅,劉安,等. 中揚(yáng)子宜昌地區(qū)下寒武統(tǒng)水井沱組頁(yè)巖氣地球化學(xué)特征及其成因[J]. 石油與天然氣地質(zhì),2019,40(5):999–1010.
LUO Shengyuan,CHEN Xiaohong,LIU An,et al. Geochemical features and genesis of shale gas from the Lower Cambrian Shuijingtuo Formation shale in Yichang block,Middle Yangtze region[J]. Oil & Gas Geology,2019,40(5):999–1010.
[42] 姜呈馥,王香增,張麗霞,等. 鄂爾多斯盆地東南部延長(zhǎng)組長(zhǎng)7段陸相頁(yè)巖氣地質(zhì)特征及勘探潛力評(píng)價(jià)[J]. 中國(guó)地質(zhì),2013,40(6):1880–1888.
JIANG Chengfu,WANG Xiangzeng,ZHANG Lixia,et al. Geological characteristics of shale and exploration potential of continental shale gas in 7th member of Yanchang Formation,southeast Ordos Basin[J]. Geology in China,2013,40(6):1880–1888.
[43] LIU Quanyou,JIN Zhijun,MENG Qingqiang,et al. Genetic types of natural gas and filling patterns in Daniudi gas field,Ordos Basin,China[J]. Journal of Asian Earth Sciences,2015,107:1–11.
[44] 高玉巧,高和群,何希鵬,等. 四川盆地東南部頁(yè)巖氣同位素分餾特征及對(duì)產(chǎn)能的指示意義[J]. 石油實(shí)驗(yàn)地質(zhì),2019,41(6):865–870.
GAO Yuqiao,GAO Hequn,HE Xipeng,et al. Methane isotope fractionation characteristics of shale gas and its significance as a productivity indicator[J]. Petroleum Geology & Experiment,2019,41(6):865–870.
[45] 李劍,劉朝露,李志生,等. 天然氣組分及其碳同位素?cái)U(kuò)散分餾作用模擬實(shí)驗(yàn)研究[J]. 天然氣地球科學(xué),2003,14(6):463–468.
LI Jian,LIU Zhaolu,LI Zhisheng,et al. Experiment investigation on the carbon isotope and composition fractionation of methane during gas migration by diffusion[J]. Natural Gas Geoscience,2003,14(6):463– 468.
[46] 戴金星. 天然氣碳?xì)渫凰靥卣骱透黝愄烊粴忤b別[J]. 天然氣地球科學(xué),1993,4(2/3):1–40.
DAI Jinxing. Hydrocarbon isotope characteristics and identification of various types of natural gas[J]. Natural Gas Geoscience,1993,4(2/3):1–40.
[47] HU Guoyi,LI Jin,SHAN Xiuqin,et al. The origin of natural gas and the hydrocarbon charging history of the Yulin gas field in the Ordos Basin,China[J]. International Journal of Coal Geology,2010,81(4):381–391.
[48] WANG Xiaofeng,LI Xiaofu,WANG Xiangzeng,et al. Carbon isotopic fractionation by desorption of shale gases[J]. Marine and Petroleum Geology,2015,60:79–86.
[49] 張義綱. 天然氣的生成聚集和保存[M]. 南京:河海大學(xué)出版社,1991.
ZHANG Yigang. Accumulation and preservation of natural gas[M]. Nanjing:Hehai University Press,1991.
[50] WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology,1999,161(1/2/3):291–314.
[51] 戴金星,倪云燕,吳小奇. 中國(guó)致密砂巖氣及在勘探開(kāi)發(fā)上的重要意義[J]. 石油勘探與開(kāi)發(fā),2012,39(3):257–264.
DAI Jinxing,NI Yunyan,WU Xiaoqi. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development,2012,39(3):257–264.
[52] 孫平安,王緒龍,唐勇,等. 準(zhǔn)噶爾盆地淺層天然氣多種成因地球化學(xué)研究[J]. 地球化學(xué),2012,41(2):109–121.
SUN Ping’an,WANG Xulong,TANG Yong,et al. Geochemical constraints on the multiple origins of shallow-buried natural gases in the Junggar Basin[J]. Geochimica,2012,41(2):109–121.
Geochemical characteristics of marine-continental transitional facies shale and shale gas in Linxing area
CHEN Xin1,2, WU Peng3, GAO Jixian3, HU Weiqiang1,2, DING Wangui3, LI Yangbing1,2, LIU Xueqing1,2,MA Litao1,2, LIU Cheng1,2, KONG Wei1,2, CAO Di1,2, CHEN Jianqi4, LI Yong4
(1. CNOOC Energy Technology-Drilling & Production Co., Tianjin 300452, China; 2. CNOOC Energy Technology & Services Limited Key Laboratory for Exploration & Development of Unconventional Resources, Tianjin 300452, China; 3.China United Coalbed Methane Corporation Ltd., Beijing 100011, China; 4.School of Geoscience and Surveying, China University of Mining and Technology(Beijing), Beijing 100083, China)
In order to reveal the geochemical characteristics of shale and shale gas on the east edge of Ordos Basin, thin section identification, full rock and clay content, scanning electron microscope , organic carbon, rock pyrolysis, kerogen macerals, and kerogen carbon isotopes were tested, and the gas component and carbon isotopes composition of shale were analyzed. The results show that the mineral component of the transitional facies shale in Linxing area is mainly quartz and clay minerals, containing a small amount of calcite, plagioclase, potassium feldspar, dolomite and pyrite. Affected by the mineral genesis and deposition environment, different mineral components and organic matter occur in different ways. There are two deposit patterns of quartz and organic matter, 3 patterns of clay minerals, and 4 patterns of pyrite. The organic matter type is Ⅱ2-Ⅲ type, the average organic carbon content is greater than 2.0%, and the kerogen carbon isotopes are from –24.5‰ to –23.2‰. The vitrinite reflectivity is from 0.92% to 1.30%,maxis 427~494℃, and the thermal evolution of organic matter reaches maturity. In shale gas, hydrocarbon gas is mainly methane, containing a small amount of ethane and propane, which is generally dry gas. The mean methane carbon isotope is –40.0‰, between marine shale gas and terrestrial shale gas, ethane carbon isotopes from –26.8‰ to –22.56‰, both more than –29 ‰, showing13C1<13C2<13C3positive carbon sequence. It is believed that the shale in the area has the potential to generate shale gas. The shale gas is mainly derived from humic shale in the upper Paleozoic boundary, which belongs to the organic thermal coal gas generated by the cracking of cheese root.
eastern margin of Ordos Basin; marine-continental transitional facies; shale gas; geochemistry; genetic type
語(yǔ)音講解
TP028.8
A
1001-1986(2021)06-0012-12
2021-05-10;
2021-07-23
國(guó)家自然科學(xué)基金項(xiàng)目(42072194);國(guó)家科技重大專項(xiàng)項(xiàng)目(2016ZX05066)
陳鑫,1981年生,男,河南漯河人,工程師,從事天然氣成藏及相關(guān)實(shí)驗(yàn)研究工作. E-mail:chenxin3@cnooc.com.cn
吳鵬,1988年生,男,山東泰安人,博士,高級(jí)工程師,從事非常規(guī)油氣勘探與開(kāi)發(fā)工作. E-mail:wupeng19@cnooc.com.cn
陳鑫,吳鵬,高計(jì)縣,等. 臨興地區(qū)海陸過(guò)渡相頁(yè)巖及頁(yè)巖氣地球化學(xué)特征[J]. 煤田地質(zhì)與勘探,2021,49(6):12–23. doi: 10.3969/j.issn.1001-1986.2021.06.002
CHEN Xin,WU Peng,GAO Jixian,et al. Geochemical characteristics of marine-continental transitional facies shale and shale gas in Linxing area[J]. Coal Geology & Exploration,2021,49(6):12–23. doi: 10.3969/j.issn.1001-1986.2021. 06.002
移動(dòng)閱讀
(責(zé)任編輯 范章群 聶愛(ài)蘭)