亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        PAPR Reduction in NOMA by Using Hybrid Algorithms

        2021-12-10 11:58:00MohitKumarSharmaandArunKumar
        Computers Materials&Continua 2021年10期

        Mohit Kumar Sharma and Arun Kumar

        Department of Electronics and Communication Engineering,JECRC University,Jaipur,303905,India

        Abstract:Non-orthogonal multiple access(NOMA)is gaining considerable attention due to its features,such as low out-of-band radiation,signal detection capability,high spectrum gain,fast data rate,and massive D2D connectivity.It may be considered for 5G networks.However,the high peak-to-average power ratio(PAPR)is viewed as a significant disadvantage of a NOMA waveform,and it weakens the quality of signals and the throughput of the scheme.In this article,we introduce a modified NOMA system by employing a block of wavelet transform,an alternative to FFT(Fast Fourier transform).The modified system combines the details of fractional frequency and time analysis of NOMA signals.In this correspondence,we utilize an advanced partial transmission scheme(PTS),and selective mapping(SLM),and present a genetic algorithm(GA)for SLM to investigate the peak power performance of a WT-based NOMA system.The performance of WT-SLM,WT-PTS,and WT-SLM-GA methods is compared with that of the traditional NOMAbased SLM and PTS methods.The simulation results demonstrate that the proposed system effectively reduces PAPR in comparison with the traditional schemes.

        Keywords:PAPR;wavelet transform;NOMA;PTS;SLM;5G

        1 Introduction

        With the increase in the numbers of devices,subscribers,demands,and services,data traffic is assumed to increase by a thousand times[1].Presently,no techniques can satisfy all requirements.Nevertheless,the forthcoming 5G radio is expected to fill all demands and services.An orthogonal frequency division multiplexing(OFDM)waveform is used in 4G radio,but it is not considered for 5G due to several disadvantages,as investigated in[2].Therefore,a 5G radio waveform must be explored.Transmission techniques will play a major role in the development of a highperformance and advanced radio system.Over the last few years,several advanced waveform schemes[3]have been proposed for 5G networks[3].Among them,non-orthogonal multiple access(NOMA)has gained extensive attention due to its efficient spectral efficiency,as discussed in[4].NOMA is an advanced transmission scheme based on a multicarrier scheme and regarded as one of the strong contenders for 5G cellular communication.It is designed through the superposition coding(SC)and successive interference cancellation(SIC).The function of SC is to transmit NOMA signals to several users andSICis used to de-multiplex the signals at the receiver.The use of SC will decrease the delay and complexity of the NOMA waveform because no error occurs when transmitting NOMA signals[5].Nonetheless,the high peak-to-average power ratio(PAPR)is considered a great obstacle in the standardization of the NOMA waveform in 5G systems.Several reduction techniques have been implemented in the OFDM system.However,these reduction techniques cannot be used in NOMA given their different construction and systems[6].The disadvantage of the NOMA-based OFDM is the degradation of system flow due to excessive peak power.In[7],the authors presented a DST precoding method to enhance the PAPR performance of the NOMA-based OFDM system.The proposed method was compared with the conventional NOMA Walsh–Hadamard transform NOMA.The simulation results showed that the proposed DST performed better than the conventional techniques.The authors also presented a finite impulse filter grounded on the Hadamard technique to overcome the peak power effect.The proposed method was compared with the non-precoded and HT precoded methods.It was effective in reducing the peak power of the waveform[8].In[9],a modified precoded technique was used to minimize the peak power of the NOMA-based OFDM waveform.Prior knowledge of side information was not needed in the projected method.The simulation results demonstrated that the PAPR and BER of the proposed method were better than those of conventional designs.The authors introduced a PTSCT scheme to minimize the peak power of the NOMA waveform.In this algorithm,partial transmission scheme(PTS)was initially applied to advanced waveforms,which minimized the amplitude power,Circular Transformation(CT)was then applied to decrease the complexity of the organization.The simulation results indicated that PTSCT was better than the conventional PTS[10].A hybrid method based on a combination of swarm optimization for PTS was proposed for the OFDM waveform.In this method,the best phase variation elements were chosen to reduce the peak power of the signal.The experimental result showed enhanced PAPR performance[11].The authors also introduced a wavelet transform(WT)block within the MIMO-OFDM structure to overcome the effect of high PAPR.The simulation results showed that the wavelet MIMO-OFDM efficiently reduced PAPR as compared with the traditional OFDM structure[12].In[13],PTS was used to decrease the amplitude power of the UFMC system.The study indicated a considerable reduction in PAPR,and the complexity of the arrangement was mitigated by the proposed framework.In[14],the P-PTS method was enforced to scale down the amplitude power of a filter bank multicarrier system.An efficient result could be obtained by changing the number of sub-blocks and subcarriers.The experimental outcomes showed that the amplitude power was significantly reduced by the proposed P-PTS compared with other techniques.Nevertheless,the complexity of P-PTS was not discussed in the study.The authors presented a genetic algorithm(GA)-centric PTS technique to minimize the peak power of the OFDM structure.The technique achieved gains of 0.11 and 0.46 dB compared with the traditional PTS[15].In[16],PTS was proposed to minimize the PAPR and complexity of the OFDM structure.Peak power was reduced by multiplying the PTS sub-blocks by an ideal phase vector,for which a minimal PAPR was obtained.The simulation results showed that a PAPR was reduced to 5.98 dB at the CCDF of 10?3.The selective mapping(SLM)method was presented to reduce the amplitude and average power of the OFDM signal[17].The conventional SLM increased the system complexity due to the use of large numbers of IFFTs.By contrast,the presented method minimized the complexity by separating the OFDM signal into odd and even signals.The experimental outcomes demonstrated that the proposed SLM achieved optimal performance compared with the other schemes.In[18],the SLM method was introduced to overcome the effect of PAPR in a multicarrier OFDM structure.The proposed method optimized the PAPR performance,with a low power requirement and no loss of side information.A joint optimization method centered on SLM and CT was suggested to reduce the amplitude power of NOMA and FBMC signals.The optimal outcome was achieved in two phases.At the primary stage,OFDM and NOMA signal sub-blocks were generated by applying the SLM scheme.IFFTs were applied to the number of sub-blocks.SLM increased the computational complexity of the structure.CT was then applied to reduce the complexity,and a low PAPR signal was selected for transmitting[19].From the existing literature,SLM-WT,PTS-WT,and SLM-GA-WT techniques had not been investigated for the NOMA system.In this study,the objective of the proposed method is to replace the IFFT with IDWT of the NOMA structure.Advanced SLM,PTS and SLM-GA methods are also applied to a WT-based NOMA system to evaluate the performance in PAPR.

        2 System Model

        2.1 Wavelet Transform(WT)

        This study investigates the performance of dynamic NOMA signals in time and frequency domains.WT is identical to Fourier transform(FT).In FT,the function is restrained in the Fourier space.By contrast,WT utilizes the function restricted in the Fourier and real-time span.The abilities to calculate fast and to study sub-details of signals are considered significant benefits of WT.It is utilized to split signals into the elements of a wavelet.Hence,it is feasible to acquire an excellent estimation of the function by utilizing a small number of coefficients,compared with FT.However,high-cost implementation,utilization of massive numbers of WT,distortion in signals,and lengthy compacting time are few of the drawbacks of WT.Mathematically,WT can be expressed as[20]:

        where h[k]and g[k]are the characteristics of high and low-pass filters,representing the wavelet and scalar functions;ψn,mis themthwavelet function on thenthlevel.The IDWT of the transmitted signal can be represented as:

        wherey(l)is the transmitted signal,m indicates the position oflsignal index,represents the wavelet function of m-channel,and N is the number of subcarriers.

        2.2 Estimation of the PAPR of the NOMA Waveform

        The schematic of the wavelet-based NOMA waveform is indicated in Fig.1.In this proposed model,IDWT and DWT blocks are introduced in place of FFT and IFFT.The proposed system allows the access of each subcarrier by all users.

        Figure 1:Schematic of NOMA

        The NOMA signal is given as:

        2.3 Wavelet Transform Based SLM(SLM-WT)

        The SLM technique was presented in 1996[21].SLM is regarded as one of the most efficient PAPR minimization methods,as shown in Fig.2.The purpose of the conventional SLM,is to generate an optimal phase vector for the sub-blocks of the NOMA symbol and IFFT are applied to it.A low-PAPR signal is then chosen and transmitted.However,SLM introduces a high computational complication due to the use of IFFTs.In the projected system,the optimal phase factor is multiplied with NOMA symbols,and the IDWT block is used instead of IFFT.The NOMA signal is applied to IDWT,which converts the NOMA signal into a time-domain one.Lastly,a low-peak-power signal is selected and transmitted with low computational complexity.

        Figure 2:DWT-SLM

        2.4 Wavelet Transform Based PTS(PTS-WT)

        The PTS method was first implemented in 1997[22].In this method,the NOMA symbols are divided into several data blocks applied to IDWT.The data blocks are weighted using a phase element(W)to produce a low-value PAPR signal.The proposed model is shown in Fig.3.

        The NOMA symbols are given asZ=[Z0,Z1,...,ZN?1],divided into several numbers of sub-blocks(v),expressed as:

        Figure 3:WT-PTS

        2.5 Wavelet Transform Based SLM-GA(SLM-GA-WT)

        We present a hybrid PAPR method grounded in artificial intelligence centered genetic algorithm sustained,SLM sequence denoted as SLM-GA,to reduce the peak power of NOMA.In the hybrid method,peak power minimization is accomplished and complexity is significantly reduced.NOMA signals are divided into different sub-blocks and applied to IDFT converting frequencydomain NOMA sub-blocks in time-domain NOMA sub-blocks.GA is introduced to generate the best phase rotation factor and added to NOMA data blocks.Further,the GA also reduces the complexity of the NOMA waveform.The WT-GA-SLM system is depicted in Fig.4.The NOMA signal is denoted as:

        Figure 4:WT-GA-SLM

        3 Simulation Results

        In this work,we employ MATLAB-2014 to assess the performance of the projected and oldstyle approaches[23,24].The parameters of the proposed simulation are indicated in Tab.1.

        Table 1:Simulation parameters

        Fig.5 represents the peak power performance of the NOMA waveform for N number of subcarriers used in the simulation(N = 64,256,and 512).N = 64,256,512 sub-carriers minimize the amplitude power to 8.5,9.2,and 14 dB respectively,at the CCDF of 10?3.Hence,we can obtain optimal PAPR performance by utilizing N = 64.

        Figure 5:PAPR for different sub-carriers(N)

        In Fig.6,we analyze the peak power reduction capability of the proposed WT-NOMA and FFT-NOMA systems.The simulation results demonstrate that the proposed WT-NOMA significantly reduces the PAPR to 9.8 dB compared with the traditional NOMA(12 dB).

        Figure 6:PAPR performance of WT-NOMA vs.FFT-NOMA

        The peak power analysis of the proposed WT-SLM and FFT-SLM for the NOMA system is presented in Fig.7.The original PAPR of NOMA at the CCDF of 10?3is 11 dB.From the simulation results,the proposed method reduces the peak power to 8.7 dB whereas the conventional SLM shows peak power of 9.8 dB.Accordingly,the proposed method achieves a gain of 1.26 dB compared with to the FFT-SLM.

        Figure 7:PAPR characteristics

        The PAPR analysis of DT-SLM for different sub-blocks(v)is shown in Fig.8.In the present simulation,v is restricted to 4,8,and 16 data blocks.The original PAPR of NOMA at the CCDF of 10?3is 11 dB.The results indicate that the proposed WT-SLM reduces the peak power to 9,8.2,and 7.4 dB for v = 4,8,16 respectively.As projected,the amplitude power of the NOMA signal can be minimized by varying the value of v.From the results,ideal PAPR can be realized using v = 16 in WT-SLM.

        Figure 8:PAPR of WT-SLM with v

        In Fig.9,we investigate the PAPR performance of the proposed WT-PTS and FFT-PTS at CCDF of 10?3.The results show that the proposed method efficiently reduces the amplitude power to 7 dB,whereas the traditional PTS has peak power of 9.4 dB.Hence,WT-SLM has better performance than the traditional PTS.

        The PAPR curve of the recommended WT-PTS for the NOMA wave is indicated in Fig.10.We confine our simulation outcomes to repetition values v and w equivalent to 2.As estimated,enhanced peak power reduction is realized by changing the values of u and w.At the CCDF of 10?3,WT-PTS minimizes the peak power to 4.2,5,6.8,and 8.6 dB for v = 4 w = 4,v = 4 w =2,v = 2 w = 4,and v = 2 w = 2,respectively,compared with the original PAPR(11 dB).From the curve,optimal PAPR performance can be achieved using v = 4 w = 4 in WT-PTS.

        Figure 9:PAPR for WT-PTS and FFT-PTS

        Figure 10:PAPR of WT-PTS with v and w

        In the NOMA waveform,the PAPR curve of the proposed SLM-GA is achieved with varying‘u’,and ‘v’numbers,as indicated in Fig.11.The original peak power of the NOMA signal without the reduction method is 11 dB.At the CCDF of 10?3,the peak power is reduced to 4.1 and 5.8 dB for WT-SLM-GA w = 4 and w = 2,respectively.Thus,efficient PAPR performance is obtained using w=4 in WT-SLM-GA.

        In Fig.12,we compare the performance of the BER curve when the signal is applied to FFT-NOMA and WT-NOMA.From the simulation results,the BER of FFT-NOMA is 10?3at 7.8 dB SNR.When the signal is passed through WT-NOMA,the BER of 10?3is obtained at the SNR of 5.3 dB.Hence,WT-NOMA provides better results than FFT-NOMA.

        To analyze the PAPR performance in NOMA,the SNR verses BER characteristic curves are plotted for the proposed and conventional reduction schemes,in Fig.13.BER of 10?3is obtained at SNRs of 4.2 dB for WT-SLM-GA w = 4,6.8 dB for WT-PTS v = 4,w = 4,6.2 dB for WT-SLM v = 16,8.4 dB for FFT-SLM,and 10.2 dB for FFT-PTS.Therefore,WT-SLM-GA outperforms other reduction schemes.

        Figure 11:PAPR of WT-GA-SLM with w

        Figure 12:BER of FFT-NOMA and WT-NOMA

        Figure 13:BER curve

        Tabs.2 and 3 indicate the gain and power saving obtained by the reduction methods,respectively.

        Table 2:Gain

        Table 3:Power saving of reduction approaches

        4 Conclusion

        We propose a novel peak power reduction method for the NOMA waveform.For the first time,WT blocks are introduced into the NOMA structure.Time-domain NOMA signals are generated and processed by applying inverse WT to acquire a fair amount of sub-blocks with a minimal number of IFFTs.Hence,NOMA-based WT(WT-NOMA)gains better PAPR and BER than the conventional NOMA(FFT-NOMA).The peak power of the transmitted WT-NOMA signals is studied by modifying the PTS and SLM techniques and SLM and PTS techniques increases the complexity of the WT-NOMA system.Therefore,we introduce a GA-based SLM method for the WT-NOMA waveform.Moreover,the proposed WT-centered reduction methods are compared with conventional SLM,PTS,and NOMA(FFT-NOMA).From the simulation analysis,WT-SLM v = 16,WT-PTS v = 4 w = 4,and WT-GA-SLM w = 4,obtain the best performance.The amplitude power is reduced to 7.4,4.2,and 4.1 dB compared with that of the original PAPR(11 dB).The conventional SLM,PTS and FFT-NOMA systems are outperformed.We also plot the BER curve to investigate the performance of the best proposed methods and traditional methods.The outcomes demonstrate that the BER performance of WT-GA-SLM better than that of SLM v = 16,PTS w = 4 v = 4,FFT-SLM,and FFT-NOMA.

        Acknowledgement:The authors would like to thank the editors of CMC and the anonymous reviewers for their time in reviewing this manuscript.The authors also acknowledge JECRC University for providing a lab facility.

        Funding Statement:The authors received no specific funding for this study.

        Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

        在线免费看91免费版.| 97SE亚洲国产综合自在线不卡| 亚洲不卡av不卡一区二区| 久久99精品久久只有精品| 日日摸夜夜添夜夜添高潮喷水| 国产成人无码一区二区在线观看| 级毛片免费看无码| 丰满人妻一区二区三区52| 国产精品无码制服丝袜| 极品粉嫩嫩模大尺度视频在线播放 | www.久久av.com| 日本办公室三级在线观看| 无套中出丰满人妻无码| 无码人妻品一区二区三区精99 | 少妇太爽了在线观看免费| 久久久久久久97| 日本精品a在线观看| 色婷婷精品国产一区二区三区| 色佬精品免费在线视频| 国产精品综合一区二区三区| 女性自慰网站免费看ww| 亚洲精品中文字幕乱码3| 色婷婷一区二区三区四区成人网| 三上悠亚久久精品| 亚洲欧美日本人成在线观看| 国产av一卡二卡日韩av| 中文字幕乱码一区av久久不卡| 91麻豆精品激情在线观看最新 | 草逼视频免费观看网站| 国产产区一二三产区区别在线| 日本中文字幕在线播放第1页| 综合人妻久久一区二区精品 | 欧美国产日韩a在线视频| 挑战亚洲美女视频网站| 91精品国产色综合久久 | 成人免费视频自偷自拍| 国产高清一区二区三区四区色| 亚洲一本到无码av中文字幕| 人妻精品一区二区三区视频| 国产精品一区二区韩国av| 亚洲伊人一本大道中文字幕|