亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于改進(jìn)算法的空調(diào)冷負(fù)荷組合預(yù)測(cè)研究

        2021-12-08 13:46:19張晨晨叢意林田野郭安柱劉濤馬永志
        關(guān)鍵詞:修正空調(diào)粒子

        張晨晨 叢意林 田野 郭安柱 劉濤 馬永志

        摘要: ?針對(duì)單一的預(yù)測(cè)方法難以綜合描述冷負(fù)荷變化的規(guī)律性問(wèn)題,本文以初投入使用的青島市某自習(xí)室空調(diào)系統(tǒng)為研究對(duì)象,對(duì)基于改進(jìn)算法的空調(diào)冷負(fù)荷組合預(yù)測(cè)進(jìn)行研究。為獲得動(dòng)態(tài)負(fù)荷數(shù)據(jù),搭建了TRNSYS模擬仿真平臺(tái),對(duì)擾動(dòng)因子經(jīng)平均影響值(mean impact value,MIV)和Spearman相關(guān)性分析及特征變量篩選后,對(duì)預(yù)測(cè)算法進(jìn)行優(yōu)化。通過(guò)引入隨機(jī)粒子和混沌算法,建立基于標(biāo)準(zhǔn)粒子群算法的組合粒子群算法(combined particle swarm optimization, CPSO),得到組合粒子群優(yōu)化后向傳播網(wǎng)絡(luò)(back propagation, BP)負(fù)荷預(yù)測(cè)模型CPSOBP,并引布谷鳥(niǎo)搜索(cuckoo search,CS),確立布谷鳥(niǎo)搜索支持向量回歸(support vector regression,SVR)負(fù)荷預(yù)測(cè)模型CSSVR,建立基于遺傳尋優(yōu)的灰色預(yù)測(cè)模型GAGM(1,N)。同時(shí),將各模型的負(fù)荷預(yù)測(cè)值帶入模糊系統(tǒng)中,建立實(shí)時(shí)模糊組合預(yù)測(cè)模型(fuzzy combination,F(xiàn)C),并采用Markov(M)對(duì)組合誤差進(jìn)行修正。結(jié)果表明,基于Markov的模糊組合預(yù)測(cè)算法FCM優(yōu)于CPSOBP、CSSVR和FC,組合精度與3個(gè)優(yōu)化模型相比分別提高了26.32%,62.16%,94.68%,說(shuō)明基于馬爾可夫的模糊組合預(yù)測(cè)算法FCM可以彌補(bǔ)各算法的不足,降低了預(yù)測(cè)誤差,提高了預(yù)測(cè)準(zhǔn)確率。該研究為空調(diào)節(jié)能運(yùn)行策略的制定提供了理論參考。

        關(guān)鍵詞: ?模糊系統(tǒng); GAGM(1,N); CPSOBP; CSSVR; Markov

        中圖分類(lèi)號(hào): TP391.9; TU831.6 文獻(xiàn)標(biāo)識(shí)碼: A

        世界能源需求的增加帶來(lái)了能源消耗的激增[1]。由于建筑工程約占世界能源消耗的30%[2],而采暖、通風(fēng)和空調(diào)系統(tǒng)(heating ventilation and air conditioning,HVAC)在建筑能耗中所占比例最大[3],且與其他部分能源消耗相比,通過(guò)將能源供應(yīng)與實(shí)際負(fù)荷需求相匹配[4],減少能源消耗具有更大的潛力。因此,提高暖通空調(diào)的運(yùn)行效率對(duì)降低能耗至關(guān)重要,而準(zhǔn)確預(yù)測(cè)冷卻負(fù)荷在此意義重大[5]。全球氣候和人類(lèi)生命行為的復(fù)雜性,導(dǎo)致空調(diào)負(fù)荷呈現(xiàn)非線性、多變性和動(dòng)態(tài)性的特點(diǎn)[3],這對(duì)空調(diào)負(fù)荷的預(yù)測(cè)精度提出了更高的要求。負(fù)荷預(yù)測(cè)的方法包括物理建模法、參數(shù)模型和非參數(shù)模型法。物理建模是利用傳熱機(jī)制搭建模擬平臺(tái),但是其無(wú)法保證實(shí)時(shí)性[6-9];參數(shù)模型是通過(guò)分析影響因素與冷負(fù)荷之間的關(guān)系,建立數(shù)學(xué)模型或統(tǒng)計(jì)模型,統(tǒng)計(jì)模型的方法主要包括統(tǒng)計(jì)回歸[10]和時(shí)間序列,統(tǒng)計(jì)回歸算法結(jié)構(gòu)簡(jiǎn)單,但評(píng)價(jià)指標(biāo)難以確定,時(shí)間序列通過(guò)分析歷史負(fù)荷的規(guī)律性以預(yù)測(cè)冷負(fù)荷[11],其只用于負(fù)荷均勻變化的系統(tǒng)[12]。非參數(shù)模型因其囊括智能算法而受到廣泛關(guān)注,主要有決策樹(shù)[13]、灰色預(yù)測(cè)[14]、遺傳算法[15]、粒子群算法[16]、布谷鳥(niǎo)算法[17]、神經(jīng)網(wǎng)絡(luò)[18]和支持向量機(jī)[19]。決策樹(shù)算法又稱判定樹(shù),是多分枝有向、無(wú)環(huán)的樹(shù)狀結(jié)構(gòu),算法效率高,計(jì)算量小,但處理不好時(shí)間序列與非線性數(shù)據(jù);灰色預(yù)測(cè)(Grey)在訓(xùn)練參數(shù)較少時(shí),可得到較為準(zhǔn)確的預(yù)測(cè)結(jié)果,但對(duì)隨機(jī)性強(qiáng),離散度大的建筑負(fù)荷,預(yù)測(cè)精度低[20];支持向量機(jī)(support vector machine, SVM)泛化能力強(qiáng),在解決維度災(zāi)難問(wèn)題和局部最小問(wèn)題上有天然的優(yōu)勢(shì),結(jié)構(gòu)簡(jiǎn)單,魯棒性強(qiáng),但不適用于大量樣本;BP神經(jīng)網(wǎng)絡(luò)具有強(qiáng)大的非線性映射能力和自學(xué)習(xí)能力,但其容易陷入局部極小,收斂速度慢,對(duì)網(wǎng)絡(luò)初值樣本數(shù)量較為敏感,對(duì)復(fù)雜的非線性問(wèn)題預(yù)測(cè)精度低。因此,許多學(xué)者提出了改進(jìn)算法。Wei L Y等人[21]提出了自適應(yīng)期望遺傳算法,優(yōu)化自適應(yīng)網(wǎng)絡(luò)模糊推理系統(tǒng),并通過(guò)對(duì)比證實(shí)了模型的有效性;D. Sedighizadeh等人[22]提出了一種結(jié)合隨機(jī)最優(yōu)粒子的廣義粒子群優(yōu)化算法,與其他混合粒子群算法在均值和標(biāo)準(zhǔn)差方面均體現(xiàn)了優(yōu)越性;N. Kumar等人[16]提出了一種基于改進(jìn)布谷鳥(niǎo)搜索(cuckoo search)算法和自適應(yīng)高斯量子行為粒子群優(yōu)化算法的混合算法;Li D L等人[23]采用自適應(yīng)PSOSVM方法,建立新的自適應(yīng)短期負(fù)荷預(yù)測(cè)模型,自適應(yīng)PSOSVM方法預(yù)測(cè)精度高,泛化能力強(qiáng),可行性強(qiáng);D. Tien Bui等人[24]建立了遺傳算法和帝國(guó)主義競(jìng)爭(zhēng)算法,優(yōu)化人工神經(jīng)網(wǎng)絡(luò)在節(jié)能住宅熱負(fù)荷和冷負(fù)荷估算中的權(quán)值和偏差,取得了較好的預(yù)測(cè)精度。而單一的混合算法很難表現(xiàn)出優(yōu)化模型的全部信息,單一的預(yù)測(cè)方法難以綜合描述冷負(fù)荷變化的規(guī)律性。因此,本文采用多個(gè)混合算法,分別優(yōu)化各個(gè)預(yù)測(cè)模型的參數(shù),再將各預(yù)測(cè)模型放入模糊推理系統(tǒng),分段動(dòng)態(tài)地提取組合權(quán)重,并將各預(yù)測(cè)模型組合起來(lái),同時(shí)考慮到模擬負(fù)荷過(guò)程中產(chǎn)生的隨機(jī)誤差,采用馬爾科夫鏈對(duì)誤差進(jìn)行了修正,降低了預(yù)測(cè)誤差,提高了預(yù)測(cè)準(zhǔn)確率。

        1數(shù)據(jù)來(lái)源與處理

        1.1TRNSYS模擬平臺(tái)

        本文以初投入使用的青島市某自習(xí)室空調(diào)系統(tǒng)為研究對(duì)象,基于Trnsys動(dòng)態(tài)仿真平臺(tái),獲得了動(dòng)態(tài)逐時(shí)負(fù)荷,并對(duì)多功能自習(xí)室負(fù)荷模擬參數(shù)進(jìn)行設(shè)置。青島市多功能自習(xí)室負(fù)荷模擬參數(shù)如表1所示。

        1.2輸入變量篩選

        本文采用MIV與spearman系數(shù)結(jié)合的方式,提取外擾和內(nèi)擾特征變量因素反復(fù)計(jì)算,取MIV均值絕對(duì)值,選擇貢獻(xiàn)率大的成分,再充分考慮自習(xí)室內(nèi)的負(fù)荷,呈周期性變化的歷史負(fù)荷對(duì)當(dāng)前時(shí)刻t負(fù)荷的影響,以及內(nèi)擾和外擾的延遲作用,經(jīng)過(guò)試錯(cuò)法反復(fù)比較,進(jìn)而計(jì)算不同時(shí)刻每個(gè)成分的spearman系數(shù),最終選擇確定度大于0.6的成分作為輸入。

        2組合預(yù)測(cè)模型

        2.1CPSOBP預(yù)測(cè)

        粒子群搜索BP網(wǎng)絡(luò)最優(yōu)的閾值和權(quán)值初值,以提高BP對(duì)初值的敏感度。針對(duì)標(biāo)準(zhǔn)粒子群收斂慢、易早熟的問(wèn)題,引入改進(jìn)算法。本文首先改進(jìn)速度更新公式,再引進(jìn)混沌算法流程,形成組合算法。

        1)改進(jìn)粒子群。改進(jìn)的粒子群為

        2)混沌算法?;煦缬成渚哂须S機(jī)性和遍歷性的特點(diǎn),將最優(yōu)解映射到logistic方程的定義域[0,1]中,經(jīng)過(guò)有限次迭代得到混沌序列后,將其逆映射到原解空間,計(jì)算得到混沌序列可行解的適應(yīng)度值,保留混沌最優(yōu)可行解。CPSOBP結(jié)構(gòu)流程圖如圖1所示。

        2.2CSSVR預(yù)測(cè)

        核函數(shù)參數(shù)和正則化系數(shù)是控制SVR預(yù)測(cè)精度的關(guān)鍵。CS算法具有搜索能力強(qiáng)和搜索路徑優(yōu)的特點(diǎn),對(duì)SVR的核參數(shù)和正則系數(shù)尋優(yōu)能夠有效的提高精度。CS算法通過(guò)維持Levy飛行產(chǎn)生隨機(jī)解[16],即

        2.3GAGrey預(yù)測(cè)

        灰色模型通過(guò)將原始序列轉(zhuǎn)變?yōu)橐?guī)律性,弱化原數(shù)據(jù)的隨機(jī)性,深入挖掘預(yù)測(cè)對(duì)象的演化規(guī)律。參數(shù)a和參數(shù)b影響灰色預(yù)測(cè)結(jié)果,當(dāng)矩陣接近退化時(shí),最小二乘法求參預(yù)測(cè)精度低。本文采用遺傳算法代替最小二乘法求解參數(shù)優(yōu)化模型。

        GA通過(guò)選擇、交叉和變異完成進(jìn)化過(guò)程,是一種高效的全局優(yōu)化算法。采用遺傳算法優(yōu)化灰色模型參數(shù),GAGrey結(jié)構(gòu)流程圖如圖3所示。

        2.4組合預(yù)測(cè)

        不同偏差的預(yù)測(cè)模型反應(yīng)不同信息,組合預(yù)測(cè)將各模型的有效信息整合優(yōu)化,得到最優(yōu)解的近似解。傳統(tǒng)的權(quán)重分配未考慮權(quán)重的動(dòng)態(tài)特性,不同段各優(yōu)化預(yù)測(cè)模型的有效信息不同,因此將權(quán)重分段分配,分段提取有效信息。將預(yù)測(cè)結(jié)果模糊化,并根據(jù)模糊規(guī)則建立自適應(yīng)模糊組合預(yù)測(cè)模型。模糊推理數(shù)據(jù)列表如表2所示。

        3馬爾可夫鏈誤差修正

        4案例分析

        4.1組合預(yù)測(cè)

        模糊系統(tǒng)組合優(yōu)化模型,馬爾可夫修正組合結(jié)果算法流程如圖4所示,各模型相對(duì)誤差分布如圖5所示,兩種組合預(yù)測(cè)方式的相對(duì)誤差分布如圖6所示。由圖5可以看出,各優(yōu)化和組合后的預(yù)測(cè)模型,其性能更佳,比PSOBP模型精度提高26.32%,比CSSVR的預(yù)測(cè)精度提高62.16%,比GAGrey預(yù)測(cè)精度提高94.68%,且優(yōu)于線性組合模型;由圖6可以看出,各優(yōu)化和組合后的預(yù)測(cè)模型依舊存在峰值誤差,因此馬爾科夫系統(tǒng)可以對(duì)誤差進(jìn)行修正。

        4.2誤差修正

        按照聚類(lèi)原理,將45個(gè)時(shí)間點(diǎn)相對(duì)誤差數(shù)據(jù)確定為6個(gè)中心,根據(jù)中心劃分成6個(gè)狀態(tài)區(qū)間,Kmeans計(jì)算聚類(lèi)中心和狀態(tài)區(qū)間劃分結(jié)果如表3所示,各點(diǎn)所屬狀態(tài)區(qū)間分布如圖7所示,修正前后相對(duì)誤差對(duì)比如圖8所示。

        由圖8可以看出,馬爾可夫修正后,在7月27日~29日這3天中,每天分別有76.47%,92.86%,85.71%個(gè)時(shí)刻的預(yù)測(cè)性能均有所提高,誤差峰值大大降低,修正后的模型FCM比組合模型FC的預(yù)測(cè)精度提高57.14%。

        采用平均絕對(duì)誤差(mean absolute error,MAE)和均方根誤差(root mean aquare error,RMSE)對(duì)優(yōu)化預(yù)測(cè)和修正結(jié)果進(jìn)行綜合評(píng)價(jià)。修正前后性能對(duì)比如圖9所示。由圖9可知,通過(guò)修正前后性能對(duì)比,F(xiàn)CM預(yù)測(cè)模型的RMSE和MAE均小于各優(yōu)化預(yù)測(cè)模型。

        5結(jié)束語(yǔ)

        本文以初投入使用的青島市某自習(xí)室空調(diào)系統(tǒng)為研究對(duì)象,主要對(duì)基于改進(jìn)算法的空調(diào)冷負(fù)荷組合預(yù)測(cè)進(jìn)行研究。以自然啟發(fā)的CS,CPSO,GA全局優(yōu)化算法為基礎(chǔ),以神經(jīng)網(wǎng)絡(luò)BP,SVR,Grey為主體,分別建立了CPSOBP優(yōu)化預(yù)測(cè)模型、CSSVR優(yōu)化預(yù)測(cè)模型和GAGrey優(yōu)化預(yù)測(cè)模型,基于模糊理論將3個(gè)優(yōu)化預(yù)測(cè)模型帶入模糊系統(tǒng)中,從而建立了動(dòng)態(tài)馬爾可夫組合預(yù)測(cè)模型FCM,最后將組合預(yù)測(cè)模型應(yīng)用于空調(diào)系統(tǒng)的冷負(fù)荷預(yù)測(cè)案例中,修正后的模型FCM比組合模型FC的預(yù)測(cè)精度提高了57.14%,驗(yàn)證了本文所提出算法的有效性,由預(yù)測(cè)誤差分析可知,本文預(yù)測(cè)算法精度較高。該研究為空調(diào)的節(jié)能運(yùn)行策略提供了具有實(shí)際意義的參考。

        參考文獻(xiàn):

        [1]Sarbu I, Adam M. Experimental and numerical investigations of the energy efficiency of conventional air conditioning systems in cooling mode and comfort assurance in office buildings[J]. Energy and Buildings, 2014, 85: 4558.

        [2]Kilic U, Tugrul A B. Identification and analysis of risks associated with gas supply security of turkey[C]∥Energy Systems and Management. Istanbul: Springer International Publishing, 2015: 241252.

        [3]Shi H, Xu M H, Li R. Deep learning for household load forecastinga novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 52715280.

        [4]Jing Z, Liu X. A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis[J]. Energy and Buildings, 2018, 174: 293398.

        [5]Fan C, Xiao F, Zhao Y. A shortterm building cooling load prediction method using deep learning algorithms[J]. Applied Energy, 2017, 195: 222233.

        [6]Li N, Wang K, Cheng J. A research on a following day load simulation method based on weather forecast parameters[J]. Energy Conversion and Management, 2015, 103(6): 691704.

        [7]Li Z, Huang G. Reevaluation of building cooling load prediction models for use in humid subtropical area[J]. Energy and Buildings, 2013, 62: 442449.

        [8]Dahanayake K W D K C, Chow C L. Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program[J]. Energy and Buildings, 2017, 138: 4759.

        [9]Lim H S, Kim G. Prediction model of cooling load considering timelag for preemptive action in buildings[J]. Energy and Buildings, 2017, 151: 5365.

        [10]Asadi S, Hassan M, Beheshti A. Development and validation of a simple estimating tool to predict heating and cooling energy demand for attics of residential buildings[J]. Energy and Buildings, 2012, 54: 1221.

        [11]Zhou C G, Fang Z S, Xu X N, et al. Using long shortterm memory networks to predict energy consumption of airconditioning systems[J]. Sustainable Cities and Society, 2020, 55: 1020.

        [12]Brockwell P J, Davis R A, Berger J O, et al. Time series: theory and methods[M]. Berlin: SpringerVerlag, 1987.

        [13]Yu Z, Haghighat F, Fung B C M, et al. A decision tree method for building energy demand modeling[J]. Energy and Buildings, 2010, 42(10): 16371646.

        [14]Harb H, Boyanov N, Hernandez L, et al. Development and validation of greybox models for forecasting the thermal response of occupied buildings[J]. Energy and Buildings, 2016, 117: 199207.

        [15]Mauro C, Ales P, Leonardo T, et al. Prediction of energy performance of residential buildings: A genetic programming approach[J]. Energy and Buildings, 2015, 102: 6774.

        [16]Kumar N, Shaikh A A, Mahato S K, et al. Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations[J]. Expert Systems with Applications, 2021, 172: 118.

        [17]Yang X S, Deb S. Cuckoo search: recent advances and applications[J]. Neural Computing and Applications, 2014, 24(1): 169174.

        [18]Deb C, Eang L S, Yang J J, et al. Forecasting diurnal cooling energy load for institutional buildings using Artificial Neural Networks[J]. Energy and Buildings, 2016, 121: 284297.

        [19]Jain R K, Smith K M, Culligan P J, et al. Forecasting energy consumption of multifamily residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy[J]. Applied Energy, 2014, 123: 168178.

        [20]Zhang Y, Fang C, Li T J, et al. Research on shortterm load forecast of shopping mall based on similar day selection and bp neural network[C]∥Proceedings of 2018 3rd International Conference on Automation, Mechanical and Electrical Engineering. Shanghai: DEStech, 2018: 289295.

        [21]Wei L Y. A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX[J]. Economic Modelling, 2013, 33: 893899.

        [22]Sedighizadeh D, Masehian E, Sedighizadeh M, et al. GEPSO: A new generalized particle swarm optimization algorithm[J]. Mathematics and Computers in Simulation, 2021, 179: 194212.

        [23]Li D L, Zhang X F, Qiao M Z, et al. A shortterm load forecasting method of warship based on PSOSVM method[C]∥Applied Mechanics and Materials. Wuhan: Trans Technology Publications LTD, 2012: 569574.

        [24]Tien D, Bui H, Moayedi D, et al. Predicting heating and cooling loads in energyefficient buildings using two hybrid intelligent models[J]. Applied Sciences, 2019, 9(17): 35433568.

        作者簡(jiǎn)介: ?張晨晨(1994),女,碩士研究生,主要研究方向?yàn)閮?yōu)化算法對(duì)空調(diào)負(fù)荷的預(yù)測(cè)。

        通信作者: ?馬永志(1972),男,博士,副教授,主要研究方向?yàn)榇髷?shù)據(jù)與云計(jì)算技術(shù)。 Email: hiking@126.com

        Research on Combined Forecasting of Air Conditioning Cooling Load Based on Improved Algorithm

        ZHANG Chenchen, CONG Yilin, TIAN Ye, GUO Anzhu, LIU Tao, MA Yongzhi

        (College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China)

        Abstract: ?In order to solve the problem that it is difficult to comprehensively describe the regularity of cooling load change with a single forecasting method, this article takes the cooling load in a study room in Qingdao, China, which has been put into use for the first time, as the research object, and establishes a TRNSYS simulation platform to obtain sufficient dynamic load data. After using the mean influence value (MIV) and Spearman correlation coefficient to screen the characteristic variables, the prediction models are optimized: the random particle and chaos algorithm are introduced to establish the combined particle swarm optimization (CPSO) algorithm based on standard particle swarm optimization (PSO) algorithm. This is done in order to optimize back propagation (BP) and establish CPSOBP forecasting model;The cuckoo search support vector regression (CSSVR) forecasting model is established by introducing cuckoo search (CS);The grey prediction model GAgrey (1, N) based on genetic optimization(GA) is established; Load prediction values of each model are brought into the fuzzy system to establish the realtime fuzzy combination (FC) model. Finally, Markov(M) is used to correct the combination error. The results show that FCM is superior to CPSOBP, CSSVR and FC, and accuracy is respectively, 26.32%, 62.16%, 94.68% higher than the three optimization models. It gives full play to the advantages of each algorithm, makes up for the shortcomings of each algorithm, and greatly reduces the prediction error, increases the reliability of forecasting system. This study provides a theoretical reference for the formulation of energysaving operation strategy of air conditioning.

        Key words: fuzzy system; GAGM(1, N); CPSOBP; CSSVR; Markov

        猜你喜歡
        修正空調(diào)粒子
        Some new thoughts of definitions of terms of sedimentary facies: Based on Miall's paper(1985)
        修正這一天
        合同解釋、合同補(bǔ)充與合同修正
        法律方法(2019年4期)2019-11-16 01:07:28
        基于粒子群優(yōu)化的橋式起重機(jī)模糊PID控制
        基于粒子群優(yōu)化極點(diǎn)配置的空燃比輸出反饋控制
        軟件修正
        空調(diào)病是怎么回事
        奔馳E260車(chē)空調(diào)不正常
        邁騰車(chē)空調(diào)不制冷
        基于Matlab的α粒子的散射實(shí)驗(yàn)?zāi)M
        物理與工程(2014年4期)2014-02-27 11:23:08
        成 人片 黄 色 大 片| 最大色网男人的av天堂| 日本频道一区二区三区| 日本一区二区在线播放观看| 中文日本强暴人妻另类视频 | 91在线区啪国自产网页| 中文字幕一区二区三区| 高h小月被几个老头调教| 囯产精品一品二区三区| 国内少妇人妻丰满av| 中文字幕人妻系列一区尤物视频| 青青草在线成人免费视频| 91伦理片视频国产精品久久久| 日韩欧美人妻一区二区三区| 国产日产精品久久久久久| 国产精品亚洲在钱视频| 久久青青草原国产毛片| 午夜成人无码福利免费视频| 国产在线一区二区三区av| 97人妻精品一区二区三区免费 | 国产偷国产偷高清精品| 亚洲香蕉久久一区二区| 日韩av无码一区二区三区| 国产剧情麻豆女教师在线观看| 国产精品18禁久久久久久久久| 精品一区二区三区女同免费| 亚洲最大av在线精品国产| 久久狠狠色噜噜狠狠狠狠97| 日韩a∨精品日韩在线观看| 国产麻豆精品久久一二三 | 色欲色香天天天综合vvv| 亚洲永久无码7777kkk| 视频二区精品中文字幕| 亚洲成人精品久久久国产精品| 免费无码中文字幕a级毛片| 精品十八禁免费观看| 日韩一级精品亚洲一区二区精品| 在厨房被c到高潮a毛片奶水| 国产精品美女久久久浪潮av| 日日爽日日操| 亚洲国产精品自拍成人|