亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Separator Wettability Enhanced by Electrolyte Additive to Boost the Electrochemical Performance of Lithium Metal Batteries

        2021-11-19 09:30:34YingWang
        Nano-Micro Letters 2021年12期

        Ying Wang

        Lithium (Li) metal has been regarded as one of the most promising candidates to replace graphite anode due to its high theoretical specific capacity and the lowest electrochemical potential [1—3]. However, the immoderate growth of Li dendrite during Li plating/stripping causes serious safety problem and poor performance that severely impedes the practical application of lithium metal batteries (LMBs) [4—6].Until now, there have been numerous kinds of strategies be proposed to inhibit Li dendrites growth and protect lithium metal anode such as high concentration electrolytes [7], construction of the solid electrolyte interface layer [8], structural design of anode materials [9], regulation of Li+solvation[10], and solid-state electrolytes [11]. As an important part of battery structure, separator plays a vital role in the performance of battery [12]. The main function of separator is to divide the anode and cathode that prevents internal short circuit caused by direct contact between anode and cathode. So,the separator needs to be electrically insulated. At the same time, the separator also needs to ensure that the electrolyte is conductive between anode and cathode [13]. Therefore, it is necessary to render the separator fully wetted. Nevertheless,there are few researches on enhancing the wettability of the separator especially functional electrolyte additives.

        Recently, Ma’s group conducted a detailed research and discussion on the study of separator wettability [14]. They employed heptafluorobutyric anhydride (HFA) as a multifunctional additive to modify the commercial electrolyte (1 M LiPF6in EC/DMC 1:1). Benefited by the special chain structure, HFA can serve as the surfactant to promote the wetting of separator. Good wettability can make the separator easily to be wetted that facilitates the permeation of electrolyte. As shown in Fig. 1a, the schematic diagram visually describes the effect of different separator wettabilities toward electrolyte on Li+transportation. The electrolyte must entirely fill the holes in the separator so that the channels for Li+transferring can be built. The poor wettability of the electrolyte will cause some invalid channels in the separator that result in uneven Li+flux for the whole Li metal surface. To assess the wettability, Ma’s group carried out the electrolyte uptake test and calculated the degree of electrolyte filling. After adding 1.0 wt% HFA,the electrolyte can wet the separator immediately, while the blank electrolyte forms into a droplet after dropping on the surface of the separator, as shown in Fig. 1b. In addition, the HFA-contained electrolyte uptake is 92.1%, much higher than 10.5% for blank electrolyte uptake. The degree of electrolyte filling increases from 11.1% in blank electrolyte to 97.3% in HFA-contained electrolyte, implying that the holes in separator have been sufficiently filled to build continuous pathways for Li+flux. The poor wettability of separator also causes a higher resistance, resulting from the blocked paths for Li+transportation (Fig. 1c). More intuitively, the introduction of HFA can reduce the surface tension of the electrolyte, reflecting in the smaller contact angle of electrolyte dropping on the separator, from 65.4° in blank electrolyte (Fig. 1d) reduce to 40.5° in HFA-contained electrolyte (Fig. 1e).

        Fig. 1 a Schematic illustration of the impacts of separator wettability toward electrolyte on Li+ transportation. b The photograph of different electrolytes dropped on the separator. c EIS result of SS||SS symmetric cells in different electrolytes. d The contact angles on separator for blank electrolyte. e The contact angles on separator for 1.0 wt% HFA-contained electrolyte. f The cycle performance of Li||Li symmetric cells in different electrolytes. g SEM image of Li anode after 50 cycles in blank electrolyte. h SEM images of Li anode after 50 cycles in 1.0 wt% HFAcontained electrolyte. i Cycling performance of Li||NCM622 cells in different electrolytes

        The sufficient Li+transport channels can render uniform Li-ion flux, making the deposition of the lithium more uniform in the surface of anode. This will inhibit the growth of Li dendrites. As shown in Fig. 1f, the Li||Li symmetric cells assembled with HFA-contained electrolyte have excellent life performance that steadily cycles more than 320 h without severe polarization, while the cells with blank electrolyte rapidly fail only after 120 h. In addition, the surface of Li anode after 50 cycles in blank electrolyte is full of needle-like Li dendrites (Fig. 1g). In sharp contrast, there is no Li dendrite on the surface of anode cycling in HFA-contained electrolyte (Fig. 1h), implying a uniform deposition of lithium. Moreover, the addition of HFA also improves the cyclic stability performance of Li||NCM622 full cells, rendering higher capacity retention and Coulombic efficiency(CE), as shown in Fig. 1i.

        In summary, this work from Ma’s group systematically and comprehensively explained the influence of separator wettability toward battery performance. The study on ion flux can also become a new research direction for LMBs to inhibit the growth of dendrite. In addition, they proposed the concept of electrolyte filling degree in separator, which could be a new index to study electrolytes in future.

        Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.To view a copy of this licence, visit http:// creat iveco mmons. org/licen ses/ by/4. 0/.

        免费中文熟妇在线影片| 大ji巴好深好爽又大又粗视频| 日韩av东京社区男人的天堂| 1000部拍拍拍18勿入免费视频下载| 国产日韩三级| 中文字幕有码在线亚洲| 国产激情一区二区三区| 国产熟女高潮视频| 一区欧美在线动漫| 99蜜桃在线观看免费视频| 国产成人精品日本亚洲专区61| 无码人妻精品一区二区三区在线| 成l人在线观看线路1| 最美女人体内射精一区二区| 日韩伦理av一区二区三区| 精品无码国产自产拍在线观看| 亚洲av免费不卡在线观看| 精品欧洲av无码一区二区14| 成人天堂资源www在线| 国产美女av一区二区三区| 国产影片一区二区三区| 亚洲精品久久一区二区三区777| 最新国产日韩AV线| 91在线视频视频在线| 免费看男女啪啪的视频网站| 手机在线免费观看的av| 精品国产免费一区二区三区香蕉| 日韩精品无码一区二区三区视频| 极品av在线播放| 国产精品熟女一区二区三区| 成人美女黄网站色大免费的| 亚洲片一区二区三区| 日本人妻三级在线观看| 刺激一区仑乱| 日产无人区一线二线三线新版| 日本熟妇中文字幕三级| 少妇被黑人嗷嗷大叫视频| 特黄熟妇丰满人妻无码| 亚洲日韩v无码中文字幕| 91亚洲欧洲日产国码精品| 亚洲一区二区三区视频免费看|