楊陽(yáng) 趙青 戚藍(lán) 黎啟賢 王毓杰 鄒爽
摘 要:箱涵受外部荷載等多方面影響,會(huì)出現(xiàn)一定程度的不均勻沉降,可能會(huì)對(duì)箱涵結(jié)構(gòu)造成破壞,因此箱涵地基沉降預(yù)測(cè)十分重要。引入灰狼算法(GWO)對(duì)BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值進(jìn)行尋優(yōu),建立了基于改進(jìn)的GWO-BP預(yù)測(cè)模型,對(duì)箱涵的沉降值進(jìn)行預(yù)測(cè)。將該預(yù)測(cè)模型應(yīng)用于南水北調(diào)工程天津某標(biāo)段的箱涵沉降預(yù)測(cè),并將預(yù)測(cè)值與實(shí)測(cè)值進(jìn)行對(duì)比,相對(duì)誤差在5%以下。通過(guò)與未改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)模型、BP模型進(jìn)行對(duì)比,結(jié)果表明改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型具有更好的尋優(yōu)能力與尋優(yōu)精度,能夠有效地對(duì)箱涵沉降值進(jìn)行預(yù)測(cè)。
關(guān)鍵詞:箱涵;沉降預(yù)測(cè);灰狼算法;BP神經(jīng)網(wǎng)絡(luò);權(quán)值和閾值
中圖分類(lèi)號(hào):U449.82 文獻(xiàn)標(biāo)志碼:A
doi:10.3969/j.issn.1000-1379.2021.10.029
引用格式:楊陽(yáng),趙青,戚藍(lán),等.基于改進(jìn)GWO-BP神經(jīng)網(wǎng)絡(luò)模型的箱涵沉降預(yù)測(cè)[J].人民黃河,2021,43(10):150-153.
Abstract: Due to the influence of external load and other aspects, the box culvert will have a certain degree of uneven settlement, which may cause damage to the box culvert structure. Therefore, the prediction of box culvert foundation settlement is very important. The gray wolf algorithm (GWO) was introduced to optimize the weight and threshold of BP neural network, and the improved GWO-BP prediction model was established to predict the settlement value of box culvert. The prediction model was applied to the settlement prediction of a box culvert in Tianjin section of South-to-North Water Transfer Project, and the relative error was less than 5%. The results show that the Improved Grey Wolf algorithm has better optimization ability and accuracy, and can effectively predict the settlement value of box culvert.
Key words: box culvert; settlement prediction; grey wolf algorithm; BP neural network; weight and threshold
在南水北調(diào)工程這類(lèi)大型輸水工程中,鋼筋混凝土箱涵被廣泛應(yīng)用,箱涵結(jié)構(gòu)的安全是保證整個(gè)輸水工程正常運(yùn)行的關(guān)鍵。箱涵在地下水開(kāi)采、上部建筑荷載過(guò)大等因素的共同作用下,會(huì)出現(xiàn)一定程度的地基沉降。地基沉降過(guò)大會(huì)對(duì)箱涵結(jié)構(gòu)造成破壞,影響輸水效率,增加人工維修成本,因此箱涵地基沉降值的預(yù)測(cè)非常重要。
近年來(lái),沉降預(yù)測(cè)已有許多研究成果。王鵬等[1]利用回歸分析法預(yù)測(cè)基礎(chǔ)不均勻沉降,但該方法較難反映復(fù)雜的非線(xiàn)性關(guān)系,故預(yù)測(cè)精度較低。陳繼光[2]采用SVM模型對(duì)建筑物沉降進(jìn)行預(yù)測(cè),但該模型對(duì)樣本數(shù)量要求過(guò)高,故其實(shí)際應(yīng)用有局限性。何君等[3]運(yùn)用灰色理論模型對(duì)擋水墻進(jìn)行沉降預(yù)測(cè),當(dāng)影響因素較多時(shí),該模型預(yù)測(cè)精度會(huì)大大降低,故其不適合多因素預(yù)測(cè)。提高沉降預(yù)測(cè)模型的精度是研究要解決的關(guān)鍵問(wèn)題,而B(niǎo)P神經(jīng)網(wǎng)絡(luò)具有實(shí)現(xiàn)復(fù)雜非線(xiàn)性映射的功能,特別適合求解內(nèi)部機(jī)制復(fù)雜的問(wèn)題,在考慮多因素預(yù)測(cè)方面具有明顯優(yōu)勢(shì)。成樞等[4]研究了BP神經(jīng)網(wǎng)絡(luò)模型在地表沉降預(yù)測(cè)中的應(yīng)用,通過(guò)對(duì)比預(yù)測(cè)值與實(shí)測(cè)值以及對(duì)模型精度進(jìn)行分析,表明 BP 神經(jīng)網(wǎng)絡(luò)模型用于沉降預(yù)測(cè)研究是可行的。運(yùn)用BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)沉降的成果還有很多[5-8],但都沒(méi)有對(duì)BP神經(jīng)網(wǎng)絡(luò)模型進(jìn)行優(yōu)化。盡管傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)模型有較強(qiáng)的自學(xué)習(xí)能力,而且能同時(shí)考慮多個(gè)因素,對(duì)復(fù)雜的問(wèn)題、不精確的信息進(jìn)行計(jì)算,但在實(shí)際應(yīng)用中仍存在“過(guò)擬合”、易陷入局部最優(yōu)等諸多不足, 預(yù)測(cè)精度較低?;诖?,本文提出基于改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的箱涵沉降預(yù)測(cè)模型,對(duì)南水北調(diào)工程天津某標(biāo)段箱涵沉降變形進(jìn)行預(yù)測(cè)。
1 研究方法
1.1 BP神經(jīng)網(wǎng)絡(luò)
BP神經(jīng)網(wǎng)絡(luò)[9-10]是一種多層前饋式神經(jīng)網(wǎng)絡(luò),也是目前應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò),其主要特點(diǎn)是信號(hào)是正向傳播的,而誤差是反向傳播的。BP神經(jīng)網(wǎng)絡(luò)模型拓?fù)浣Y(jié)構(gòu)一般分為輸入層、隱含層、輸出層3部分。它通過(guò)對(duì)樣本進(jìn)行訓(xùn)練,使輸出值接近期望值,從而通過(guò)誤差的反向傳播來(lái)不斷調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使其誤差平方和最小。雖然BP神經(jīng)網(wǎng)絡(luò)有結(jié)構(gòu)簡(jiǎn)單、非線(xiàn)性擬合能力強(qiáng)等優(yōu)點(diǎn),但同時(shí)也存在易陷入局部極小值、收斂速度慢、“過(guò)擬合”等缺點(diǎn)。
1.2 灰狼算法[11-12]
灰狼算法(GWO)是Mirjalili等[13]于2014年提出的一種模擬灰狼對(duì)獵物進(jìn)行圍捕的群智能優(yōu)化算法,其原理是參照自然界中灰狼尋找獵物和攻擊獵物的過(guò)程來(lái)完成尋優(yōu)工作。灰狼離獵物位置越近,就越容易捕獲到獵物,即該狼的適應(yīng)度越大。在運(yùn)算過(guò)程中,把所得的灰狼適應(yīng)度值從大到小排序,將灰狼劃分為α、β、σ、ω 4類(lèi),分別對(duì)應(yīng)種群中的頭領(lǐng)、副頭領(lǐng)、小頭目、普通灰狼。在尋優(yōu)過(guò)程中,獵物的位置為最優(yōu)解,而頭領(lǐng)狼α的位置始終是最靠近獵物的位置,所有灰狼不斷地朝著最優(yōu)解的位置靠近,隨著不斷迭代,狼群位置不斷更新,直到頭領(lǐng)狼α捕獲到獵物,即頭領(lǐng)狼α的位置與獵物位置相同時(shí)得到最優(yōu)解,尋優(yōu)結(jié)束。
1.3 改進(jìn)灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)
在灰狼算法中,原迭代系數(shù)a在迭代過(guò)程中線(xiàn)性遞減直至為0,但在實(shí)際的尋優(yōu)過(guò)程中灰狼算法并不是線(xiàn)性收斂的,故原迭代系數(shù)a不能很好地表現(xiàn)算法的優(yōu)化過(guò)程。為此,本文使用一種改進(jìn)的非線(xiàn)性收斂方法。迭代系數(shù)a的計(jì)算公式[14]為
式中:e為自然常數(shù);l為當(dāng)前迭代次數(shù);M為最大迭代次數(shù)。
在灰狼算法的尋優(yōu)過(guò)程中,α狼并不一定始終在全局最優(yōu)點(diǎn),經(jīng)過(guò)不斷迭代,算法很有可能陷入局部最優(yōu)。本文引入權(quán)重W,對(duì)算法的全局搜索能力進(jìn)行優(yōu)化。權(quán)重W的計(jì)算公式[14]為
式中:W1、W2、W3分別為ω狼對(duì)α、β、σ狼的學(xué)習(xí)率權(quán)重;X1、X2、X3分別為α、β、σ狼更新后的位置。
狼群更新后的位置X′計(jì)算公式為
利用Ackley函數(shù)進(jìn)行算法測(cè)試,發(fā)現(xiàn)改進(jìn)的GWO算法在50代收斂于4.44×10-15,而未改進(jìn)的GWO算法在389代才收斂于1.22×10-13,可見(jiàn)改進(jìn)后的GWO算法精度得到了明顯提高,收斂速度也比未改進(jìn)的GWO算法更快。
結(jié)合BP神經(jīng)網(wǎng)絡(luò),建立改進(jìn)的灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)(GWO-BP)模型,其思想是對(duì)BP神經(jīng)網(wǎng)絡(luò)的權(quán)重和閾值進(jìn)行尋優(yōu),把最優(yōu)權(quán)值和閾值賦給BP神經(jīng)網(wǎng)絡(luò)來(lái)完成預(yù)測(cè)。BP神經(jīng)網(wǎng)絡(luò)的權(quán)重和閾值代表灰狼的位置信息,通過(guò)灰狼的位置更新,最后可得最優(yōu)權(quán)值和閾值。改進(jìn)灰狼算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的具體步驟如下。
(1)確定神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。主要是確定層數(shù),而單隱含層的BP神經(jīng)網(wǎng)絡(luò)模型能夠逼近任意非線(xiàn)性映射關(guān)系,故本文采用3層網(wǎng)絡(luò)。
(2)灰狼種群初始化。根據(jù)待優(yōu)化權(quán)值和閾值個(gè)數(shù)確定灰狼個(gè)體維度、種群規(guī)模、最大迭代次數(shù)、狼群搜索空間上界和下界,隨機(jī)生成狼群位置信息。
(3)確定神經(jīng)網(wǎng)絡(luò)的傳遞函數(shù)、訓(xùn)練函數(shù)和適應(yīng)度函數(shù)。網(wǎng)絡(luò)傳遞函數(shù)為T(mén)ansig型函數(shù),網(wǎng)絡(luò)訓(xùn)練函數(shù)為T(mén)raninlm,適應(yīng)度函數(shù)為預(yù)測(cè)輸出值和實(shí)測(cè)值的均方誤差。
(4)計(jì)算適應(yīng)度值并從大到小排序,將灰狼劃分為α、β、σ、ω 4類(lèi),更新所有灰狼的位置以及參數(shù)。
(5)得出并記錄訓(xùn)練樣本與測(cè)試樣本之間的誤差及所對(duì)應(yīng)頭領(lǐng)狼α的位置。
(6)判斷是否滿(mǎn)足設(shè)定誤差或者達(dá)到最大迭代次數(shù)。若不滿(mǎn)足,則重復(fù)步驟(4)~步驟(6),直至滿(mǎn)足條件。
(7)得出最優(yōu)結(jié)果頭領(lǐng)狼α的位置和對(duì)應(yīng)的最小誤差。
1.4 灰色關(guān)聯(lián)性分析
灰色關(guān)聯(lián)度分析法[15]通過(guò)對(duì)多種因素進(jìn)行統(tǒng)計(jì)分析,根據(jù)各因素之間的相似度來(lái)計(jì)算灰色關(guān)聯(lián)度,而灰色關(guān)聯(lián)度表示各因素對(duì)目標(biāo)值的影響程度,是各因素重要程度的評(píng)定依據(jù)。該方法思路清晰,能夠衡量不確定關(guān)聯(lián)性的樣本數(shù)據(jù)間的接近程度,可以較大程度地減小信息關(guān)系模糊所造成的損失?;疑P(guān)聯(lián)度分析法分析步驟如下。
2 工程實(shí)例
2.1 數(shù)據(jù)來(lái)源
以南水北調(diào)中線(xiàn)一期工程天津干線(xiàn)某標(biāo)段箱涵為例,該段廣泛分布著軟黏土層,不均勻沉降使箱涵結(jié)構(gòu)產(chǎn)生變形。在箱涵的左、中、右孔的左側(cè)分別布置內(nèi)水壓力計(jì)(編號(hào)為PI1、PI2、PI3),箱涵兩側(cè)底部布置了2個(gè)外水壓力計(jì)(編號(hào)為P1、P2),而在箱涵截面通氣孔處布置2個(gè)位移計(jì)(編號(hào)為M1、M2),見(jiàn)圖1。
選取2011年4月22日—11月20日的217組監(jiān)測(cè)數(shù)據(jù),將時(shí)間、內(nèi)水壓力、外水壓力、溫度與箱涵沉降值進(jìn)行灰色關(guān)聯(lián)度分析,結(jié)果見(jiàn)表1。將時(shí)間、內(nèi)水壓力、外水壓力、溫度這4個(gè)影響因素作為神經(jīng)網(wǎng)絡(luò)的輸入值,沉降值作為輸出值,其中207組數(shù)據(jù)作為訓(xùn)練樣本,10組數(shù)據(jù)作為預(yù)測(cè)檢驗(yàn)樣本。
2.2 建立沉降預(yù)測(cè)模型
使用MATLAB軟件建模,相關(guān)參數(shù)設(shè)置如下: 灰狼種群數(shù)量為50,最大迭代次數(shù)為500,最大訓(xùn)練次數(shù)為10 000,訓(xùn)練目標(biāo)為0.01,學(xué)習(xí)速率為0.01。初始位置的上界和下界分別取0.5和-0.5,神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)確定為4-9-1(輸入層4個(gè)節(jié)點(diǎn)、隱含層9個(gè)節(jié)點(diǎn)、輸出層1個(gè)節(jié)點(diǎn)),可得到所需優(yōu)化的初始權(quán)值和閾值總個(gè)數(shù)為55。
為了方便數(shù)據(jù)處理,將樣本歸一化:
式中:X、Y分別為歸一化前、后的樣本值;Xmax、Xmin分別為樣本的最大值和最小值。
將樣本數(shù)據(jù)歸一化到[0,1]后,使用自組織映射算法將樣本劃分為訓(xùn)練樣本、檢驗(yàn)樣本和測(cè)試樣本3類(lèi),這3類(lèi)樣本的數(shù)量分別為125、41、41,分別占總樣本的60%、20%、20%。訓(xùn)練樣本的作用是訓(xùn)練整個(gè)神經(jīng)網(wǎng)絡(luò)模型,檢驗(yàn)樣本的作用是防止出現(xiàn)“過(guò)擬合”,測(cè)試樣本的作用是測(cè)試預(yù)測(cè)模型的泛化能力。
改進(jìn)的GWO-BP模型與未改進(jìn)的GWO-BP模型適應(yīng)度對(duì)比見(jiàn)圖2。從圖2可知,改進(jìn)的GWO-BP模型迭代到第25代時(shí)適應(yīng)度值出現(xiàn)了明顯減小,未優(yōu)化的GWO-BP模型迭代到第187代時(shí)才開(kāi)始明顯減小,改進(jìn)的GWO-BP模型比未改進(jìn)的GWO-BP模型更快達(dá)到了更小的適應(yīng)度值,說(shuō)明改進(jìn)后的GWO-BP模型收斂速度更快、精度更高。
2.3 3種模型預(yù)測(cè)數(shù)據(jù)對(duì)比分析
改進(jìn)的GWO-BP、未改進(jìn)的GWO-BP和BP神經(jīng)網(wǎng)絡(luò)3種模型的箱涵沉降預(yù)測(cè)值和相對(duì)誤差見(jiàn)表2。由表2可知,改進(jìn)的GWO-BP模型所得沉降預(yù)測(cè)值的相對(duì)誤差均在5%以下,而未改進(jìn)的GWO-BP與BP神經(jīng)網(wǎng)絡(luò)模型所得沉降預(yù)測(cè)值的相對(duì)誤差均在10%以下。
改進(jìn)的GWO-BP、未改進(jìn)的GWO-BP和BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)值與實(shí)測(cè)值的最大誤差絕對(duì)值分別為2.286、4.685、4.706 mm(見(jiàn)圖3),最大相對(duì)誤差分別為4.789%、9.815%、9.859%(見(jiàn)表2),改進(jìn)的GWO-BP模型預(yù)測(cè)的沉降位移精度最高,因此改進(jìn)的GWO-BP模型比其他2種預(yù)測(cè)模型更為精確。
3 結(jié) 語(yǔ)
(1)采用改進(jìn)的GWO算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò),提高了傳統(tǒng)BP算法的全局尋優(yōu)能力,避免預(yù)測(cè)時(shí)產(chǎn)生“過(guò)擬合”,使得改進(jìn)的GWO-BP算法收斂速度更快、預(yù)測(cè)精度更高。
(2)以實(shí)際工程為例,運(yùn)用改進(jìn)的GWO-BP、未改進(jìn)的GWO-BP和BP神經(jīng)網(wǎng)絡(luò)3種算法對(duì)箱涵地基沉降值進(jìn)行預(yù)測(cè),其中改進(jìn)的GWO-BP模型所得預(yù)測(cè)精度最高,建議在預(yù)測(cè)箱涵地基沉降值時(shí)優(yōu)先選用。
參考文獻(xiàn):
[1] 王鵬,孟靈飛,李篷,等.回歸分析在建筑物變形監(jiān)測(cè)中的應(yīng)用[J].測(cè)繪科學(xué),2013,38(2):187-189.
[2] 陳繼光.基于支持向量機(jī)模型的建筑物沉降預(yù)測(cè)[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2013,43(12):137-140.
[3] 何君,楊國(guó)東.灰色預(yù)測(cè)理論在建筑物沉降中的應(yīng)用研究[J].測(cè)繪通報(bào),2012(3):63-64.
[4] 成樞,隋冰冰,沈毅,等.基于BP神經(jīng)網(wǎng)絡(luò)的礦區(qū)地表沉降預(yù)測(cè)研究[J].測(cè)繪與空間地理信息,2015,38(3):18-20.
[5] 劉戈,吳立新.基于BP神經(jīng)網(wǎng)絡(luò)法對(duì)地連墻后土體沉降預(yù)測(cè)分析:以天津地鐵施工為例[J].沈陽(yáng)建筑大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,29(5):834-840.
[6] 馬麗慧,韓文喜,李陽(yáng).BP網(wǎng)絡(luò)在高填方地基沉降預(yù)測(cè)中的應(yīng)用[J].土工基礎(chǔ),2013,27(1):14-16.
[7] 厲東偉,陳冉麗.BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型在高鐵沉降預(yù)測(cè)中的應(yīng)用[J].測(cè)繪通報(bào),2013(增刊1):192-194,206.
[8] 周純擇,陽(yáng)軍生,牟友滔,等.南昌上軟下硬地層中盾構(gòu)施工地表沉降的BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法[J].防災(zāi)減災(zāi)工程學(xué)報(bào),2015,35(4):556-562.
[9] 郭志揚(yáng),王建,黃慶.基于卡爾曼濾波的GA-BP模型在大壩變形預(yù)測(cè)中的應(yīng)用[J].中國(guó)農(nóng)村水利水電,2016(12):113-116.
[10] TULAXAY Phanthavong. 基于小波-BP神經(jīng)網(wǎng)絡(luò)的貝葉斯概率組合預(yù)測(cè)模型及其在預(yù)報(bào)調(diào)度中的應(yīng)用[D].北京:華北電力大學(xué),2015:12-14.
[11] 楊書(shū)杰,葉霞,李俊山.基于灰狼算法的BP神經(jīng)網(wǎng)絡(luò)圖像恢復(fù)算法[J].微電子學(xué)與計(jì)算機(jī),2018,35(3):19-22,27.
[12] 王書(shū)芹,華鋼,郝國(guó)生,等.基于灰狼優(yōu)化算法的長(zhǎng)短期記憶網(wǎng)絡(luò)在時(shí)間序列預(yù)測(cè)中的應(yīng)用[J].中國(guó)科技論文,2017,12(20):2309-2314.
[13] MIRJALILI S,MIRJALILI S M,LEWIS A. Grey Wolf Optimizer[J]. Advances in Engineering Software,2014,69(3):46-61.
[14] 郭振洲,劉然,拱長(zhǎng)青,等.基于灰狼算法的改進(jìn)研究[J]. 計(jì)算機(jī)應(yīng)用研究,2017,34(12):3603-3606.
[15] 朱雙,周建中,孟長(zhǎng)青,等.基于灰色關(guān)聯(lián)分析的模糊支持向量機(jī)方法在徑流預(yù)報(bào)中的應(yīng)用研究[J]. 水力發(fā)電學(xué)報(bào),2015,34(6):1-6.
【責(zé)任編輯 張華興】