彭麗莎,張毅敏,熊 威,趙 丹,羅 凱
四川筠連地區(qū)高階煤煤層氣井解堵技術(shù)及應(yīng)用
彭麗莎,張毅敏,熊 威,趙 丹,羅 凱
(中國(guó)石油股份有限公司浙江油田西南采氣廠,四川 宜賓 645250)
四川筠連地區(qū)樂(lè)平組煤層為低孔、低滲的高階煤儲(chǔ)層。部分煤層氣井在生產(chǎn)過(guò)程中產(chǎn)氣量出現(xiàn)快速下降,嚴(yán)重制約了煤層氣井的開(kāi)發(fā)效益。結(jié)合排采、水化學(xué)、檢泵等生產(chǎn)動(dòng)態(tài)信息系統(tǒng)分析煤層氣井產(chǎn)氣量下降的原因,認(rèn)為煤層結(jié)垢與煤粉堵塞裂縫通道是產(chǎn)氣量下降的主要原因。針對(duì)堵塞問(wèn)題,對(duì)筠連地區(qū)煤層氣區(qū)塊開(kāi)展了酸洗、水力震蕩、等離子脈沖、注水等解堵工藝措施試驗(yàn)?,F(xiàn)場(chǎng)排采動(dòng)態(tài)表明,酸洗與等離子脈沖具有較好的增產(chǎn)效果。酸洗主要針對(duì)結(jié)垢的井,通過(guò)將酸液注入井筒,與井筒和近井筒地帶無(wú)機(jī)垢充分反應(yīng),以達(dá)到解除井筒和近井筒地帶通道堵塞的目的,酸洗措施成功率高,投入產(chǎn)出比1∶1.8,是區(qū)域內(nèi)首選低成本有效性措施;等離子脈沖解堵主要針對(duì)煤粉和結(jié)垢井,通過(guò)物理震蕩的方式粉碎堵塞物,然后通過(guò)洗井將堵塞物攜帶出井筒,從而實(shí)現(xiàn)解堵,實(shí)施后增產(chǎn)效果較佳,煤層氣產(chǎn)量增產(chǎn)達(dá)130%,但因?qū)嵤?shù)量有限,區(qū)域適應(yīng)性還有待評(píng)價(jià);水力震蕩、注水等解堵措施主要是針對(duì)煤粉堵塞井,通過(guò)水力沖擊以及水力循環(huán)的方式帶出煤粉以達(dá)到解堵的效果,但該措施本身也會(huì)造成儲(chǔ)層激動(dòng),容易產(chǎn)生副作用,措施整體有效率不到30%,增產(chǎn)效果不明顯。上述4種解堵措施均有其適應(yīng)條件,需要根據(jù)堵塞原因,采取與之適應(yīng)的措施才能獲得最佳的解堵效果。研究成果可為我國(guó)同類(lèi)煤層氣井解堵、增產(chǎn)提供一定的借鑒。
四川筠連;高階煤;煤層氣;結(jié)垢;煤粉;解堵;等離子脈沖;酸洗
與常規(guī)天然氣井相比,煤層氣井產(chǎn)量要低得多,經(jīng)濟(jì)效益差。各大煤層氣公司為了提高經(jīng)濟(jì)效益,開(kāi)展了一系列提質(zhì)增效活動(dòng),其中解堵增透是提質(zhì)增效的一項(xiàng)重要舉措。目前針對(duì)煤層氣井解堵的措施,主要有重復(fù)壓裂[1-2]、高壓氮?dú)鈵灳甗3]、可控沖擊波[4]、氮?dú)馀菽舛?、微生物解堵[1]等。近年國(guó)內(nèi)一些煤層氣企業(yè)在解堵增透方面進(jìn)行了一些積極探索,提供了很好的借鑒。如山西藍(lán)焰煤層氣公司在沁水盆地試驗(yàn)了2口井的等離子脈沖增透技術(shù),發(fā)現(xiàn)該技術(shù)在硬煤中解堵效果較好,但在軟煤中收效甚微[5]。鄭莊區(qū)塊試驗(yàn)了4口低產(chǎn)井的微生物解堵措施[6],但解堵效果沒(méi)有后續(xù)報(bào)道。一些煤層氣井實(shí)施過(guò)重復(fù)壓裂[6-8],但重復(fù)壓裂一般會(huì)嚴(yán)重影響鄰井生產(chǎn),因此,重復(fù)壓裂應(yīng)控制壓裂規(guī)模,以免壓裂液波及鄰井造成產(chǎn)量下降。氮?dú)饧暗獨(dú)馀菽舛麓胧┮苍诿簩託獾彤a(chǎn)、低效井治理中有較多應(yīng)用[9-11],該措施主要適用于煤粉堵塞儲(chǔ)層的井。解堵工藝都有其適應(yīng)范圍,在選擇解堵措施前應(yīng)首先分析低產(chǎn)原因,然后根據(jù)低產(chǎn)原因選擇與之適應(yīng)的技術(shù)。不同地區(qū)的煤層氣地質(zhì)條件差異較大,非均質(zhì)性強(qiáng)[12],選擇解堵措施時(shí),需要進(jìn)行綜合分析,選擇與其地質(zhì)條件相匹配的措施方可取得較好的增產(chǎn)效果。四川筠連地區(qū)煤層氣田位于滇黔川交界川黔古坳陷北緣,是中國(guó)南方第一個(gè)規(guī)模開(kāi)發(fā)的高階煤層氣田。目前該區(qū)域已投產(chǎn)排采井400余口,整體開(kāi)發(fā)效果較好,但隨著生產(chǎn)的進(jìn)行,部分煤層氣井的產(chǎn)量明顯下降,經(jīng)濟(jì)效益差。筆者分析認(rèn)為,其產(chǎn)量下降的主要原因是水敏、壓力敏感、煤粉運(yùn)移、儲(chǔ)層結(jié)垢等導(dǎo)致儲(chǔ)層受到傷害、滲流通道發(fā)生堵塞。為使煤層氣井產(chǎn)量得到恢復(fù),需要進(jìn)行解堵作業(yè)。針對(duì)研究區(qū)實(shí)際生產(chǎn)井情況,開(kāi)展現(xiàn)場(chǎng)酸洗、水力震蕩、等離子脈沖、注水等解堵措施研究,評(píng)價(jià)其解堵效果,以期為研究區(qū)及類(lèi)似區(qū)域煤層氣高效開(kāi)發(fā)提供借鑒。
筠連地區(qū)煤層氣區(qū)塊構(gòu)造上位于東西向云臺(tái)寺斷層、NE—SW向的武德向斜、沐愛(ài)–老牌坊背斜、鐵廠溝向斜與沐愛(ài)斷層的交匯區(qū)[13]。礦區(qū)主體為壓性構(gòu)造線展布特征,發(fā)育較多斷層,尤其是細(xì)小斷層。礦區(qū)內(nèi)煤層氣開(kāi)采層位為二疊系樂(lè)平組,含煤十余層,主力煤層為2、3、7、8號(hào)煤層,主力煤層總厚度一般約為8 m。區(qū)域宏觀煤巖類(lèi)型為暗淡型煤,宏觀煤巖成分以暗煤為主;顯微煤巖組分中有機(jī)組分占83.39%,無(wú)機(jī)組分以黏土類(lèi)礦物為主,其次為氧化硅類(lèi)、硫化物類(lèi)、碳酸鹽類(lèi)。煤演化程度高,鏡質(zhì)體反射率主要介于2.6%~3.5%,為高階無(wú)煙煤,儲(chǔ)層平均孔隙率僅4.5%,滲透率為(0.02~ 0.18)×10–3μm–2,煤層含氣量為12~16 m3/t,屬低孔、低滲、高含氣量煤層。
生產(chǎn)實(shí)踐證實(shí),煤層氣井生產(chǎn)過(guò)程中會(huì)有煤粉產(chǎn)生。由于煤膠結(jié)性差、易碎、易塌,在剪切力的作用下極易造成煤顆粒脫落。近年來(lái),國(guó)內(nèi)外學(xué)者針對(duì)煤粉的產(chǎn)生機(jī)理做了大量研究[15-21]。煤層裂縫中的煤粉主要是由于流體的沖刷、支撐劑的打磨、煤巖應(yīng)力狀態(tài)的改變以及排采降壓誘發(fā)產(chǎn)生,當(dāng)煤巖表面所受應(yīng)力大于抗破壞強(qiáng)度時(shí),顆粒從煤基質(zhì)上脫落成為煤粉,煤粉產(chǎn)生后會(huì)隨著流體運(yùn)移(圖1a)。煤粉的運(yùn)移產(chǎn)出普遍存在于煤層氣井排采過(guò)程中,是制約煤層氣井穩(wěn)定、連續(xù)排采的關(guān)鍵因素[22-24]。一定的水流速度對(duì)煤粉有攜帶作用(圖1a),但當(dāng)水流速度下降或水流停止時(shí),大顆粒煤粉由于水動(dòng)力不足發(fā)生沉降,堵塞煤層的流動(dòng)通道。這也是部分煤層氣井檢泵后產(chǎn)量下降的原因(圖1b)。
表1 水質(zhì)分析數(shù)據(jù)
(紅色箭頭表示煤粉運(yùn)動(dòng)方向)
2.2.1 檢泵與停井造成的煤粉堵塞
檢泵是煤層氣井生產(chǎn)中常見(jiàn)的維護(hù)性措施,筠連地區(qū)煤層氣井年平均檢泵次數(shù)達(dá)90井次,占總井?dāng)?shù)的1/4。部分井檢泵后產(chǎn)氣量和產(chǎn)水量同時(shí)降低,產(chǎn)氣潛力不能恢復(fù)到檢泵前水平(圖2)。分析認(rèn)為,造成檢泵后產(chǎn)量降低的主因原因是,產(chǎn)氣井停機(jī)檢泵期間,地層流體流速降低甚至停止流動(dòng),使原本懸浮在流體中的煤粉等固體顆粒沉降、滯留,堵塞滲流通道,導(dǎo)致煤層氣井產(chǎn)氣量降低[25]。另外,筠連煤層氣區(qū)塊處于山區(qū),夏季雷電現(xiàn)象導(dǎo)致停電事件頻發(fā),致使煤層氣井多次突然停產(chǎn),也可能導(dǎo)致煤粉等顆粒堵塞煤層。
圖2 X5-3井檢泵前后排采曲線對(duì)比
2.2.2 鄰井壓竄的影響
隨著筠連地區(qū)煤層氣開(kāi)發(fā)進(jìn)展,針對(duì)儲(chǔ)量動(dòng)用程度低、動(dòng)用不均衡等制約氣藏穩(wěn)產(chǎn)的關(guān)鍵問(wèn)題,在氣田主產(chǎn)區(qū)采取了井網(wǎng)加密措施。但隨著加密井的增多,井間距縮短,水力壓裂過(guò)程中容易壓竄鄰井,造成鄰井壓力上升,產(chǎn)氣量大幅度下降。核心區(qū)塊13%的已投產(chǎn)井受鄰井壓裂影響而造成產(chǎn)量下降,且其中85%的井未能恢復(fù)至原有產(chǎn)氣量水平。壓竄的煤層氣井產(chǎn)量無(wú)法恢復(fù)到壓竄前水平,其主要原因?yàn)閴毫岩簺_刷導(dǎo)致煤粉顆粒從縫面脫落,并堵塞滲流通道,造成煤儲(chǔ)層滲透率降低。例如,X3-2井被壓竄前煤層氣產(chǎn)量為1 000 m3/d左右,當(dāng)其被相鄰的X3-5井壓竄后,產(chǎn)氣量一直無(wú)法恢復(fù)至壓竄前水平(圖3)。
圖3 X3-2井被鄰井壓竄前后排采曲線對(duì)比
采取研究區(qū)煤層氣井垢樣品進(jìn)行X衍射分析,發(fā)現(xiàn)垢樣主要成分為碳酸鹽、鐵的化合物、石英砂等。因此,針對(duì)研究區(qū)結(jié)垢的煤層氣井主要采取酸洗解堵:向地層注入酸液,使酸液溶蝕近井地帶,尤其是裂縫通道中沉淀物,以恢復(fù)煤儲(chǔ)層滲透率。考慮到儲(chǔ)層中酸敏性礦物與酸反應(yīng)會(huì)生成可溶性鹽類(lèi),易水解成絮狀沉淀堵塞地層。為此,添加鐵離子穩(wěn)定劑來(lái)控制沉淀造成的儲(chǔ)層傷害。酸液中同時(shí)添加酸洗緩蝕劑和助排劑2種表面活性劑。酸洗緩蝕劑可有效降低酸液對(duì)井筒的腐蝕,助排劑可以降低氣/液表面張力,提高酸液殘?jiān)姆蹬拍芰Α?/p>
通過(guò)室內(nèi)實(shí)驗(yàn),選取的酸液配方為:15%HCl+ 0.5%助排劑+1%緩蝕劑+1%鐵離子穩(wěn)定劑+0.5%煤粉分散劑。本區(qū)域共實(shí)施酸洗解堵33井次,單井平均增產(chǎn)7.4萬(wàn)m3,累計(jì)增產(chǎn)量245萬(wàn)m3,總有效率65%,投入產(chǎn)出比為1∶1.8,總體酸洗效果較好。X19-5井于2017年8月19日進(jìn)行了酸洗作業(yè),煤層氣產(chǎn)量從酸洗作業(yè)前的600 m3/d上升至1 500 m3/d以上,增產(chǎn)效果明顯(圖4)。
水力震蕩技術(shù)主要是通過(guò)水力振蕩器產(chǎn)生的高頻脈沖式水流直接噴射在需要解堵的儲(chǔ)層上,在機(jī)械振動(dòng)和空化作用下使堵塞物粉碎、脫落,實(shí)現(xiàn)解堵增透。水力震蕩主要適用于垢物和煤粉堵塞的煤層氣井。選取措施井時(shí),應(yīng)選擇地質(zhì)條件較好、近井筒地帶堵塞、產(chǎn)氣量突降的煤層氣井。筠連地區(qū)煤層氣區(qū)塊總計(jì)實(shí)施8井次水力震蕩,2口井有效,有效率25%。措施效果較好的X22井及X6-2井均前期有過(guò)較高產(chǎn)量,后期由于結(jié)垢或煤粉原因?qū)е庐a(chǎn)氣下降,該類(lèi)井措施效果較好。同時(shí)也存在無(wú)效井和負(fù)效果井。分析認(rèn)為造成負(fù)效果的主要原因?yàn)榫膊磺鍧崳鳂I(yè)時(shí)井筒中垢粉/煤粉等進(jìn)入地層,造成地層污染,影響整體措施效果。
圖4 X19-5井酸洗前后生產(chǎn)曲線對(duì)比
等離子脈沖解堵是利用電流形成高能量的等離子束,周期性地作用于地層中,產(chǎn)生彈性沖擊波,引發(fā)儲(chǔ)層巖石的擠壓和拉伸應(yīng)力,造成堵塞物破裂、脫落。該技術(shù)主要適合近井筒地帶解堵,措施井應(yīng)選擇歷史上曾達(dá)到較高產(chǎn)量,后來(lái)產(chǎn)量出現(xiàn)快速下降的或檢泵等作業(yè)后產(chǎn)量明顯低于作業(yè)前的煤層氣井。研究區(qū)共實(shí)施等離子脈沖解堵1井次(X19-1井),該井初期最高產(chǎn)量為3 500 m3/d,但不穩(wěn)定,3個(gè)月后產(chǎn)氣量快速下降至600 m3/d左右。2017年10月27日對(duì)該井實(shí)施等離子脈沖解堵后,產(chǎn)氣量快速上升,最高產(chǎn)量達(dá)到1 400 m3/d,增產(chǎn)效果較好(圖5)。
圖5 X19-1井等離子脈沖解堵前后排采曲線對(duì)比
通過(guò)向地層中注水,使裂縫中的煤粉在水流的攜帶下流出地層,以實(shí)現(xiàn)解堵提高儲(chǔ)層滲透率。主要適用于被鄰井壓竄的井。被壓竄井的注水解堵工藝步驟為:首先對(duì)被壓竄井進(jìn)行正洗井,然后再用壓裂泵車(chē)進(jìn)行注水,將堵塞物從壓裂井排出,最后對(duì)壓裂井進(jìn)行洗井。通過(guò)注水將煤團(tuán)沖散,并通過(guò)壓裂形成的通道將其攜帶至壓裂井井筒或直接被從壓裂井沖出,最后洗井時(shí)把沖散的堵塞物帶出到地面,避免對(duì)地層造成再次堵塞,從而恢復(fù)并提高氣井產(chǎn)量。壓竄井的注水排量在400~500 L/min,注入量一般為50~200 m3(視壓竄程度)。筠連煤層氣區(qū)塊總計(jì)實(shí)施了6井次注水解堵作業(yè),但增產(chǎn)效果不明顯(圖6)。
a. 四川筠連煤層氣礦區(qū)煤層氣井低產(chǎn)的主要原因是煤層結(jié)垢和煤粉堵塞。針對(duì)這一問(wèn)題,主要開(kāi)展酸洗、水力震蕩、等離子脈沖、注水等4種解堵技術(shù)。從解堵成效來(lái)看,酸洗的效果相對(duì)較好,而等離子脈沖由于只實(shí)施了1口井,不好判斷其有效性。從煤層氣井排采統(tǒng)計(jì)數(shù)據(jù)可知,水力震蕩、注水2種工藝措施成功率較低,在研究區(qū)適應(yīng)性較差。
b. 酸洗屬于化學(xué)解堵,通過(guò)溶蝕作用達(dá)到解堵目的,對(duì)結(jié)垢井具有較好的解堵效果,但由于每口井的地質(zhì)條件以及結(jié)垢程度不同,需要結(jié)合具體情況,優(yōu)化酸液體系、燜井時(shí)間、酸洗工藝,以實(shí)現(xiàn)措施效果最佳。其余3種解堵措施均為物理解堵,其機(jī)理是通過(guò)清除堵塞物達(dá)到解堵目的。由于井筒及儲(chǔ)層中存在煤粉/垢等顆粒,在實(shí)施解堵措施的過(guò)程中,有可能加劇儲(chǔ)層傷害,不但達(dá)不到增產(chǎn)效果反而使煤層氣井產(chǎn)量降低,因此,在實(shí)施措施前,務(wù)必綜合論證措施的適應(yīng)性,制定完善的方案。
c. 煤層氣低產(chǎn)低效井治理是煤層氣井高產(chǎn)面臨的難題,而解堵是治理低產(chǎn)低效井的一種重要手段。本文提及的低產(chǎn)原因分析及增產(chǎn)措施可為海相高階煤煤層氣增產(chǎn)提供一定的借鑒方向。目前國(guó)內(nèi)外已有多種儲(chǔ)層解堵工藝,文中的解堵措施僅僅只是增透措施中的一小部分,下一步將針對(duì)不同區(qū)域地質(zhì)條件下試驗(yàn)研究其他解堵增透措施,探尋更加經(jīng)濟(jì)有效的匹配工藝,為研究區(qū)及其他類(lèi)似區(qū)域煤層氣開(kāi)發(fā)整體提質(zhì)增效提供對(duì)策。
圖6 X3-4井注水解堵前后排采曲線對(duì)比
[1] 趙武鵬,劉春春,申興偉,等. 鄭莊區(qū)塊煤層氣低產(chǎn)井增產(chǎn)技術(shù)研究[J]. 石油鉆采工藝,2017,39(4):491–494.
ZHAO Wupeng,LIU Chunchun,SHEN Xingwei,et al. Study on the stimulation technologies for low-yield CBM wells in Zhengzhuang Block[J]. Oil Drilling & Production Technology,2017,39(4):491–494.
[2] 賈慧敏,胡秋嘉,祁空軍,等. 高階煤煤層氣直井低產(chǎn)原因分析及增產(chǎn)措施[J]. 煤田地質(zhì)與勘探,2019,47(5):104–110.
JIA Huimin,HU Qiujia,QI Kongjun,et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration,2019,47(5):104–110.
[3] 曹運(yùn)興,石玢,周丹,等. 煤層氣低產(chǎn)井高壓氮?dú)鈵灳霎a(chǎn)改造技術(shù)與應(yīng)用[J]. 煤炭學(xué)報(bào),2019,44(8):2556–2565.
CAO Yunxing,SHI Bin,ZHOU Dan,et al. Study and application of stimulation technology for low production CBM well through high pressure N2injection-soak[J]. Journal of China Coal Society,2019,44(8):2556–2565.
[4] 王喆. 可控沖擊波解堵增透技術(shù)在延川南煤層氣田中的應(yīng)用[J].油氣藏評(píng)價(jià)與開(kāi)發(fā),2020,10(4):87–92.
WANG Zhe. Application of controllable shock wave plugging removal and permeability improvement technology in CBM gas field of Southern Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):87–92.
[5] 張遂安,劉欣佳,溫慶志,等. 煤層氣增產(chǎn)改造技術(shù)發(fā)展現(xiàn)狀與趨勢(shì)[J]. 石油學(xué)報(bào),2021,42(1):105–118.
ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105–118.
[6] 倪小明,趙政,劉度,等. 柿莊南區(qū)塊煤層氣低產(chǎn)井原因分析及增產(chǎn)技術(shù)對(duì)策研究[J]. 煤炭科學(xué)技術(shù),2020,48(2):176–184.
NI Xiaoming,ZHAO Zheng,LIU Du,et al. Study on cause of low production and countermeasures of increasing production technology about coalbed methane wells in Shizhuang South Block[J]. Coal Science and Technology,2020,48(2):176–184.
[7] 曹超. 煤層氣重復(fù)壓裂技術(shù)在沁水盆地南部的應(yīng)用[J]. 中國(guó)煤層氣,2017,14(4):15–18.
CAO Chao. Application of CBM repeated fracturing technology in southern Qinshui Basin[J]. China Coalbed Methane,2017,14(4):15–18.
[8] 李瑩,鄭瑞,羅凱,等. 筠連地區(qū)煤層氣低產(chǎn)低效井成因及增產(chǎn)改造措施[J]. 煤田地質(zhì)與勘探,2020,48(4):146–155.
LI Ying,ZHENG Rui,LUO Kai,et al. Reasons of low yield and stimulation measures for CBM wells in Junlian area[J]. Coal Geology & Exploration,2020,48(4):146–155.
[9] 胡秋嘉,唐鈺童,吳定泉,等. 氮?dú)馀菽舛录夹g(shù)在樊莊區(qū)塊多分支水平井上的應(yīng)用[J]. 中國(guó)煤層氣,2015,12(5):27–29.
HU Qiujia,TANG Yutong,WU Dingquan,et al. Application of the nitrogen foam blocking technology in multi-branch horizontal wells of Fanzhuang block[J]. China Coalbed Methane,2015,12(5):27–29.
[10] 姚紅生,陳貞龍,郭濤,等. 延川南深部煤層氣地質(zhì)工程一體化壓裂增產(chǎn)實(shí)踐[J]. 油氣藏評(píng)價(jià)與開(kāi)發(fā),2021,11(3):291–296.
YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291–296.
[11] 李鑫,肖翠,陳貞龍,等. 延川南煤層氣田低效井原因分析與措施優(yōu)選[J]. 油氣藏評(píng)價(jià)與開(kāi)發(fā),2020,10(4):32–38.
LI Xin,XIAO Cui,CHEN Zhenlong,et al. Analysis of low-efficiency wells in CBM gas field of South Yanchuan and optimization of measures[J]. Petroleum Reservoir Evaluation and Development,2020,10(4):32–38.
[12] 張洪盼,明玉坤,孫建孟,等. 煤層氣儲(chǔ)層徑向非均質(zhì)性評(píng)價(jià)及其應(yīng)用[J]. 煤田地質(zhì)與勘探,2017,45(6):169–175.
ZHANG Hongpan,MING Yukun,SUN Jianmeng,et al. Radial heterogeneity evaluation of coalbed methane reservoirs and its application[J]. Coal Geology & Exploration,2017,45(6):169–175.
[13] 李金珊,楊敏芳,朱維耀,等. 川南筠連沐愛(ài)地區(qū)煤層含氣量預(yù)測(cè)及控制因素分析[J]. 東北大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,36(5):724–727.
LI Jinshan,YANG Minfang,ZHU Weiyao,et al. Coalbed gas content prediction and controlling factors analysis of coalbed in Junlian Mu’ai area at south of Sichuan[J]. Journal of Northeastern University(Natural Science),2015,36(5):724–727.
[14] 王林,王維旭,馬飛英,等. 煤層氣井筒垢的產(chǎn)生機(jī)理與防垢方法:以蜀南龍?zhí)督M煤層氣井為例[J]. 廣東石油化工學(xué)院學(xué)報(bào),2018,28(4):1–4.
WANG Lin,WANG Weixu,MA Feiying,et al. Scaling mechanism and control methods in coal bed methane wellbores:Taking coal bed methane wells of Longtan Formation in Shunan Area as an example[J]. Journal of Guangdong University of Petrochemical Technology,2018,28(4):1–4.
[15] 陳振宏,王一兵,孫平. 煤粉產(chǎn)出對(duì)高煤階煤層氣井產(chǎn)能的影響及其控制[J]. 煤炭學(xué)報(bào),2009,34(2):229–232.
CHEN Zhenhong,WANG Yibin,SUN Ping. Destructive influence and effectively treatments of coal powder to high rank coalbed methane production[J]. Journal of China Coal Society,2009,34(2):229–232.
[16] 白建梅,孫玉英,李薇. 高階煤煤層氣井煤粉產(chǎn)出對(duì)滲透率影響研究[J]. 中國(guó)煤層氣,2011,8(6):18–21.
BAI Jianmei,SUN Yuying,LI Wei,et al. Study of the impact of coal dust yield on permeability rate in high rank CBM well[J]. China Coalbed Methane,2011,8(6):18–21.
[17] 王戰(zhàn)鋒,許耀波. 構(gòu)造煤儲(chǔ)層煤粉產(chǎn)出機(jī)理及防治對(duì)策[J]. 陜西煤炭,2014,10(5):1–3.
WANG Zhanfeng,XU Yaobo. Formation mechanism of coal power in tectonic coal reservoir and its control measures[J]. Shaanxi Coal,2014,10(5):1–3.
[18] 王慶偉. 沁南潘莊區(qū)塊煤粉產(chǎn)出機(jī)理與控制因素研究[D]. 北京:中國(guó)礦業(yè)大學(xué)(北京),2013.
WANG Qingwei. The output mechanism and control factors of the coal powder in Panzhuang area,Qinshui Basin[D]. Beijing:China University of Mining and Technology(Beijing),2013.
[19] YAO Zheng,CAO Daiyong,WEI Yingchun,et al. Experimental analysis on the effect of tectonically deformed coal types on fines generation characteristics[J]. Journal of Petroleum Science and Engineering,2016,146:350–359.
[20] TOWLER B,F(xiàn)IROUZI M,UNDERSCHULTZ J,et al. An overview of the coal seam gas developments in Queensland[J]. Journal of Natural Gas Science and Engineering,2016,31:249–271.
[21] GE L,HAMILTON C,F(xiàn)EBRINA R T,et al. A phase inversion polymer coating to prevent swelling and spalling of clay fines in coal seam gas wells[J]. International Journal of Coal Science & Technology,2018,5(2):179–190.
[22] 馬飛英,劉全穩(wěn),王林,等. 單相水流階段煤層裂縫中沉積煤粉的起動(dòng)[J]. 煤炭學(xué)報(bào),2016,41(4):917–920.
MA Feiying,LIU Quanwen,WANG Lin,et al. Motion of incipient sedimental coal fines in coal seam fractures at single phase water flow stage[J]. Journal of China Coal Society,2016,41(4):917–920.
[23] 傅雪海. 我國(guó)煤層氣勘探開(kāi)發(fā)現(xiàn)存問(wèn)題及發(fā)展趨勢(shì)[J]. 黑龍江科技學(xué)院學(xué)報(bào),2012,22(1):1–5.
FU Xuehai. Existing problems and development trend of CBM exploration and development in China[J]. Journal of Heilongjiang Institute of Science & Technology,2012,22(1):1–5.
[24] 張遂安,曹立虎,杜彩霞. 煤層氣井產(chǎn)氣機(jī)理及排采控壓控粉研究[J]. 煤炭學(xué)報(bào),2014,39(9):1927–1931.
ZHANG Sui’an,CAO Lihu,DU Caixia. Study on CBM production mechanism and control theory of bottom-hole pressure and coal fines during CBM well production[J]. Journal of China Coal Society,2014,39(9):1927–1931.
[25] 王林,馬飛英,劉全穩(wěn),等. 基于產(chǎn)生式系統(tǒng)的煤層氣井排采異常識(shí)別技術(shù)[J]. 煤田地質(zhì)與勘探,2017,45(3):72–76.
WANG Lin,MA Feiying,LIU Quanwen,et al. Abnormal drainage identification of coalbed methane well based on production system[J]. Coal Geology & Exploration,2017,45(3):72–76.
De-blocking technology and application of high-rank CBM well in Junlian region in Sichuan Province
PENG Lisha, ZHANG Yimin, XIONG Wei, ZHAO Dan, LUO Kai
(Southwest Gas Production Plant, Zhejiang Oil Field, CNPC, Yibin 645250, China)
The coal seams of Leping Formation in Junlian area are high-rank coal reservoir with low porosity and low permeability. The gas production of some coalbed methane wells decreases rapidly in the production process, which seriously restricts the benefit development of coalbed methane wells. Combined with the production data such as drainage, hydrochemistry and pump inspection, this paper analyzes the reasons for the decline of gas production. The main reasons for the decline are coal scaling and coal fines blockage. Targeted measures such as acid pickling, hydraulic shock, plasma pulse and water injection are carried out to remove the blockage. The results show that acid pickling and plasma pulse have good effect on increasing gas production. Pickling is mainly aimed at scaling wells. By injecting acid into the wellbore and fully reacting with inorganic scale in the wellbore and near wellbore zone, the purpose of removing blockage of the passage in the wellbore and near wellbore zone is achieved. The success rate of pickling measures is high, and the input-output ratio is 1︰1.8, so it is the first choice of low-cost effective measures in the area. Pulse plugging is also aimed at coal fine output and scaling wells, and it has a good effect for increasing gas production by 130% after implementation. However, due to the limited number of implementation, the regional adaptability remains to be evaluated. The measures such as hydraulic shock and water injection are mainly aimed at wells blocked by coal fines. Coal fines are taken out to remove blockage by means of hydraulic shock and hydraulic circulation. However, such measures themselves will also cause formation stress change, which is prone to cause the negative effect. The overall effective rate of hydraulic shock and water injection measures is less than 30% and the effect of increasing production is not obvious. The above four de-blocking measures all have their own adaptive conditions, so it is necessary to take appropriate measures according to the causes of blockage to obtain the best de-blocking effect. The research results in this paper can provide some reference for de-plugging and increasing production of similar coalbed methane wells in China.
Sichuan Junlian; high-rank coal; coalbed methane; scaling; coal fines; blockage removal; plasma pulse; acid pickling
移動(dòng)閱讀
語(yǔ)音講解
TE377
A
1001-1986(2021)05-0132-07
2021-02-18;
2021-06-16
中國(guó)石油股份有限公司重大科技專項(xiàng)項(xiàng)目(2017E-1401)
彭麗莎,1992年生,女,湖南岳陽(yáng)人,工程師,從事煤層氣和頁(yè)巖氣開(kāi)發(fā)動(dòng)態(tài)研究工作. E-mail:pengls85@petrochina.com.cn
彭麗莎,張毅敏,熊威,等. 四川筠連地區(qū)高階煤煤層氣井解堵技術(shù)及應(yīng)用[J]. 煤田地質(zhì)與勘探,2021,49(5):132–138. doi: 10.3969/j.issn.1001-1986.2021.05.014
PENG Lisha,ZHANG Yimin,XIONG Wei,et al. De-blocking technology of CBM wells of the high-rank coal and their application in Junlian area in Sichuan Province[J]. Coal Geology & Exploration,2021,49(5):132–138. doi: 10.3969/j.issn. 1001-1986.2021.05.014
(責(zé)任編輯 范章群)