趙章焰,熊 琪,劉立成
(武漢理工大學(xué)物流工程學(xué)院,湖北 武漢430063)
岸邊集裝箱起重機(jī)(以下簡(jiǎn)稱岸橋)受風(fēng)情況一直廣受關(guān)注,這類特種機(jī)械往往是多臺(tái)沿大車軌道方向并排布置[1]。且為配合被裝卸的船舶,兩臺(tái)岸橋的間距也不會(huì)太大。岸橋群體的存在,可能會(huì)對(duì)單臺(tái)岸橋的受風(fēng)情況造成某些影響。近年來,國(guó)內(nèi)外學(xué)者利用CFD和風(fēng)洞試驗(yàn),對(duì)單臺(tái)岸橋或是岸橋主要構(gòu)件的風(fēng)載進(jìn)行了大量研究,但對(duì)風(fēng)場(chǎng)中兩臺(tái)岸橋的相互影響研究甚少?;诖耍杂?jì)算流體力學(xué)(CFD)模擬開展岸邊集裝箱起重機(jī)群風(fēng)力系數(shù)研究。
此前,文獻(xiàn)[2-4]利用風(fēng)洞試驗(yàn)對(duì)單臺(tái)岸橋風(fēng)力系數(shù)進(jìn)行了研究,指出CFD模擬與風(fēng)洞試驗(yàn)結(jié)果會(huì)因模型簡(jiǎn)化產(chǎn)生(8~20)%的差別,風(fēng)力系數(shù)受風(fēng)向、邊界條件以及大梁狀態(tài)的影響;文獻(xiàn)[5-6]對(duì)則指出CFD與風(fēng)洞試驗(yàn)結(jié)果具有良好的一致性,并指出風(fēng)洞試驗(yàn)與CFD結(jié)果的誤差受端部三維繞流效應(yīng)影響。以上文獻(xiàn)針對(duì)單機(jī)或單根構(gòu)件開展研究,給出了CFD與風(fēng)洞試驗(yàn)的誤差范圍及部分誤差原因,但均未涉及多臺(tái)機(jī)工況?;诖耍墨I(xiàn)[7]計(jì)算了三種間距下各臺(tái)岸橋的整機(jī)風(fēng)載荷合力大小,指出岸橋?qū)χ車鲌?chǎng)主要影響區(qū)長(zhǎng)30m;文獻(xiàn)[8]對(duì)分離箱梁門式起重機(jī)的風(fēng)力系數(shù)進(jìn)行風(fēng)洞試驗(yàn)與數(shù)值仿真,指出雙梁存在氣動(dòng)減阻優(yōu)勢(shì),風(fēng)力系數(shù)要比單梁時(shí)?。晃墨I(xiàn)[9]表明間隔比對(duì)前梁體型系數(shù)也有一定影響。上述文獻(xiàn)雖涉及多臺(tái)起重機(jī)或多結(jié)構(gòu),但均未具體給出結(jié)構(gòu)間相互影響。
基于此,先進(jìn)行單機(jī)數(shù)值模擬和風(fēng)洞試驗(yàn),在此基礎(chǔ)上開展雙機(jī)數(shù)值模擬,從風(fēng)向角和岸橋間距兩方面研究風(fēng)場(chǎng)中岸橋間的相互影響。
風(fēng)洞試驗(yàn)采用1:100縮比模型,在中國(guó)船舶重工集團(tuán)公司第七O二研究所進(jìn)行,采用盒式六分力應(yīng)變天平測(cè)量岸橋模型整體的風(fēng)載荷,并對(duì)結(jié)果進(jìn)行無量綱處理獲得迎風(fēng)方向的阻力系數(shù)(即風(fēng)力系數(shù))、升力系數(shù)和彎矩系數(shù)。
試驗(yàn)以15°為增量,測(cè)得了單臺(tái)岸橋模型從(0~345)°共24個(gè)來流方向的整機(jī)風(fēng)載,來流風(fēng)速V為20m/s。計(jì)算結(jié)果中的各項(xiàng)系數(shù)均按風(fēng)軸坐標(biāo)系方向選取,并進(jìn)行無量綱處理。
采用ANSYS17.0中的ICEM CFD和FLUENT進(jìn)行數(shù)值模擬分析。研究對(duì)象為上海振華為埃及設(shè)計(jì)的某65t岸橋,整機(jī)總高H=78.5m,總長(zhǎng)L=123m。數(shù)值模擬和風(fēng)洞試驗(yàn)均采用1:100縮比模型進(jìn)行,坐標(biāo)系如圖1所示。圖中:O-XYZ-整機(jī)坐標(biāo)系;Ow-Xw-YwZw-風(fēng)軸坐標(biāo)系,風(fēng)按圖示方向從0°旋轉(zhuǎn)至360°。
圖1 CFD和風(fēng)洞試驗(yàn)坐標(biāo)軸示意圖Fig.1 Coordinate Axes for CFD and Wind Tunnel Test
無量綱處理參考流體力學(xué)中壓力系數(shù)Cp計(jì)算公式進(jìn)行,各無量綱系數(shù)名稱及方向,如表1所示。
表1 無量綱系數(shù)說明Tab.1 Explanation of Dimensionless Coefficient
式中:S-模型迎風(fēng)面積;L取計(jì)算模型特征長(zhǎng)度即1.23m;F-作用于模型上的風(fēng)載力;M-作用在模型上的風(fēng)載力矩;m-空氣密度。
數(shù)值模擬模型與風(fēng)洞試驗(yàn)尺寸保持一致。流場(chǎng)域分為內(nèi)外兩個(gè)部分,內(nèi)流場(chǎng)為圓柱形以便旋轉(zhuǎn)網(wǎng)格方向,外流場(chǎng)為長(zhǎng)方體,用interface連接內(nèi)外流場(chǎng)。流場(chǎng)域模型,如圖2所示。計(jì)算域邊界條件如下:入口為velocity inlet,入流速度20m/s,出口為outflow,底面為wall,頂部和側(cè)面均為symmetry模擬自由滑移邊界。選擇雙精度模式和k-ε標(biāo)準(zhǔn)湍流模型,采用壓力-速度耦合SIMPLE算法,離散格式均采用一階。
圖2 內(nèi)外流場(chǎng)域尺寸Fig.2 Internal and External Flow Field Size
2.2.1 網(wǎng)格無關(guān)性驗(yàn)證
劃分四種內(nèi)流場(chǎng)網(wǎng)格以驗(yàn)證網(wǎng)格無關(guān)性,網(wǎng)格數(shù)量越大計(jì)算時(shí)間越長(zhǎng),四種網(wǎng)格數(shù)及計(jì)算結(jié)果如表2所示。當(dāng)網(wǎng)格數(shù)量達(dá)到575萬(wàn)及以上,Xw穩(wěn)定在1.15,其相對(duì)誤差在3.5%以下,Mw的相對(duì)誤差在4.2%以下,故取575萬(wàn)內(nèi)流場(chǎng)網(wǎng)格進(jìn)行單機(jī)數(shù)值模擬,外流場(chǎng)網(wǎng)格數(shù)為158萬(wàn)。
表2 四種網(wǎng)格數(shù)量計(jì)算結(jié)果(網(wǎng)格數(shù)單位:萬(wàn))Tab.2 Four Kinds of Grid Number Calculation Results(Grid Number Unit:Ten Thousand)
2.2.2 雷諾無關(guān)性驗(yàn)證
雷諾數(shù)常用于描述流體的流動(dòng)狀態(tài),表示流體的慣性力與粘性力之比[10]。進(jìn)行數(shù)值模擬時(shí),常以Re相同來保證數(shù)值模擬與風(fēng)洞試驗(yàn)具有流動(dòng)相似性。Hyoja-dong Kang的研究曾表明,在Re達(dá)到105以上時(shí),空氣動(dòng)壓力系數(shù)基本上維持在一個(gè)常數(shù)[2]。現(xiàn)以風(fēng)向角90°、取入口風(fēng)速5m/s、10m/s、20m/s、21.57m/s、30m/s和40m/s進(jìn)行Re無關(guān)性驗(yàn)證。其中風(fēng)速21.57m/s是保證數(shù)值模擬與風(fēng)洞試驗(yàn)Re完全一致的風(fēng)速,計(jì)算結(jié)果如圖3所示,其中Cp是壓力系數(shù)。結(jié)果顯示,達(dá)到風(fēng)洞試驗(yàn)Re也即1.5í106左右時(shí),三個(gè)方向上的系數(shù)已保持穩(wěn)定值,說明入口風(fēng)速20m/s和21.57m/s的計(jì)算結(jié)果基本一致,數(shù)值模擬值入口速度時(shí)可將入流條件設(shè)置20m/s。
圖3 Re無關(guān)性驗(yàn)證結(jié)果Fig.3 Re Independence Verification Results
2.2.3 單機(jī)數(shù)值模擬
單機(jī)數(shù)值模擬時(shí),風(fēng)向角從0°到360°以45°間隔變化,共8個(gè)工況,計(jì)算結(jié)果如圖4所示。單機(jī)的數(shù)值模擬獲得了與風(fēng)洞試驗(yàn)一致的數(shù)據(jù)趨勢(shì),尤其是縱向力系數(shù)Xw和俯仰力矩系數(shù)Mw,Xw的誤差在1.4%至18%,Mw的誤差在(-0.3)%至11.2%。單機(jī)整體計(jì)算結(jié)果相對(duì)誤差在19%以內(nèi),滿足Sang-Joon Lee提出的誤差范圍[3],這表明所用模擬思路和方法可靠。
圖4 (2)單機(jī)數(shù)值模擬結(jié)果與風(fēng)洞試驗(yàn)對(duì)比Fig.4 Comparisons Between Numerical Simulation Results of Single Crane and Wind Tunnel Test
圖4 (1)單機(jī)數(shù)值模擬結(jié)果與風(fēng)洞試驗(yàn)對(duì)比Fig.4 Comparisons Between Numerical Simulation Results of Single Crane and Wind Tunnel Test
現(xiàn)從不同風(fēng)向、不同岸橋間距兩個(gè)影響因素出發(fā),進(jìn)行雙機(jī)數(shù)值模擬,主要研究風(fēng)力系數(shù)Xw。
兩臺(tái)岸橋模型并排布置,保證有風(fēng)吹來時(shí)crane1總擋在crane0前面。雙機(jī)數(shù)值模擬時(shí)邊界條件與單機(jī)保持一致。兩臺(tái)模型相同,只考慮風(fēng)向角45°、90°、135°和0°四個(gè)風(fēng)向。按照設(shè)計(jì)圖,單機(jī)在沿大車軌道方向上至少需占據(jù)38m以布置夾軌器、緩沖器等附件,故以四根立柱的中心為端點(diǎn)取最小值間隔40m,以10m為增量至120m,共9個(gè)間距。雙機(jī)數(shù)值模擬共計(jì)算36個(gè)工況。
由圖5可知,隨雙機(jī)間隔增大,crane0和crane1的Xw均逐漸趨向單機(jī)計(jì)算值;雙機(jī)計(jì)算結(jié)果也在45°風(fēng)向時(shí)Xw達(dá)到最大值1.459,在0°風(fēng)時(shí)達(dá)到最小值0.893,兩者相差38.79%。45°和135°風(fēng)作用時(shí),crane0的Xw在間距40m至70m時(shí)很快增大,此后緩慢上升并超過crane1(相差量均在1.1%以下);90°風(fēng),雙機(jī)間隔40m時(shí)crane1的Xw為1.09555,而雙機(jī)間隔達(dá)到90m后crane1的Xw上升為1.13281,與單機(jī)同等條件下的計(jì)算結(jié)果1.15475相差1.9%。0°風(fēng)時(shí),雙機(jī)的Xw差值均在0.002以下,在圖中幾乎重合。
圖5 雙機(jī)縱向力系數(shù)XwFig.5 Longitudinal Force Coefficient of Dual Machines
可發(fā)現(xiàn),crane0和crane1存在沿風(fēng)向上的遮擋關(guān)系時(shí),雙機(jī)的Xw都小于單機(jī)計(jì)算值,隨間距增大逐漸上升,這與文獻(xiàn)的研究[8]結(jié)果一致;crane0和crane1無遮擋也即0°風(fēng)時(shí),雙機(jī)的Xw均略大于單機(jī)Xw,隨間距增大逐漸減小。這表明crane1對(duì)后方的crane0有擋風(fēng)作用,但crane0對(duì)crane1也有一定程度的“擋風(fēng)”或“強(qiáng)風(fēng)”作用。針對(duì)上述Xw的變化趨勢(shì),在3.3節(jié)展開了分析討論。
取同工況下crane0與crane1的Xw之比為crane1的折減率,其數(shù)值,如表3所示。由表3可知,90°風(fēng)向crane1遮擋效果最好,該風(fēng)向下40m間距時(shí)后臺(tái)的crane0風(fēng)力系數(shù)僅為前臺(tái)crane1的0.634。40m間距對(duì)該岸橋而言已足夠小,故該岸橋的最大折減率是63.4%。取同工況下crane0和crane1的Xw與單機(jī)Xw之比為群體折減率,其數(shù)值如表4所示。間距從40m到120m、四種風(fēng)下crane0的群體折減率總增量分別是(-0.04)、0.114、0.156和0.121;群體折減率效果明顯隨距離增大而下降。這表明群體風(fēng)載折減主要受風(fēng)向影響,90°時(shí)變化量最大。
表3 兩臺(tái)岸橋crane1折減率Tab.3 Crane1 Reduction Rate of Two Quayside Crane
表4 兩臺(tái)岸橋群體折減率Tab.4 Group Reduction Rate of Two Quayside Crane
3.3.1 風(fēng)向角的影響
在《起重機(jī)設(shè)計(jì)規(guī)范》[11]中,風(fēng)載荷估算的原則是假定風(fēng)沿起重機(jī)最不利的水平方向作用,但未明確具體指向。對(duì)于多臺(tái)岸橋,風(fēng)向角主要影響兩臺(tái)岸橋的遮擋關(guān)系,45°和135°的遮擋關(guān)系基本一致。同時(shí)這也是岸橋Xw最大時(shí)的風(fēng)向,這在單機(jī)風(fēng)洞試驗(yàn)和數(shù)值模擬結(jié)果中也得到了證實(shí)。常亞瓊的研究也指出,門式起重機(jī)的最大風(fēng)力系數(shù)出現(xiàn)在45°風(fēng)[1]。至此得出結(jié)論:45°風(fēng)向是對(duì)岸橋最不利的風(fēng)向。以下分兩類風(fēng)向角展開分析:有遮擋關(guān)系和無遮擋關(guān)系。
(1)有遮擋關(guān)系
如表3所示數(shù)據(jù)表明,風(fēng)從沿大車軌道方向(90°風(fēng))吹來時(shí),后臺(tái)機(jī)的風(fēng)力系數(shù)是前臺(tái)的(65~77)%。45°或135°風(fēng)作用時(shí),即便是最近的間距40m工況,折減率也只有(0.91~0.92),間距達(dá)到(60~70)m后則基本無折減,此時(shí)折減率已達(dá)到0.99以上。
工程中,??紤]的風(fēng)向有沿大車軌道和垂直大車軌道兩種,沿大車軌道方向上整機(jī)迎風(fēng)面積更大也即結(jié)構(gòu)受載情況更危險(xiǎn)。但這一風(fēng)向下,處在下風(fēng)處的岸橋能獲得約(23~35)%的風(fēng)載折減,這有利于節(jié)省抗風(fēng)夾緊裝置的能耗。
在3.2節(jié)中曾提及,45°、135°和90°風(fēng)作用時(shí)雙機(jī)的Xw都要小于單機(jī)計(jì)算值。經(jīng)分析,這是由于在沿流線、定常和不可壓縮流動(dòng)條件下,單位質(zhì)量流體的機(jī)械能守恒,也即滿足伯努利方程。
式中:p-氣體壓力;g-重力加速度;z-位置高度;const-常數(shù)。再考慮同一高度切面上的流速和壓力分布時(shí),重力勢(shì)能項(xiàng)為一常數(shù)。則公式(3)變形為:
公式(4)描述了滿足伯努利方程限定條件的氣流在增減速時(shí)的壓力變化關(guān)系,當(dāng)氣流速度V減小到0時(shí),所有動(dòng)能的減少全部轉(zhuǎn)化為壓力勢(shì)能,引起壓力的升高[11]。
圖6 90°風(fēng)向壓力云圖Fig.6 Pressure Nephogram of 90 Degree Wind Direction
在Re高達(dá)106的條件下,模型所受的黏性力可忽略不計(jì),其前后的壓差力才是模型風(fēng)載的主要組成。crane0的存在,阻礙了crane1后方流體的流動(dòng),使其流速下降壓力上升,處于crane1靠前位置的流體流速則與單機(jī)時(shí)的情況相同、壓力相近,這導(dǎo)致crane1前后表面的壓力差下降。對(duì)于crane0,因crane1的阻擋(沿風(fēng)向方向)前方的流體流速明顯小于單機(jī)時(shí)流速,導(dǎo)致crane0前方壓力大幅下降。處于crane0后方的流體與單機(jī)時(shí)尾流狀況相似,壓力相似,這造成crane0前后壓差力更小。綜上所述,雙機(jī)存在遮擋關(guān)系時(shí),雙機(jī)的Xw均會(huì)小于單機(jī)計(jì)算值,隨間距增大,遮擋效果下降,Xw才逐漸恢復(fù)。
(2)無遮擋關(guān)系
在0°風(fēng)作用時(shí),雙機(jī)沒有遮擋關(guān)系,但雙機(jī)的Xw均大于單機(jī)計(jì)算值,這是流體必須滿足連續(xù)性造成的。流體流動(dòng)必須滿足連續(xù)方程、動(dòng)量方程和能量方程。連續(xù)性方程描述的是質(zhì)量守恒定律,對(duì)于簡(jiǎn)單的一維流動(dòng),任意截面上的密度、速度都是均勻的,這樣就得到工程上最為常見的形式(5):
式中:ρ1、ρ2-變截面兩側(cè)的流體密度;A1、A2-變截面兩側(cè)的流通面積;V1、V2-變截面兩側(cè)的流速。研究的流動(dòng)為不可壓縮流動(dòng),不可壓縮即流體密度不變,故公式(5)又可簡(jiǎn)化為:
當(dāng)流體通過岸橋模型附近時(shí),流動(dòng)受到阻礙,原本可以從模型所處位置流過的流體被擠到從模型側(cè)邊通過,相當(dāng)于流通面積A減小,于是速度V上升。再根據(jù)公式(4)可知此處壓力會(huì)下降。
如圖7所示,不論是單機(jī)還是雙機(jī),在后大梁也即沿風(fēng)向靠前區(qū)域的壓力值均為(50~100)Pa,但在門框附近生成了一個(gè)局部低壓區(qū),此區(qū)域外的壓力仍為(50~100)Pa。存在雙機(jī)時(shí)低壓區(qū)縮減,僅四根立柱周圍有較小而明顯的低壓區(qū),在機(jī)器房附近處形成了鮮明的高低壓分界。于是雙機(jī)存在時(shí),流線下方壓力小于單機(jī)時(shí),前后壓差力增大從而使雙機(jī)的Xw大于單機(jī)計(jì)算值。
圖7 0°風(fēng)向壓力云圖Fig.7 Pressure Nephogram of 0 Wind Direction
3.3.2 雙機(jī)間距的影響
雙機(jī)間距主要影響的是遮擋效果,兩機(jī)距離越近遮擋效果越好。在《起重機(jī)設(shè)計(jì)規(guī)范》[11]中,構(gòu)件擋風(fēng)折減系數(shù)h是通過構(gòu)件迎風(fēng)面充實(shí)率和間隔比查表得出的。間隔比是指兩個(gè)相對(duì)面之間的距離與構(gòu)件迎風(fēng)面的寬度之比。當(dāng)研究對(duì)象為整機(jī)時(shí),間隔比與充實(shí)率并不方便確定。文獻(xiàn)的研究也表明:擋風(fēng)折減系數(shù)的規(guī)定適用于桁架結(jié)構(gòu),不適用于大型箱體組合結(jié)構(gòu)[12],而岸橋恰為大型箱體組合結(jié)構(gòu)。如表4所示,給出的群體折減率為港口岸橋群的風(fēng)載折減提供了參考。
雙機(jī)數(shù)值模擬結(jié)果顯示,雙機(jī)間距超過70m后Xw已經(jīng)基本穩(wěn)定。風(fēng)向45°雙機(jī)距離最近時(shí)crane0的Xw是crane1的91.5%,在雙機(jī)間距達(dá)到70m時(shí),這個(gè)比例上升到99.97%,并在此后穩(wěn)定在100%左右。將表4中crane0的群體折減率增量作圖如圖8所示,可看出(40~60)m之內(nèi),間距對(duì)群體折減率的影響較大,最大變化量是135°風(fēng)下的0.07%,最小是0°風(fēng)下的(-0.014)%。
圖8 群體折減率增量變化圖Fig.8 Incremental Change Map of Group Reduction Rate
如圖9所示,40m間距時(shí),雙機(jī)前側(cè)形成了一個(gè)明顯的高壓區(qū),隨間距增大,高壓區(qū)面積增大但壓力下降,最終與單機(jī)時(shí)趨于一致。可認(rèn)為,此時(shí)間距已不再影響兩機(jī)的風(fēng)力系數(shù)。結(jié)合表4中的數(shù)據(jù),可知風(fēng)向角是影響群體風(fēng)力系數(shù)的主要因素,距離僅在一定范圍(70m)內(nèi)起明顯作用。
圖9 45°風(fēng)向壓力云圖Fig.9 Pressure Nephogram of 45 Degree Wind Direction
(1)對(duì)起重機(jī)最不利風(fēng)向?yàn)?5°風(fēng)向,這可為按照《起重機(jī)設(shè)計(jì)規(guī)范》風(fēng)載荷估算原則選取最不利風(fēng)向提供參考;
(2)結(jié)果表明:有無遮擋會(huì)導(dǎo)致岸橋群風(fēng)力系數(shù)變化趨勢(shì)相反。沿風(fēng)向有遮擋時(shí),岸橋群的存在能減弱群體內(nèi)的風(fēng)力系數(shù);當(dāng)風(fēng)沿垂直于大車軌道方向作用,此時(shí)無遮擋,岸橋群的存在可增大群體內(nèi)單機(jī)的風(fēng)力系數(shù);
(3)風(fēng)向角是影響抗風(fēng)效果的主要因素,雙機(jī)存在時(shí)最大能產(chǎn)生38.79%的差距,單機(jī)存在時(shí)最大差距則是40.69%;間距僅在70m之內(nèi)產(chǎn)生影響,且影響程度在0.1%以下;
(4)風(fēng)沿大車軌道方向作用時(shí),前臺(tái)機(jī)對(duì)后臺(tái)機(jī)的整機(jī)風(fēng)載最大折減率可達(dá)63.4%,處在下風(fēng)處的岸橋能獲得約(23~35)%的風(fēng)載折減,這將有利于減少群體抗風(fēng)夾緊裝置的總能耗;
(5)給出表4所示群體折減率,給出整機(jī)的風(fēng)載折減關(guān)系,這可為研究港口岸橋群的風(fēng)載折減關(guān)系提供參考。