張偉建,曾祥龍,楊 傲,滕林蘋,邾 毅
納米金涂覆微納光纖的倏逝場氨氣檢測研究
張偉建,曾祥龍*,楊 傲,滕林蘋,邾 毅
特種光纖與光接入網(wǎng)重點(diǎn)實(shí)驗(yàn)室,特種光纖與先進(jìn)通信國際合作聯(lián)合實(shí)驗(yàn)室,上海先進(jìn)通信與數(shù)據(jù)科學(xué)研究院,上海大學(xué),上海 200444
本文基于TDLAS技術(shù),采用設(shè)計(jì)制備的微納光纖氣體吸收池,搭建了一套全光纖的NH3濃度檢測系統(tǒng)。NH3檢測系統(tǒng)的核心部分氣體傳感通過1.51 μm的微納光纖完成,該系統(tǒng)檢測結(jié)果表明,NH3在20000 ppm~100000 ppm濃度范圍內(nèi),解調(diào)的二次諧波幅值與對應(yīng)濃度之間具有良好的線性關(guān)系(擬合方程相關(guān)系數(shù)=0.9962)。為了提高NH3濃度的檢測性能,采用納米金涂覆微納光纖以增強(qiáng)光纖的倏逝場效應(yīng)。根據(jù)實(shí)驗(yàn)結(jié)果,納米金涂覆后的微納光纖NH3濃度檢測系統(tǒng)靈敏度有了很大提升,NH3濃度的檢測下限可達(dá)到260 ppm。對不同濃度的NH3反復(fù)監(jiān)測顯示該檢測系統(tǒng)穩(wěn)定性良好,最大相對誤差為5.38%,適用于長期穩(wěn)定性的NH3監(jiān)測,具有廣泛的應(yīng)用前景。
TDLAS技術(shù);微納光纖;納米金涂覆;NH3濃度檢測
氨氣(NH3)廣泛應(yīng)用于工業(yè)生產(chǎn)、農(nóng)業(yè)活動和生物系統(tǒng)等領(lǐng)域中,極大地促進(jìn)了這些領(lǐng)域的發(fā)展進(jìn)步。但NH3又是一種有毒性氣體,一旦過量攝入對人體和動植物都有危害,我國明確將NH3列為8種惡臭污染物之一[1]。因此,采取科學(xué)有效的氣體檢測措施,及時準(zhǔn)確地掌握NH3的排放和分布,對環(huán)境保護(hù)和生命健康安全都具有重要的現(xiàn)實(shí)意義。
可調(diào)諧半導(dǎo)體激光吸收光譜(Tunable diode laser absorption spectroscopy, TDLAS)技術(shù)基于分子吸收光譜理論,具有在線、實(shí)時、高靈敏、高分辨率和高精度[2]等優(yōu)點(diǎn)。已經(jīng)發(fā)展成為氣體檢測領(lǐng)域的主流技術(shù),是國內(nèi)外眾多研究所、高校和企業(yè)爭相鉆研和開發(fā)的熱點(diǎn)。如中國科學(xué)院安徽光學(xué)精密機(jī)械研究所對大氣污染常見的CO、NH3、CH4等氣體進(jìn)行了實(shí)時監(jiān)測[3-5],太原科技大學(xué)Guo等[6]人研制了一種便攜式微量NH3激光傳感系統(tǒng),采用無標(biāo)尺調(diào)制光譜技術(shù),系統(tǒng)的最低檢測極限達(dá)到ppm級別。然而,現(xiàn)有的檢測系統(tǒng)所采用的氣體吸收池為反射式空間光結(jié)構(gòu),價格昂貴,體積笨重,且需要高精度的準(zhǔn)直器配合,不僅提高了實(shí)驗(yàn)成本,還失去了全光纖結(jié)構(gòu)的特性和優(yōu)勢。
倏逝場型光纖氣體傳感作為光譜吸收法的另一種形式,具有易于集成光纖網(wǎng)絡(luò)、成本低廉、性能優(yōu)良、抗電磁干擾性好和分布式測量等優(yōu)點(diǎn),日益受到廣泛關(guān)注。此外,倏逝場型光纖可以通過改變光纖結(jié)構(gòu),在包層一側(cè)涂覆各種納米材料等方法提高倏逝場區(qū)域氣體傳感的靈敏度。隨著TDLAS技術(shù)的進(jìn)一步發(fā)展,將TDLAS技術(shù)與其他光譜學(xué)和非光譜學(xué)技術(shù)的結(jié)合運(yùn)用必然是一種趨勢[7],也能更好地為人們的經(jīng)濟(jì)發(fā)展和生活健康提供支持和保障。
本文主要采用激光氣體吸收光譜技術(shù)進(jìn)行氣體濃度檢測,基于倏逝場原理,設(shè)計(jì)了全光纖的TDLAS氨氣檢測系統(tǒng)。使用熔融拉錐技術(shù)制備微納光纖,氣體對微納光纖錐區(qū)中逸出倏逝光產(chǎn)生吸收,實(shí)現(xiàn)對目標(biāo)氣體濃度的檢測。同時,根據(jù)氣體吸收光強(qiáng)原理,采用更為靈敏的涂覆微納光纖組成氣體吸收池,涂覆材料為納米金(gold-nanosphere, GNS)。納米金通過倏逝場互相作用引發(fā)表面等離子共振(surface plasmon resonance, SPR)效應(yīng)[8],涂覆后能夠顯著增強(qiáng)微納光纖的倏逝場,提高NH3濃度的檢測靈敏度,實(shí)現(xiàn)更低濃度NH3的測量,為未來NH3氣體的泄露檢測和在線監(jiān)測提供了低成本、高靈敏度的解決方案。
TDLAS是一種窄帶吸收光譜技術(shù),主要利用可調(diào)諧半導(dǎo)體激光器的窄線寬和激光波長隨電流和溫度的改變而變化的特性,實(shí)現(xiàn)分子的吸收線精準(zhǔn)測量,防止其他氣體的干擾[9]。TDLAS也是一種常見的紅外吸收光譜技術(shù),它在氣體光譜吸收的基礎(chǔ)上,結(jié)合波長調(diào)制技術(shù)提高信噪比,最終通過鎖相放大器提取與氣體濃度有關(guān)的諧波信號。在提取的諧波信號中,偶次諧波的峰值位于吸收線中心位置,信號輸出較大,且低次諧波幅值明顯大于高次諧波幅值,因此一般采用二次諧波信號反演氣體濃度。
根據(jù)Lambert-Beer定律[10],當(dāng)強(qiáng)度為0的一束光穿過一定濃度的某種氣體的吸收池時,氣體分子會對不同頻率的入射光進(jìn)行選擇性吸收,入射光強(qiáng)度會有衰減,此時透射光強(qiáng)為
波長調(diào)制技術(shù)使激光器在頻率調(diào)制的同時,也受到了強(qiáng)度強(qiáng)制[11]。當(dāng)激光器的注入電流疊加上三角波信號和頻率為的正弦波信號時,激光器輸出的瞬時光強(qiáng)和頻率為
式中:0為激光器的平均光強(qiáng),()為三角波信號,和分別為光強(qiáng)調(diào)制幅度和頻率,0為激光器的中心頻率,m為激光器輸出頻率的調(diào)制幅度。
由Lambert-Beer定律可知,經(jīng)過氣體吸收后的光強(qiáng)為
經(jīng)過運(yùn)算減省后,得到二次諧波的幅值:
想要設(shè)計(jì)并實(shí)現(xiàn)高靈敏度、高精度、低檢測極限的TDLAS系統(tǒng),氣體吸收峰的選取十分重要。目前實(shí)驗(yàn)中廣泛使用且最具權(quán)威性的數(shù)據(jù)庫是HITRAN(high-resolution transmission molecular absorption database)數(shù)據(jù)庫[12-13]。
圖1給出了HITRAN數(shù)據(jù)庫中CO2,H2O和NH3在1510 nm~1515 nm范圍內(nèi)的吸收峰。在波長為1512 nm附近的NH3譜線吸收強(qiáng)度較強(qiáng),吸收峰強(qiáng)度數(shù)量級為10-21,且H2O和CO2的譜線強(qiáng)度很低與NH3相差幾個數(shù)量級,檢測誤差小,最終選擇波長為1512.24 nm的NH3吸收譜線作為實(shí)驗(yàn)的中心吸收峰。
NH3濃度檢測的實(shí)驗(yàn)裝置如圖2所示,信號發(fā)生器(signal generator, RIGOL DG1062Z)產(chǎn)生的低頻三角波信號(800 mV, 200 mHz)和高頻正弦波信號(200 mV, 5 kHz)疊加在一起通過激光控制器(laser controller, ILX LDC-3724)加載在分布式反饋激光器(distributed feedback laser,DFB-LD)上,共同實(shí)現(xiàn)對輸出波長的調(diào)諧與調(diào)制。激光器輸出中心波長為1512 nm的可調(diào)諧激光經(jīng)過微納光纖氣體吸收池,被一定濃度的NH3吸收后,光強(qiáng)在NH3的吸收波長處會有損耗,從而引起接收端光強(qiáng)發(fā)生變化。光強(qiáng)的變化由光電探測器(photodetector,PD)轉(zhuǎn)換為電信號,電信號連接鎖相放大器(lock-in amplifier,Stanford SR830)。鎖相放大器解調(diào)出與NH3濃度密切相關(guān)的二次諧波信號,最終通過數(shù)據(jù)采集處理模塊(oscilloscope,Tektronix MSO4104 and PC)進(jìn)行分析處理。
如圖3(a),3(b)和3(c)所示,DFB激光器的輸出波長與注入電流和工作溫度成線性關(guān)系。注入電流增大,輸出波長增大;工作溫度升高,輸出波長增大。對應(yīng)關(guān)系近似為注入電流增加10 mA,激光器輸出波長紅移0.07 nm;溫度升高1 ℃,激光器輸出波長紅移0.1 nm。
圖1 CO2, H2O和NH3在1512 nm附近的吸收峰
圖2 微納光纖氣體吸收池式TDLAS氨氣檢測系統(tǒng)示意圖
圖3 激光器輸出特性。(a) 驅(qū)動電流從30 mA至70 mA的激光器輸出光譜,溫度為25 ℃;(b) 激光器隨工作溫度的變化輸出光譜,電流為50 mA;(c) 不同溫度和不同電流時,輸出波長對應(yīng)曲線;(d)不同驅(qū)動電流對應(yīng)的激光器輸出功率與加載電壓
從電流和溫度對波長偏移的影響可以看出,溫度更適合當(dāng)一個穩(wěn)定的量,固定溫度后只改變注入電流,輸出波長變化將更精確。實(shí)驗(yàn)中初始工作溫度設(shè)置為25 ℃,初始注入電流為50 mA,其對應(yīng)的輸出波長約為1512.24 nm。如圖3(d),此時激光器輸出功率為5 mW,加載電壓為1 V,且激光器的輸出功率和加載電壓隨注入電流而發(fā)生線性變化。
氣體吸收池的傳感單元由微納光纖構(gòu)成,微納光纖是指直徑為納米或亞微米級別的波導(dǎo)纖維,實(shí)驗(yàn)中使用的微納光纖由普通單模光纖采用熔融拉錐法拉制而成。正常狀態(tài)下得到的微納光纖為一種對稱性錐形結(jié)構(gòu),典型的微納光纖結(jié)構(gòu)如圖4(a)。光纖運(yùn)用熔融拉錐法處理時,纖芯和包層同時變細(xì),在加熱區(qū)域中心處,光纖形成錐腰均勻區(qū)域,而未被拉伸的標(biāo)準(zhǔn)光纖(尾纖區(qū)域)與錐腰均勻區(qū)域之間為光纖的過渡區(qū)域,一般該區(qū)域呈錐形結(jié)構(gòu)。當(dāng)光纖被拉錐成一定細(xì)度,光沿著光纖傳輸至錐腰均勻區(qū)域,纖芯有部分能量透入到外介質(zhì)中,構(gòu)成光纖—外界物質(zhì)兩層圓柱形光波導(dǎo)結(jié)構(gòu)[14]。當(dāng)光沿著微納光纖進(jìn)行傳輸時,部分能量透入至倏逝場中,極大地增強(qiáng)了光場與外界物質(zhì)的相互作用,進(jìn)而可以設(shè)計(jì)并實(shí)現(xiàn)通過微納光纖的倏逝場作用對其周圍的微量物質(zhì)進(jìn)行檢測。
將微納光纖作為一種氣體傳感的敏感性元件,構(gòu)建微納光纖式的氣體吸收池,利用倏逝場逸出的光對氣體的吸收效應(yīng)來檢測氣體濃度。為了得到微納光纖制備時拉制時間、均勻區(qū)域直徑和光纖傳輸損耗三者之間的關(guān)系,光纖拉錐前通入1.5mm的窄帶激光,初始功率設(shè)置為10 mW,拉錐每間隔5 s記錄一組功率數(shù)據(jù),監(jiān)測結(jié)果如圖4(b)所示。可以看出,在拉錐參數(shù)相同的條件下,光纖拉制時間越長,錐腰的均勻區(qū)域直徑越小,對應(yīng)的傳輸損耗越大,實(shí)驗(yàn)中微納光纖均勻區(qū)域長度為2 cm,均勻區(qū)域直徑為1.51mm,如圖4(c)所示。
微納光纖作為氣體傳感單元,其靈敏度取決于倏逝場所占的光功率比。通過在微納光纖上涂覆納米材料可以增大微納光纖的倏逝場效應(yīng),進(jìn)而提高檢測靈敏度。
為了提高NH3的檢測靈敏度,實(shí)現(xiàn)更低濃度的NH3檢測,采用光沉積的方法將配置好的納米金溶液滴在微納光纖的均勻區(qū)域,均勻區(qū)域部分光場對納米金溶液加熱使懸浮在溶液中的顆粒產(chǎn)生強(qiáng)對流,最終吸附至錐區(qū)??梢杂^測到,沉積納米金后微納光纖均勻區(qū)域的倏逝場光強(qiáng)明顯增強(qiáng),如圖5(a)和5(b)所示。利用掃描電鏡拍攝光纖錐區(qū)沉積的納米金,納米金平均尺寸為50 nm~60 nm,如圖5(c)所示。
圖4 (a) 微納光纖結(jié)構(gòu)圖;(b) 微納光纖拉制時間、錐區(qū)均勻區(qū)域直徑與傳輸損耗之間的對應(yīng)關(guān)系;(c) 微納光纖直徑
圖5 微納光纖在(a) GNSs涂覆之前和(b) GNSs涂覆之后的倏逝場輻射;(c) 微納光纖表面沉積GNSs的SEM圖像,插入的是一段沉積GNSs的微納光纖
使用微量取液器汲取濃度為25%的氨水溶液,取液器汲取的氨水體積分別為10 μL,20 μL,30 μL,40 μL,50 μL,可以使氣室內(nèi)的氨氣濃度形成梯度分布。同時為了使氨水中的氨氣更快更徹底地?fù)]發(fā)出來,制備吸收池時會在玻璃氣室內(nèi)進(jìn)出氣口的正下方放一張無塵紙,當(dāng)氨水從取液器滴入氣室內(nèi)準(zhǔn)確地落在無塵紙上時,可以有效地增大氨水與氣室內(nèi)空氣接觸的表面積。完成氨水滴入操作后,將玻璃氣室的兩個進(jìn)出氣口用黑色橡膠套堵住,氨氣自然揮發(fā)改變了氣室內(nèi)的氨氣濃度。
對于以體積為單位的氣體,可根據(jù)式(7)計(jì)算氣室中氨水溶液的體積轉(zhuǎn)換為氨氣的濃度[15]:
實(shí)驗(yàn)條件為常溫,氣室內(nèi)部溫度基本維持在25 ℃,即298.15 K,L=0.8817 g/mL,L=35.045 g/mol,=300 mL。根據(jù)式(7),假設(shè)氣室內(nèi)部氨水完全揮發(fā),則滴入體積為10 μL,20 μL,30 μL,40 μL,50 μL的25%濃度氨水,轉(zhuǎn)換為氨氣的濃度依次約為20000 ppm,40000 ppm,60000 ppm,80000 ppm,100000 ppm。不同NH3濃度下解調(diào)的二次諧波信號幅值如圖6(a)所示,顯然當(dāng)NH3濃度越高,解調(diào)后的二次諧波幅值越大。進(jìn)一步地,我們將得到的數(shù)據(jù)進(jìn)行線性擬合,如圖6(b)所示,以表示解調(diào)后的二次諧波幅值,表示NH3的濃度。二次諧波幅值與氣體濃度之間呈現(xiàn)良好的線性關(guān)系,其擬合方程相關(guān)系數(shù)=0.9962,擬合表達(dá)式為
同樣地,使用更小微量的取液器汲取氨水體積分別為1 μL,2 μL,3 μL,4 μL,5 μL(對應(yīng)濃度依次約為2000 ppm,4000 ppm,6000 ppm,8000 ppm,10000 ppm)注入納米金涂覆后微納光纖氣體吸收池進(jìn)行檢測,不同NH3濃度下解調(diào)的二次諧波信號如圖7(a)所示,進(jìn)一步地對NH3濃度與二次諧波幅值展開線性擬合,如圖7(b)所示。二次諧波幅值與氣體濃度之間呈現(xiàn)良好的線性關(guān)系,其擬合方程相關(guān)系數(shù)=0.9991,擬合表達(dá)式為
對比圖6和圖7的檢測結(jié)果,顯然涂覆后的微納光纖氣體吸收池檢測系統(tǒng)對NH3濃度檢測具有更高的靈敏度,能夠檢測更低濃度的NH3。為了測量涂覆后微納光纖氣體吸收池對NH3的檢測下限,用6000 ppm濃度進(jìn)行周期掃描實(shí)驗(yàn),采集得到兩個周期的三角波吸收信號,與其對應(yīng)的二次諧波信號如圖7(c)所示。二次諧波信號幅值均值為0.688 V,與無吸收處的噪音幅值均值之比68.8,即為NH3檢測系統(tǒng)的信噪比[16]。根據(jù)一般最小檢測幅值為噪聲幅值的3倍的原則進(jìn)行估算[17],得到涂覆后微納光纖氣體吸收池TDLAS系統(tǒng)的最低檢測下限約為260 ppm。
圖7 (a)GNSs涂覆后微納光纖氣體吸收池不同NH3濃度時的二次諧波信號;(b)二次諧波信號幅值與NH3濃度的實(shí)測數(shù)據(jù)和線性擬合曲線;(c)濃度為6000 ppm的NH3的吸收波形及其對應(yīng)的二次諧波(小圖為無吸收處的噪音)
為了進(jìn)一步評估系統(tǒng)的穩(wěn)定性,結(jié)合擬合表達(dá)式(9),實(shí)驗(yàn)測了10組數(shù)據(jù)反演NH3濃度,結(jié)果如表1所示。從表中可以看出,最大相對偏差為5.38%。表明系統(tǒng)穩(wěn)定性較好,可以滿足一般NH3檢測系統(tǒng)長期穩(wěn)定監(jiān)測的需求。
表1 系統(tǒng)穩(wěn)定性測量結(jié)果
本文通過實(shí)驗(yàn)提出了一種基于TDLAS技術(shù)的倏逝場NH3濃度檢測的方法。將制備的微納光纖氣體吸收池應(yīng)用于TDLAS氣體檢測系統(tǒng),在2 cm的吸收路徑上實(shí)現(xiàn)了不同濃度NH3的檢測。實(shí)驗(yàn)結(jié)果證明,NH3解調(diào)的二次諧波幅值與對應(yīng)濃度之間具有良好的線性關(guān)系。為了優(yōu)化NH3檢測性能,將微納光纖進(jìn)行納米金涂覆處理,涂覆后的微納光纖檢測系統(tǒng)對NH3濃度的檢測靈敏度明顯增強(qiáng),最低檢測下限為260 ppm,同時納米金涂覆后的檢測系統(tǒng)穩(wěn)定性較好,能夠滿足NH3長期穩(wěn)定的監(jiān)測需求。
[1] Bao J L, Li W F, Zou K H. Research status of health risk of odor pollution[J]., 2012, 25(4): 5–7.
包景嶺, 李偉芳, 鄒克華. 淺議惡臭污染的健康風(fēng)險研究[J]. 城市環(huán)境與城市生態(tài), 2012, 25(4): 5–7.
[2] Song X M, Liu J G, Zhang Y J,. Study of remote sensing the flux of carbon dioxide gas with tunable diode laser absorption spectroscopy[J]., 2011, 31(3): 803–807.
[3] Kan R F, Liu W Q, Zhang Y J,. Large scale gas leakage monitoring with tunable diode laser absorption spectroscopy[J]., 2006, 4(2): 116–118.
[4] Yao L, Liu W Q, Liu J G,. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]., 2015, 42(2): 0215003.
姚路, 劉文清, 劉建國, 等. 基于TDLAS的長光程環(huán)境大氣痕量CO監(jiān)測方法研究[J]. 中國激光, 2015, 42(2): 0215003.
[5] Li M X, Liu J G, Kan R F,. Design of real-time measurement of atmospheric CO and CH4based on tunable diode laser spectroscopy system[J]., 2015, 35(4): 0430001.
李明星, 劉建國, 闞瑞峰, 等. 基于可調(diào)諧半導(dǎo)體激光吸收光譜的CO和CH4實(shí)時檢測系統(tǒng)設(shè)計(jì)[J]. 光學(xué)學(xué)報, 2015, 35(4): 0430001.
[6] Guo X Q, Zheng F, Li C L,. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J]., 2019, 115: 243–248.
[7] Tombez L, Zhang E J, Orcutt J S,. Methane absorption spectroscopy on a silicon photonic chip[J]., 2017, 4(11): 1322–1325.
[8] Cui Y, Shum P P, Wang G H,. Size effect of gold nanoparticles on optical microfiber refractive index sensors[C]//, 2011: 371–374.
[9] Peng Z M, Ding Y, Lu C,. Calibration-free wavelength modulated TDLAS under high absorbance conditions[J]., 2011, 19(23): 23104–23110.
[10] Paynter R W. Modification of the Beer–Lambert equation for application to concentration gradients[J]., 1981, 3(4): 186–187.
[11] Xu L G, Liu N W, Zhou S,. Dual-frequency modulation quartz crystal tuning fork enhanced laser spectroscopy[J]., 2020, 28(4): 5648–5657.
[12] Zhu M W, Zhang F, Li W W,. The impact of various HITRAN molecular spectroscopic databases on infrared radiative transfer simulation[J]., 2019, 234: 55–63.
[13] Rothman L S, Gordon I E, Babikov Y,The HITRAN2012 molecular spectroscopic database[J]., 2013, 130: 4–50.
[14] Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J]., 2004, 12(6): 1025–1035.
[15] Li Y H, Gong J, He G H,. Enhancement of photoresponse and UV-assisted gas sensing with Au decorated ZnO nanofibers[J]., 2012, 134(2–3): 1172–1178.
[16] Li J D, Du Y J, Peng Z M,. Measurements of spectroscopic parameters of CO2transitions for Voigt, Rautian, galatry and speed-dependent voigt profiles near 1.43μm using the WM-DAS method[J]., 2019, 224: 197–205.
[17] Pogány A, Wagner S, Werhahn O,. Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor[J]., 2015, 69(2): 257–268.
Research on evanescent field ammonia detection with gold-nanosphere coated microfibers
Zhang Weijian, Zeng Xianglong*, Yang Ao, Teng Linping, Zhu Yi
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
The schematic diagram of the TDLAS ammonia detection system with a microfiber gas absorption cell
Overview:Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive laser absorption spectrum measurement technology, which determines the information of target gas by detecting the absorption intensity of the spectrum. With high selectivity, high sensitivity, rapid detection and high precision, it has been widely used in the real-time and online detection of atmospheric trace and polluted gases. However, most of gas absorption cells used in the existing detection system are based on the reflected spatial light structure, which requires the cooperation of the collimator with high precision. The structure of gas absorption cells is complex, expensive and bulky. On the other side, the optical fiber gas sensor based on fiber evanescent field is a neoteric kind of technology, and thus it takes light to measure the signal of the carrier and can adapt to various environments. Moreover, the evanescent field based optical fiber by coating various nanomaterials can improve the sensitivity of gas sensing, which has attracted wide attention.
In this paper, combined with TDLAS technology and gas sensing based on the evanescent field fiber, a set of all-fiber NH3concentration detection system was built. The light source is a distributed feedback laser at around 1512 nm and the laser controller is modulated to select the unique absorption spectrum of NH3to reduce the interference of carbon dioxide, vapor and other trace gases. A small gas absorption cell consists of a tapered microfiber with a 1.51mm diameter. The microfiber was pulled into a cone by hydrogen and oxygen flame technology, and the second harmonic signal was finally extracted by a lock-in amplifier. The experimental results verified the feasibility of the evanescent field gas absorption cell, which is applied in the TDLAS system to detect ammonia gas. There was a good linear relationship between the amplitude of the second harmonic and the corresponding concentration in the range of 20000 ppm~100000 ppm of NH3. To improve the detection performance of NH3concentration, gold-nanosphere (GNS) coated microfiber was used to enhance the effect of fiber evanescent fields. Compared with the measurement results of the evanescent field and GNSs coated microfiber, the detection sensitivity of the coated evanescent field significantly improved. Meanwhile, the TDLAS detection system based on GNSs coated microfibers as the evanescent-field based fiber gas absorption cell has good stability with the maximum relative error of 5.38%, and the detection limit of NH3concentration can reach 260 ppm. The system has a wide application prospect in the field of ammonia detection.
Zhang W J, Zeng X L, Yang A,Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]., 2021, 48(9): 200451; DOI:10.12086/oee.2021.200451
Research on evanescent field ammonia detection with gold-nanosphere coated microfibers
Zhang Weijian, Zeng Xianglong*, Yang Ao, Teng Linping, Zhu Yi
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
In this paper, based on TDLAS technology, an all-fiber NH3concentration detection system was built by using the designed microfiber gas absorption cell. The core part of the NH3detection system was sensed by a 1.51mm microfiber. The test results of the system indicate that there is a good linear relationship between the second harmonic amplitude and the corresponding concentration for NH3in the concentration range of 20000 ppm~100000 ppm (correlation coefficient of fitting formula=0.9962). To improve the detection performance of NH3concentration, the gold-nanosphere (GNS) coated microfiber is used to enhance the evanescent field effect. According to the experimental results, the sensitivity of the microfiber coated GNSs NH3concentration detection system has been greatly improved and the lower detection limit of NH3concentration can reach 260 ppm. Repeated monitoring of different concentrations of NH3shows that the detection system is stable with a maximum relative error of 5.38%, which makes it suitable for long-term stable NH3monitoring and has wide application prospects.
technology of TDLAS; microfiber; gold-nanosphere coating; NH3concentration detection
張偉建,曾祥龍,楊傲,等. 納米金涂覆微納光纖的倏逝場氨氣檢測研究[J]. 光電工程,2021,48(9): 200451
Zhang W J, Zeng X L, Yang A,Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]., 2021, 48(9): 200451
TN248
A
10.12086/oee.2021.200451
2020-12-04;
2021-07-15
國家自然科學(xué)基金資助項(xiàng)目(91750108);上海市科學(xué)技術(shù)委員會資助項(xiàng)目(20JC1415700,16520720900);上海市高等學(xué)校特聘教授(東方學(xué)者)項(xiàng)目;高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃(111)(D20031)資助
張偉建(1994-),男,碩士,主要從事TDLAS技術(shù)檢測氣體方面的研究。E-mail:shdxzwj@shu.edu.cn
曾祥龍(1977-),男,博士,教授,主要從事非線性超快光學(xué)、特種光纖及其傳感技術(shù)的研究。E-mail:zenglong@shu.edu.cn
National Natural Science Foundation of China (91750108), Science and Technology Commission of Shanghai Municipality (20JC1415700,16520720900), and Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (111)(D20031)
* E-mail: zenglong@shu.edu.cn