畢卉 陳莎莎
摘 要:研究了基于偏迎風(fēng)數(shù)值通量的四階線性偏微分方程局部間斷Galerkin方法的穩(wěn)定性和誤差估計(jì)問題??紤]在空間方向上,利用半離散形式的數(shù)值格式,通過使用廣義Gauss-Radau投影,消除了數(shù)值通量產(chǎn)生的投影誤差,利用Young不等式得到數(shù)值格式的最優(yōu)誤差估計(jì)。證明了當(dāng)對流項(xiàng)選擇偏迎風(fēng)數(shù)值通量,方法的收斂階為k+1階。由于含有高階空間導(dǎo)數(shù)的偏微分方程LDG方法的空間離散算子具有剛性,因此對于時間離散采用二階隱式Crank-Nicolson方法,通過數(shù)值試驗(yàn)驗(yàn)證了理論分析結(jié)果的正確性。
關(guān)鍵詞:四階線性偏微分方程;局部間斷Galerkin方法;誤差估計(jì);偏迎風(fēng)通量;廣義Gauss-Radau投影
DOI:10.15938/j.jhust.2021.04.022
中圖分類號:O29
文獻(xiàn)標(biāo)志碼:A
文章編號:1007-2683(2021)04-0159-08
Abstract:This paper studies the stability and error estimates of the local discontinuous Galerkin method for fourth-order linear partial differential equations based on upwind-biased fluxes. Consider using the semi-discrete form of numerical format in the spatial direction and using the generalized Gauss-Radau projection, the projection error caused by the numerical flux is eliminated. The optimal error estimate of the numerical format is obtained by using Young inequality. It is proved that when the convective term is selected as the upwind-biased numerical fluxes, the convergence order of the method is order k+1. Because the spatial discrete operator of the partial differential equation LDG method with higher-order spatial derivatives is rigid, the second-order implicit Crank-Nicolson method is used for time dispersion, and the correctness of the theoretical analysis results is verified by numerical experiments.
Keywords:fourth-order linear PDEs; local discontinuous Galerkin methods; error estimates; upwind-biased fluxes; generalized Gauss-Radau projection
0 引 言
對流擴(kuò)散方程是一類反映物質(zhì)輸運(yùn)、分子擴(kuò)散或黏性流體流動的數(shù)學(xué)模型,可以描述化學(xué)、流體力學(xué)、空氣動力學(xué)等領(lǐng)域的眾多物理現(xiàn)象,在天氣預(yù)報、石油開采、半導(dǎo)體模擬等領(lǐng)域有著廣泛的應(yīng)用。因此,對流擴(kuò)散方程的數(shù)值方法研究一直是偏微分方程數(shù)值解研究的重要課題之一。由于局部間斷Galerkin(local discontinuous galerkin,簡稱LDG)方法具有良好的數(shù)值表現(xiàn)和數(shù)值實(shí)現(xiàn)的簡便性,該方法己經(jīng)成為求解高階微分方程的熱門方法之一。本文將求解以下的對流擴(kuò)散方程,充分展示LDG方法的數(shù)值求解優(yōu)勢。
間斷Galerkin有限元方法是由Reed和Hill[1]于1973年在求解中子運(yùn)輸方程時首次提出。Johnson和Pitkranta[2]將這個方法應(yīng)用到標(biāo)量線性雙曲型方程上,并且研究了Lp范數(shù)意義下的誤差估計(jì)問題。之后,Cockburn等在文[3-6]中針對雙曲型守恒律方程提出了Runge-Kutta DG方法。由于Bassi和Rebay[7]應(yīng)用DG方法成功地解決了可壓縮的Navier-Stokes方程,Cockburn和Shu[8]受他們的啟發(fā),在解決對流擴(kuò)散方程時第一次提出了局部間斷Galerkin方法。LDG方法的主要思想是先把對流擴(kuò)散方程化為等價的一階偏微分方程組,再使用DG方法進(jìn)行空間離散。局部間斷Galerkin方法是DG方法的推廣,用于求解含有高階空間導(dǎo)數(shù)的偏微分方程。目前,LDG方法已經(jīng)得到了廣泛的發(fā)展和應(yīng)用。Yan和Shu將LDG方法應(yīng)用到三階KdV方程[12],以及四階和五階偏微分方程[13]。Xu和Shu進(jìn)一步將LDG推廣到非線性波動方程[14-15]、Schrodinger方程[16]、Hunter-Saxton方程[18]及Surface diffusion和Willmore flow方程[19]等,更多見文[20]。如何選取合適的數(shù)值流通量來保證數(shù)值格式的穩(wěn)定性是LDG方法的核心。
傳統(tǒng)上,線性雙曲方程DG方法的數(shù)值通量通常選擇純迎風(fēng)數(shù)值通量。但是,對于復(fù)雜的系統(tǒng)或非線性問題,純迎風(fēng)數(shù)值通量很難構(gòu)造。因此,研究更一般的數(shù)值通量(如偏迎風(fēng)偏通量)是必要且重要的。最近,Meng等[21]研究了基于偏迎風(fēng)通量線性守恒律方程DG方法的收斂性,證明了最優(yōu)半離散DG方法的收斂階為k+1階。Cao等[22]基于偏迎風(fēng)通量,研究了一維線性雙曲型方程的DG方法超收斂性,發(fā)現(xiàn)DG解及其導(dǎo)數(shù)在一些特殊點(diǎn)處可以得到k+1階和k+2階超收斂。本文研究了基于偏迎風(fēng)數(shù)值通量的線性四階偏微分方程LDG方法的誤差估計(jì)。
論文第2節(jié)給出了線性四階方程的LDG方法,證明了基于偏迎風(fēng)通量四階線性偏微分方程LDG方法的收斂階為k+1階;在第3節(jié)中通過數(shù)值實(shí)驗(yàn),驗(yàn)證了結(jié)果的正確性;在第4節(jié)中,給出了結(jié)論和未來的工作。
進(jìn)而對方法的誤差和收斂階進(jìn)行分析。在表1和表2中,時間步長選擇τ=0.01h2;在表3和表4中,時間步長選擇τ=0.01h4,計(jì)算終止時刻分別取為T=1及T=10。通過對收斂階的計(jì)算發(fā)現(xiàn),當(dāng)數(shù)值流通量取為偏迎風(fēng)通量時,對于不同的θ值,收斂階可以達(dá)到k+1階精度,特別是對于長效時間,如T=10時,收斂階仍可達(dá)到k+1階,驗(yàn)證了定理2的結(jié)論。
以上算例表明,當(dāng)對流項(xiàng)數(shù)值通量選取偏迎風(fēng)通量,擴(kuò)散項(xiàng)數(shù)值流通量選擇交替流通量,局部間斷Galerkin有限元解對真解有較好的逼近效果,且具有較好的長效性,這為進(jìn)一步研究該方法的穩(wěn)定性提供了數(shù)值保障。同時通過對誤差和收斂階的計(jì)算,得到當(dāng)使用初值的p*h投影和P1以及P2多項(xiàng)式時在不同時刻的收斂階均可達(dá)到k+1階,驗(yàn)證了本文對四階線性對流擴(kuò)散方程的LDG方法的誤差估計(jì)結(jié)果。
3 結(jié) 論
本文討論了四階線性對流擴(kuò)散方程LDG方法的穩(wěn)定性以及誤差估計(jì)問題。證明了當(dāng)對流項(xiàng)選擇偏迎風(fēng)通量,擴(kuò)散項(xiàng)選擇交錯流通量時,LDG方法在Pk(k≥1)分片多項(xiàng)式有限元空間中的誤差估計(jì)的階為k+1。通過數(shù)值實(shí)驗(yàn),驗(yàn)證了誤差估計(jì)的理論分析是正確的。接下來將進(jìn)一步研究高階方程基于偏迎風(fēng)數(shù)值流通量的數(shù)值穩(wěn)定性問題,從理論上分析求解高階微分方程LDG方法的數(shù)值特性。
參 考 文 獻(xiàn):
[1] REED W H, HILL T R. Triangular Mesh Methods for the Neutron Transport Equation[R]. Los Alamos Report LA-UR-73-479:1973.
[2] PitkRanta, C Johnson. An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation[J]. Mathematics of Computation, 1986, 46(173):1.
[3] COCKBURN B, LIN S Y & SHU C W. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element method for Conservation Laws III:One-dimensional Systems[J]. Journal of Computational Physics, 1989, 84(1):903.
[4] COCKBURN B, HOU C W, SHU C W. The Runge-kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws. iv:the Multidimensional Case. Mathematics of Computation,1990, 54(190):545.
[5] COCKBURN B, SHU C W. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II:General Framework[J]. Mathematics of Computation, 1989, 52(186):411.
[6] COCKBURN B, SHU C W. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V[J]. Journal of Computational Physics, 1997, 141(2):199.
[7] BASSI F, REBAY S. A high-order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations[J]. Journal of Computational Physics, 1997, 131(2):267.
[8] SHU C W. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6):2440.
[9] CHENG Y, MENG X, ZHANG Q. Application of Generalized Gauss-Radau Projections for the Local Discontinuous Galerkin Method for Linear Convection-diffusion Equations[J]. Mathematics of Computation, 2016, 86(305):1233.
[10]CHENG Y, ZHANG Q. Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for One-Dimensional Singularly Perturbed Problem[J]. Journal of Scientific Computing, 2017, 72(2):792.
[11]CHENG Y, ZHANG Q, Wang H J. Local Analysis of the Local Discontinuous Galerkin Method with Generalized Alternating Numerical Flux for Two-Dimensional Singularly Perturbed Problem.Int.J. Numer. Anal. Mod. 2018, 15:785.
[12]YAN J, SHU C W. A Local Discontinuous Galerkin Method for KdV Type Equations[J]. SIAM Journal on Numerical Analysis, 2002, 40(2):769.
[13]YAN J, SHU C W. Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives[J]. Journal of Scientific Computing, 2002, 17(1):27.
[14]SHU C W, XU Y. Local Discontinuous Galerkin Methods For Three Classes Of Nonlinear Wave Equations[J]. Journal of Computational Mathematics, 2004, 22(2):250.
[15]XU Y, SHU C W. Local Discontinuous Galerkin Methods for Two Classes of Two-dimensional Nonlinear Wave Equations[J]. Physica D, 2005, 208(1-2):21.
[16]XU Y, SHU C W. Local Discontinuous Galerkin Methods for Nonlinear Schrodinger Equations[J]. Journal of Computational Physics, 2005, 20S(1):72.
[17]SHU C W. A Local Discontinuous Galerkin Method for the Camassa-Holm Equation[J]. SIAM Journal on Numerical Analysis, 2008, 46(4):1998.
[18]XU Y, SHU C W. Local Discontinuous Galerkin Method for the Hunter-Saxton Equation and Its Zero-Viscosity and Zero-Dispersion Limits[J]. SIAM Journal on Scientific Computing, 2009, 31(2):1249.
[19]XU Y, SHU C W. Local Discontinuous Galerkin Method for Surface Diffusion and Willmore Flow of Graphs[J]. Journal of Scientific Computing, 2009, 40(1/3):375.
[20]XU Y, SHU C W. Local Discontinuous Galerkin Methods for High-order Time-dependent Partial Differential Equations. Commun. Comput. Phys., 2010, 7:1.
[21]MENG X, SHU C W, Wu B Y. Optimal Error Estimates for Discontinuous Galerkin Methods Based on Upwind-biased Fluxes for Linear Hyperbolic Equations[J]. Mathematics of Computation, 2016, 85:1225.
[22]CAO W, LI D, YANG Y et al. Superconvergence of Discontinuous Galerkin Methods Based on Upwind-biased Fluxes for 1D Linear Hyperbolic Equations[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2017, 51(2):467.
[23]XU Y, SHU C W. Optimal Error Estimates of the Semidiscrete Local Discontinuous Galerkin Methods for High Order Wave Equations[J]. SIAM Journal on Numerical Analysis, 2012, 50:79.
[24]畢卉, 錢琛庚. 顯式Runge-Kutta局部間斷Galerkin方法的穩(wěn)定性分析[J]. 哈爾濱理工大學(xué)學(xué)報, 2017, 22(6):109.
BI Hui, QIAN Chengeng. Stability Analysis of the Explicit Runge-kutta Local Discontinuous Galerkin Method[J].Journal of Harbin University of Scince and Technology, 2017,22(6):109.
(編輯:溫澤宇)