丁豪杰,蘇奇倩,李 林,李曉鋒,徐其靜,Rensing Christopher,劉 雪*
土壤農(nóng)用地膜微生物降解研究進展
丁豪杰1,2,蘇奇倩1,2,李 林1,2,李曉鋒1,2,徐其靜1,2,Rensing Christopher1,3,劉 雪1,2*
(1.西南林業(yè)大學環(huán)境修復與健康研究院,云南 昆明 650224;2.西南林業(yè)大學生態(tài)與環(huán)境學院,云南 昆明 650224;3.福建農(nóng)林大學資源與環(huán)境學院,福建 福州 350002)
地膜可保持土壤濕度,調(diào)節(jié)土壤溫度及限制雜草生長從而促進農(nóng)作物增產(chǎn),在現(xiàn)代農(nóng)業(yè)生產(chǎn)中具有不可或缺的作用.然而,地膜主要成分聚乙烯(PE)性質(zhì)穩(wěn)定,難以降解,極易在農(nóng)田土壤中殘留并積累.此外,地膜在生產(chǎn)過程中添加鄰苯二甲酸酯類(PAEs)作為塑化劑,該類有機物極易在土壤和水體環(huán)境中積累和遷移,且生物毒性大,對生態(tài)環(huán)境、糧食安全和人體健康構(gòu)成極大威脅.聚乙烯和鄰苯二甲酸酯復合污染是土壤有機污染治理的重點和難點.因此,農(nóng)用地膜污染土壤修復是環(huán)境科學研究的重要課題,亦是作物生產(chǎn)安全和人類健康的重要保障.微生物降解的生物修復較物理化學技術具有效率高、無二次污染、成本低、環(huán)境擾動小等優(yōu)點,具有廣泛應用前景.由此,本文綜述農(nóng)用地膜使用和土壤殘留現(xiàn)狀及其生物降解的研究進展,以期為地膜污染農(nóng)田土壤的生物修復提供基礎信息和技術參考.
農(nóng)用地膜;聚乙烯;鄰苯二甲酸酯;微生物;生物降解;生物修復
20世紀50年代,日本與歐美等發(fā)達國家首次將農(nóng)用地膜技術應用于農(nóng)業(yè)生產(chǎn)領域[1].由于農(nóng)用地膜可保持土壤濕度,調(diào)節(jié)土壤溫度及限制雜草生長等優(yōu)點[2-3],在世界范圍內(nèi)得到推廣并廣泛使用.中國作為農(nóng)業(yè)大國,引進技術至今,農(nóng)用地膜已經(jīng)成為繼化肥和農(nóng)藥之后的第三大生產(chǎn)材料[4].
由于聚乙烯(PE)質(zhì)量輕、制造工藝簡單、可塑性強和價格低等優(yōu)點,市場需求占比較大,約為43%[5].PE又可分為線性低密度聚乙烯(LLDPE)、低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE).LLDPE和LDPE多用于薄膜產(chǎn)品,其中約半數(shù)的薄膜產(chǎn)品應用于農(nóng)業(yè)土壤覆蓋.鄰苯二甲酸酯類(PAEs)是一類廣泛使用的改性添加劑,用于增加塑料制品的強度和可塑性,也可用作農(nóng)藥載體、化妝品、潤滑劑等產(chǎn)品的生產(chǎn)原料[6].
根據(jù)國家統(tǒng)計局的有效數(shù)據(jù),截至2018年,我國地膜覆蓋面積達1776萬hm2,地膜使用量達140萬t[7].研究顯示,若覆膜率在1%~15%范圍內(nèi)的縣域其地膜覆蓋率均提高5%,糧食總產(chǎn)量將增加約433萬t[8].我國地膜用量在農(nóng)業(yè)農(nóng)用地膜總量中的占比極高,地膜的廣泛應用已使我國糧食作物增產(chǎn)20%~ 35%,經(jīng)濟作物增產(chǎn)20%~60%,對保障糧食供給具有重要作用[9],亦帶來極大經(jīng)濟效益,例如,2017年鋪設地膜產(chǎn)生的農(nóng)業(yè)產(chǎn)值高達58059.8億元[10].然而,由于技術和民眾認知上的局限性,地膜回收困難,大量地膜殘留在農(nóng)田土壤中,造成嚴重的“白色污染”[11].同時,農(nóng)用地膜的主要成分是PE和PAEs,PE性質(zhì)穩(wěn)定,難以自然降解,PE對農(nóng)田土壤理化性質(zhì)及作物生長有諸多不良影響(阻礙根系生長、影響土壤中水分運移等)[12];而PAEs殘留在農(nóng)田土壤環(huán)境中,對農(nóng)作物食品安全和人體健康造成極大威脅[13].
修復農(nóng)業(yè)土壤中的殘膜污染具有重大的環(huán)境、經(jīng)濟和社會意義.相較于傳統(tǒng)的化學和物理方法,微生物修復技術具有操作簡單、經(jīng)濟實用和無二次污染等優(yōu)點[14].因此,本文重點關注微生物降解技術,闡述其對地膜的降解方式、過程機理及影響因素,旨在為農(nóng)田土壤有機污染修復提供基礎信息和技術參考.
自我國引進地膜覆蓋技術以來,地膜用量及覆蓋面積年增長率達8%,1991~2011年間,地膜使用強度增加3~10倍[15].然而,約25%~33%投入使用的地膜殘留在土壤中[1],地膜主要成分為高分子聚合物,在土壤中難以降解[16],對土壤生態(tài)環(huán)境[17]、農(nóng)作物食品安全和人體健康具有潛在風險[18].殘膜顯著影響土壤的團聚體、水分和養(yǎng)分運輸、土壤滲透性、微生物數(shù)量和酶活性、有機質(zhì)及氮素含量等.
數(shù)據(jù)顯示,我國長期覆蓋地膜的農(nóng)田土壤中,殘膜量為71.9~259kg/hm2[15].殘膜破壞土壤團聚體,使土壤板結(jié)[19].研究顯示,覆蓋地膜7年后,表層15cm土層中水穩(wěn)性大團聚體(>0.25mm)占比提高16%~ 28%,土壤容重略有增加,但pH值下降0.19~0.54[20].
由于地膜無法被滲透,殘膜阻礙水分和養(yǎng)分的正常運輸.殘膜量為360kg/hm2,水分下滲速度降低30%[21].Bescansa等[22]使用CT掃描技術發(fā)現(xiàn),殘膜阻礙土壤孔隙面積增加.當殘膜量為225kg/hm2,土壤容重增加18.2%,土壤孔隙度降低13.8%,土壤含水率降低11.7%,并隨殘膜量增加持續(xù)惡化[23].
土壤飽和導水率是土壤飽和滲透性能的直觀反映,殘膜導致土壤飽和導水率降低.當殘膜量為100kg/hm2,其飽和導水率降低45%,當殘膜量達到200kg/hm2,其飽和導水率突降88%[24].此外,白一茹等[25]研究發(fā)現(xiàn),在殘膜污染土壤入滲過程分析中,更適合采用Kostiakov模型,且在該模型下入滲濕潤鋒運移距離與入滲時間呈冪指數(shù)增長關系.隨殘膜量增加,水平方向的水遷移速率和累積過濾量呈顯著下降趨勢[26].曹俊豪等通過因素效應分析發(fā)現(xiàn),當土壤初始含水率<11%,土壤干容重與濕潤鋒運移時間呈正相關;反之,呈負相關.當土壤干容重<1.41g/cm3,濕潤鋒運移時間與殘膜量呈正相關關系;反之,兩者呈負相關.當殘膜量<150kg/hm2,濕潤鋒運移時間與土壤干容重呈正相關;反之,濕潤鋒運移時間逐漸趨于穩(wěn)定[27].
高含量殘膜使土壤微生物數(shù)量和酶活性降低,影響微生物參與的土壤有機質(zhì)腐質(zhì)化過程,導致土壤有機質(zhì)含量下降[28].棉花田實驗顯示,殘膜含量為600kg/hm2,土壤有機質(zhì)含量降低16.5%[29].此外,土壤中99%氮素來自有機質(zhì),當有機質(zhì)含量降低時,土壤全氮含量亦隨之降低[30].
農(nóng)用地膜的大規(guī)模使用、農(nóng)民回收意識匱乏以及殘膜回收機具技術上的限制,導致殘膜回收工作困難.上世紀60年代,農(nóng)業(yè)化較為發(fā)達的國家開始研制不同類型的殘膜回收機具[31],我國殘膜回收機具研發(fā)近期處在快速發(fā)展階段.按使用時期機具分為三類:(1)苗期地膜回收機具,(2)秋后殘膜回收機具,(3)耕后播前殘膜回收機具.
國外發(fā)達國家使用厚度為0.012~0.015mm的高強度地膜,拉伸性能好,回收較為方便[32].我國農(nóng)業(yè)地膜普遍較薄,96.7%地膜厚度集中在0.004~ 0.008mm,不利于大型機具回收,使大量地膜殘留在土壤中[33].目前,我國主要的殘膜回收方式為人工撿拾,效率低,效果欠佳.同時,由于缺乏經(jīng)濟效益,費時費力,難以帶動農(nóng)民積極性.云南省1276份有效調(diào)查問卷顯示,42.9%農(nóng)戶不進行地膜回收[34];寧夏和內(nèi)蒙古的調(diào)查報告顯示,68%農(nóng)戶認為有必要進行地膜回收[35].
地膜主要成分包括PE和PAEs.PE作為一種高分子聚合物,呈化學惰性,但經(jīng)長時間風化,PE碎片造成土壤板結(jié),使土壤肥力下降,抑制植物根系發(fā)育.此外,其對土壤理化性質(zhì)的破壞,亦會影響種子發(fā)育和肥料利用,造成農(nóng)作物減產(chǎn)[36].PAEs是塑料的一種添加劑,與PE、聚丙烯(PP)、聚氯乙烯(PVC)等分子具有較好相容性,由氫鍵或范德華力進行連接,各自保留相對獨立的化學性質(zhì)[37].當?shù)啬埩粼谕寥乐?隨著時間推移,PAEs類污染物可被釋放,對空氣[38]、水[39]和土壤[40]環(huán)境造成危害;植物通過吸收作用富集土壤中的PAEs,對人類健康造成潛在危害[41].
土壤是PAEs儲存和遷移的重要介質(zhì),PAEs已成為我國土壤含量最高的半揮發(fā)性有機物之一.Niu等[42]分析了15種PAEs在中國農(nóng)田土壤中的殘留情況,對中國31個省份涵蓋123個區(qū)域內(nèi)的農(nóng)田土壤進行采樣及檢測,結(jié)果顯示采集的全部土壤樣品中均檢出PAEs.各地農(nóng)田土壤中15種PAEs總含量均值達到1088μg/kg,其中新疆、廣東和福建省農(nóng)田土壤中PAEs含量在全國范圍內(nèi)較突出,但其污染的主要來源存在差異.新疆PAEs污染主要原因是塑料地膜的大量使用,廣東和福建省塑料地膜使用量相對較低,其污染主要來源為污水灌溉及農(nóng)藥、化肥施用[7,43].
目前,糧食作物[44]、蔬菜[45]、水果[46]等食物中均已檢出PAEs.PAEs也可通過皮膚接觸、吸入、飲食等方式進入人體[47].研究顯示,母親、嬰兒和胚胎組織中均已檢出PAEs[48].作為一類典型的環(huán)境激素類物質(zhì),PAEs具有抗雄性激素和類雌性激素活性的作用,進入人體后與激素受體結(jié)合,在低濃度下導致動物與人體內(nèi)分泌紊亂,高濃度可產(chǎn)生致畸性、致癌性及致突變性等癥狀[49-50].對動物的相關研究表明,PAEs通過其代謝物抑制卵巢中雌二醇的產(chǎn)生,導致雌性排卵異常[51].暴露于高濃度PAEs氛圍中可影響人類精液質(zhì)量和睪丸間質(zhì)細胞發(fā)育[52],亦對兒童智力和行為產(chǎn)生影響[53].
為解決殘膜污染問題,國內(nèi)外學者以保證農(nóng)作物產(chǎn)量為前提研發(fā)出可降解地膜,可降解性聚乙烯地膜為了加快降解進程,通常在生產(chǎn)過程中加入活性基團.例如,光降解塑料在高分子材料中引入醛基、羰基等活性基團,利用太陽光的紫外線作用產(chǎn)生自由基,使聚合物分子斷裂以達到降解的目的[54],其特點在于地膜發(fā)揮生產(chǎn)作用后,可在土壤中自行降解為環(huán)境低毒或無毒的小分子物質(zhì)[55],但農(nóng)用聚乙烯薄膜生產(chǎn)過程中沒有加入活性基團,不利于微生物粘附,難以使微生物在聚乙烯表面生長,不利于殘膜的微生物降解.
目前,隨著相關技術逐漸完善,我國已擁有多種類型的可降解地膜,依據(jù)材質(zhì)可大致分為三類[35]:
(1) 淀粉基聚乙烯(PE)材料,它的價格低廉,但剩余PE碎片仍無法降解.
(2) PE/PP光–氧降解類,相對于傳統(tǒng)地膜,它可以自行分解成碎片,但降解后碎片在土壤中長期存在.
(3) 聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)、聚丙烯酸丁酯(PBA)、聚對苯二甲酸-己二酸丁二醇酯(PBAT)、聚己內(nèi)酯(PCL)降解聚酯類,可最終降解為CO2和H2O,其中PLA價格較高,PBAT和PBS是當前應用較多的可降解地膜材料.
在煙草[56]、玉米[57]和花生[58]的覆膜實驗中發(fā)現(xiàn),可降解地膜的增產(chǎn)效果略低于普通地膜,而在馬鈴薯[59]實驗中,可降解地膜的增產(chǎn)效率更高,可能原因是馬鈴薯為不耐熱植物,隨著可降解地膜的降解,土壤溫度降低,促進馬鈴薯生長.同時,可降解地膜與普通地膜都具有增溫和保墑效果,但可降解地膜的保水性能略低于普通地膜[60].雖然應用可降解地膜可極大緩解農(nóng)用地土壤有機污染,但較高的成本是限制其大規(guī)模推廣使用的最直接因素[61].
PE作為地膜的最主要成分,具有以下特點:高分子量、結(jié)構(gòu)復雜、疏水性、缺少微生物可以作用的官能團,故在土壤中難以被大多數(shù)微生物降解,但自然界中仍有一部分微生物可使聚乙烯內(nèi)部結(jié)構(gòu)發(fā)生變化,使其分子量降低,最終實現(xiàn)降解[62-63].這種降解方式可極大緩解殘膜對土壤環(huán)境的壓力,故篩選分離功能性聚乙烯降解菌已成為研究的熱點.
土壤聚乙烯降解微生物包括真菌、細菌和放線菌三大類,目前發(fā)現(xiàn)的降解菌主要是真菌和細菌,放線菌報道較少.截至2014年,已報道聚乙烯降解菌包含9個屬的真菌和17個屬的細菌[64].PE降解微生物對PE的降解特性見表1.
表1 聚乙烯(PE)降解微生物及其特性
由于真菌代謝產(chǎn)物豐富、產(chǎn)生的酶種類豐富和酶活性高等優(yōu)點,其降解性能高于細菌和放線菌[65].真菌在降解聚乙烯過程中不僅分泌胞外聚合物[66],且產(chǎn)生特異性酶,主要包括細胞內(nèi)和胞外解聚酶[67].此外,真菌的菌絲結(jié)構(gòu)利于其粘附于聚乙烯表面,形成緊密的生物膜,極大提高降解效率和降解程度.但對于未經(jīng)過任何處理的PE薄膜,目前尚未發(fā)現(xiàn)可在較短時間內(nèi)對其進行高效降解的細菌、真菌或放線菌[68].現(xiàn)有研究發(fā)現(xiàn),在微生物降解前對PE進行光、熱、化學氧化等前處理可顯著加速其降解進程[69].其中,光降解是降低農(nóng)用PE分子量,提高微生物降解速率的有效方法[70].
在聚乙烯微生物降解研究中,大多關注單一菌株對聚乙烯的降解,但是單一菌株在降解PE的過程中產(chǎn)生的中間產(chǎn)物或最終產(chǎn)物積累可能具有更高的潛在毒性,所以混合菌株對PE的降解研究逐漸引起關注.Han等[71]研究發(fā)現(xiàn),櫛桿菌(sp.)和鏈霉菌(sp.)均能獨自降解聚乙烯薄膜.但將菌株接種到含有聚乙烯薄膜的溶液中發(fā)現(xiàn),前者以浮游生物的方式在溶液介質(zhì)中生長,后者則是粘附在薄膜表面,這兩種不同的代謝方式為微生物聯(lián)合降解PE提供新的可能.
理論上,微生物可利用PE作為唯一碳源,但是由于PE具有較高的分子量,很多酶無法以PE為底物進行催化反應.1992年, Pometto等[84]將處理后的淀粉-聚乙烯可降解薄膜、活性與非活性酶和由、、制備的濃縮物一起進行孵育,最終機械性能、分子量和FTIR分析結(jié)果表明,PE薄膜能在活性酶的作用下發(fā)生降解.
Zhao等[88]使用過氧化氫作為氧化劑和過氧化物酶作為催化劑對酶表面進行改性,通過FTIR、XPS和SEM表征改性后HDPE表面的結(jié)構(gòu)和化學組成,結(jié)果顯示,酶處理后HDPE表面出現(xiàn)了新的官能團(羰基等)、O/C比增加.紫外可見光譜和接觸角測量分析發(fā)現(xiàn),改性后HDPE表面與水的接觸角變小,且對水溶性染料的吸附能力增強,表明酶處理可顯著增加HDPE表面的親水性.
PE微生物降解的生化過程包括分子量的降低和分子的氧化作用.當PE分子量降低后,PE可通過氧化作用將碳氫化合物轉(zhuǎn)化為羧酸分子,再通過β-氧化或三羧酸循環(huán)進行代謝降解.PE的分子量降低一般通過光、熱、化學氧化處理完成,Santo[89]在研究中發(fā)現(xiàn)漆酶可通過增加PE中羧基的數(shù)量來使其分子量降低.PE的生物降解過程主要包括兩種機制:氧化式生物降解和水合式生物降解[90],兩種機制都是先進行化學分解,再進行生物降解,最終實現(xiàn)無機礦化,產(chǎn)生H2O和CO2,此外,水合式生物降解過程中還產(chǎn)生甲烷(圖1).
研究發(fā)現(xiàn),PE微生物降解過程中的氧化步驟又可細分為以下4種代謝途徑:
(1)末端氧化[91]:RCH3→RCH2OH→RCHO→RCOOH.
(2)兩端氧化[92]:H3CRCH3→CH3RCOOH→HOH2CRCOO→OHCRCOOH→HOOCRCOOH.
(3)次末端氧化[93]:RCH2CH2CH3→RCH2OC(O)CH3→RCH2OC(O)CH3→RCH2OH+ CH3COOH.
(4)末端過氧化[94]:RCH3→RCH2·OOH→RCO(O) OH→RCHO→RCOOH.
圖1 聚乙烯(PE)的微生物降解機制
PAEs是一種合成的持久性有機污染物,易進入環(huán)境并積累,其化學性質(zhì)穩(wěn)定,對生物體具有嚴重危害.目前,PAEs在世界各地土壤[95]、河流[96-97]、湖泊[98]、海洋[99]、濕地[100]、污泥[101]、飲用水[102]、食品[103]和灰塵[104]中均已普遍檢出.美國環(huán)保局(USEPA)已將PAEs中的鄰苯二甲酸二甲酯(DMP)、鄰苯二甲酸二乙酯(DEP)、鄰苯二甲酸二丙酯(DPP)、鄰苯二甲酸二丁酯(DBP)、鄰苯二甲酸二辛酯(DOP)和鄰苯二甲酸二己酯(DEHP)列為重點控制污染物.中國已將DMP、DEP和DOP列為優(yōu)先控制污染物[105].
PAEs化學性質(zhì)穩(wěn)定,水解和光解速度極慢.因此,微生物降解被認為是環(huán)境中鄰苯二甲酸酯完全礦化的主要過程.截至2016年,鄰苯二甲酸酯降解菌包含36個屬,80多種菌株[106],優(yōu)勢屬為節(jié)細菌屬()叢毛單胞菌屬()假單胞菌屬()紅球菌屬()和鞘脂單胞菌屬().部分PAEs降解微生物的降解效率及特性見表2.
大多數(shù)微生物可通過作為唯一碳源的鄰苯二甲酸酯進行生長和繁殖,近50%菌株具有降解多種鄰苯二甲酸酯的能力.例如,枯草芽孢桿菌()可降解DBP、DEP、DEHP、鄰苯二甲酸二丙酯(DPRP)和鄰苯二甲酸二戊酯(DPEP)五種PAEs,此類多功能菌株還包括戈登氏菌屬(sp.),蒼白桿菌屬(sp.),貪噬菌屬(sp.)等[106].
表2 鄰苯二甲酸酯(PAEs)降解微生物及其特性
續(xù)表2
大多數(shù)分離的降解菌難以獨立完全降解鄰苯二甲酸酯.Vega等[120]發(fā)現(xiàn),節(jié)桿菌(sp.)可將DMP轉(zhuǎn)化為鄰苯二甲酸單甲酯(MMP),卻不能進一步轉(zhuǎn)化為PA.少動鞘氨醇單胞菌()可將MMP降解為PA,但是卻不能將DMP轉(zhuǎn)化為MMP.因此,sp.和菌群可實現(xiàn)DMP的完全礦化.Wu等[121]對sp.JDC-2和sp.DFC-32菌群降解DOP發(fā)現(xiàn)類似現(xiàn)象.此外,sp. MTCC 4818和sp.[122]都可獨立利用BBP作為唯一碳源從而實現(xiàn)降解,但二者的單一菌株均不能完全降解BBP,兩種菌株的混合菌群可將BBP完全降解.因此,篩選具有礦化PAEs能力的微生物,構(gòu)建多菌群復合體系實現(xiàn)PAEs徹底降解具有重要的環(huán)境意義和科學研究價值.
PAEs是1, 2-苯二羧酸酯類,根據(jù)側(cè)鏈數(shù)量和與堿性苯基基團連接的烷基或芳基的不同而形成多種結(jié)構(gòu).1, 2-苯二甲酸酯類的3種異構(gòu)形式(鄰位、對位和間位)是增塑劑的主要成分.
細菌對鄰苯二甲酸酯的降解可分為初始水解和最終降解兩個過程.初始水解過程具有兩種反應:(1)細菌通過β-氧化、轉(zhuǎn)酯化作用和脫酯化(去甲基化)作用減少側(cè)鏈長度.β-氧化反應依次脫去一個乙基,使側(cè)鏈雙酯基碳原子>2的PAEs轉(zhuǎn)化為短鏈的PAEs,目前相關研究較少且尚未在純菌體系中得到驗證[123].隨后在單側(cè)酯基上發(fā)生轉(zhuǎn)酯化和脫酯化反應,將短鏈PAEs降解為PA;(2)細菌可通過酯鍵的水解反應直接將PAEs降解為PA.由于在酶促反應過程中,長鏈比短鏈的空間效應更強,使短鏈更易水解[124].鄰苯二甲酸(PA)是PAEs降解的重要中間產(chǎn)物,最終降解過程也是PA的降解.
在不同情況下,細菌對PA的生物降解途徑具有顯著差異.好氧條件下[125-126],革蘭氏陽性菌和革蘭氏陰性菌分別在鄰苯二甲酸3, 4-雙加氧酶和鄰苯二甲酸4, 5-雙加氧酶的作用下,通過氧化、脫氫和脫羧過程將PA轉(zhuǎn)化成原兒茶酸(PCA),然后PCA開環(huán)形成對應的有機酸,再通過轉(zhuǎn)化作用,生成草酰乙酸(OAA)、丙酮酸(PHD)等,經(jīng)過三羧酸循環(huán)最終代謝為H2O和CO2(圖2).
但在厭氧條件下,PAEs的生物降解機制研究較少.Kleerebezem等[127]研究了產(chǎn)甲烷菌與細菌的混合菌群在厭氧環(huán)境下通過發(fā)酵細菌()、嗜乙酸甲烷產(chǎn)生菌()和氫營養(yǎng)型甲烷菌()作用將PAEs轉(zhuǎn)化并產(chǎn)生甲烷(圖3).
圖2 好氧條件下革蘭氏陽性菌和革蘭氏陰性菌對鄰苯二甲酸酯(PAEs)的降解機制
圖3 厭氧條件下產(chǎn)甲烷菌與細菌的混合菌群對鄰苯二甲酸酯(PAEs)的降解機制
目前關于PAEs真菌降解途徑的報道較少. Sivamurthy等[128]發(fā)現(xiàn),白絹病菌()可將對苯二甲酸二甲酯(DMTP)轉(zhuǎn)化為對苯二甲酸(TPA),TPA是該過程的最終代謝產(chǎn)物.Ganji等[129]報道,可將DMTP完全降解,轉(zhuǎn)化成對苯二甲酸單甲酯(MMTP)、PCA和TPA,再通過PCA開環(huán)反應,最終完全降解為H2O和CO2.
由于我國農(nóng)業(yè)生產(chǎn)過程中對于農(nóng)用地膜具有很大的依賴性,加之回收意識匱乏和回收技術發(fā)展的欠缺,導致大量薄膜殘留在農(nóng)田土壤中.殘膜中的PE在自然環(huán)境中難以降解,累積在農(nóng)田土壤中可顯著影響土壤中的水分運移、酶活性、有機質(zhì)及氮素含量等;而殘膜中的PAEs生物毒性大,極易在土壤和水環(huán)境中遷移,對農(nóng)田土壤生態(tài)環(huán)境造成嚴重威脅.因此,如何處理農(nóng)用地膜已引起廣泛關注.
微生物降解的生物處理技術較物理、化學技術具有效率高、無二次污染、成本低、環(huán)境擾動小等優(yōu)點,具有廣泛的應用前景.但現(xiàn)階段農(nóng)用地膜的微生物降解理論無法完全應用于工業(yè)化技術處理過程,使得微生物降解技術發(fā)展受到限制.同時,農(nóng)用地膜的微生物降解受環(huán)境、微生物及降解底物性質(zhì)影響,其中降解環(huán)境可人為控制,降解微生物性質(zhì)的篩選及降解物質(zhì)性質(zhì)的改變尤為重要.
現(xiàn)階段對于農(nóng)用聚烯烴地膜微生物降解理論研究及微生物修復技術實際應用仍顯不足,可加強以下幾方面的研究:
加強對PE微生物降解機制、過程、影響因素等的理論研究.力求發(fā)現(xiàn)可對PE進行高效降解的微生物菌種材料,同時仍需針對混合菌株對PE的降解機理進行探索,以提高殘膜微生物降解效率.
結(jié)合PE、PAEs現(xiàn)有的微生物降解理論研究成果,開展實際農(nóng)田土壤環(huán)境下的降解研究,探索及解決土壤環(huán)境條件下微生物的存活問題以及復雜土壤環(huán)境下的降解過程及機制,為微生物降解技術的發(fā)展提供理論依據(jù).
應加快地膜的微生物降解理論成果向微生物降解技術的工業(yè)化轉(zhuǎn)化,對解決農(nóng)田土壤地膜殘留這一棘手問題做出技術支持,保證農(nóng)田土壤環(huán)境的生態(tài)健康與種植安全.
[1] 鄒小陽,牛文全,劉晶晶,等.殘膜對土壤和作物的潛在風險研究進展 [J]. 灌溉排水學報, 2017,36(7):47-54.
Zou X Y, Niu W Q, Liu J J, et al. Potential risks of plastic film residuals on soils and crops: a review [J]. Journal of Irrigation and Drainage, 2017,36(7):47-54.
[2] Kader M A, Senge M, Mojid M A,et al. Recent advances in mulching materials and methods for modifying soil environment [J]. Soil and Tillage Research, 2017,168:155-166.
[3] Martín-Closas L, Costa J, Pelacho A M. Agronomic effects of biodegradable films on crop and field environment [M]. Pozzuoli: Soil Degradable Bioplastics for a Sustainable Modern Agriculture, 2017,67-104.
[4] 崔曉紅.地膜覆蓋在農(nóng)業(yè)生產(chǎn)中的應用探討 [J]. 現(xiàn)代農(nóng)業(yè)科技, 2013,49(16):192-195.
Cui X H. Discussion on the application of mulch in agricultural production [J]. Modern Agricultural Science and Technology, 2013, 49(16):192-195.
[5] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017,3(7):doi:10.1126/ sciadv.1700782.
[6] 孫若男.食品和塑料橡膠中酞酸酯的GC-EI/MS及GC-MS/MS分析方法研究 [D]. 廈門:廈門大學, 2008.
Sun R N. Study of phthalic acid esters in food and plastics rubber by GC-EI/MS and GC-MS/MS [D]. Xiamen: Xiamen University, 2008.
[7] 國家統(tǒng)計局農(nóng)村社會經(jīng)濟調(diào)查司.中國農(nóng)村統(tǒng)計年鑒2019 [M]. 北京:中國統(tǒng)計出版社, 2019.
Rural Society Investigation Department of National Statistical Bureau. China rural statistical yearbook 2019 [M]. Beijing: China Statistics Press, 2019.
[8] 王秀芬,陳百明,畢繼業(yè).基于縣域的地膜覆蓋糧食增產(chǎn)潛力分析 [J]. 農(nóng)業(yè)工程學報, 2005,21(11):154-157.
Wang X F, Chen B M, Bi J Y. Analysis of potential of grain yield increase under film-mulching condition on a county scale [J]. Transactions of the Chinese Society of Agricultural Engineering, 2005,21(11):154-157.
[9] 張 丹,胡萬里,劉宏斌,等.華北地區(qū)地膜殘留及典型覆膜作物殘膜系數(shù) [J]. 農(nóng)業(yè)工程學報, 2016,32(3):1-5.
Zhang D, Hu W L, Liu H B, et al. Characteristics of residual mulching film and residual coefficient of typical crops in North China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(3):1-5.
[10] 雍 婕,程 益,周海燕.地膜降解途徑及機理研究進展 [J]. 應用生態(tài)學報, 2021,32(2):729-736.
Yong J, Cheng Y, Zhou H Y. Advances in researches of the mulch degradation and its mechanism [J]. Chinese Journal of Applied Ecology, 2021,32(2):729-736.
[11] Liu E K, He W Q, Yan C R. 'White revolution' to 'white pollution'- Agricultural plastic film mulch in China [J]. Environmental Research Letters, 2014,9(9),doi:10.1088/1748-9326/9/9/091001.
[12] 王 亮,林 濤,嚴昌榮,等.不同殘膜量和灌溉定額對棉花養(yǎng)分和水分利用的影響 [J]. 植物營養(yǎng)與肥料學報, 2018,24(1):122-133.
Wang L, Lin T, Yan C R, et al. Effects of different film residue and irrigation quota on nutrient and water use efficiency of cotton under drip irrigation [J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(1):122-133.
[13] 曹 龍,張朝升,陳秋麗,等.鄰苯二甲酸酯的環(huán)境污染和生態(tài)行為及毒理效應研究進展 [J]. 生態(tài)毒理學報, 2018,13(2):34-46.
Cao L, Zhang C S, Chen Q L, et al. Progress in the study of environmental pollution and ecological behavior and toxicological effects of phthalate ester [J]. Asian Journal of Ecotoxicology, 2018, 13(2):34-46.
[14] Yang L, Chen S, Hu M, et al. Biodegradation of carbofuran bystrain HQ-C-01and its application for bioremediation of contaminated soils [J]. Biology and Fertility of Soils, 2011,47(8): 917-923.
[15] 嚴昌榮,劉恩科,舒 帆,等.我國地膜覆蓋和殘留污染特點與防控技術 [J]. 農(nóng)業(yè)資源與環(huán)境學報, 2014,31(2):95-102.
Yan C R, Liu E K, Shu F, et al. Review of agricultural plastic mulching and its residual pollution and prevention measures in China [J]. Journal of Agricultural Resources and Environment, 2014,31(2): 95-102.
[16] Briassoulis D, Babou E, Hiskakis M, et al. Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions [J]. Environmental Science and Pollution Research, 2015,22(4):2584- 2598.
[17] 高維常,蔡 凱,曾隕濤,等.農(nóng)用地膜殘留對土壤氮素運移及烤煙根系生長的影響 [J/OL]. http://kns.cnki.net/kcms/detail/32.1119.P. 20190924.1033.006.html, 2019-09-24.
Gao W C, Cai K, Zeng Y T, et al. Impacts of mulching plastic film residue on migration of soil nitrogen and growth of flue-cured tobacco roots [J/OL]. http://kns.cnki.net/kcms/detail/32.1119.P.20190924.1033. 006.html, 2019-09-24.
[18] Reddy M S, Yamaguchi T, Okuda T, et al. Feasibility study of the separation of chlorinated films from plastic packaging wastes [J]. Waste Management, 2009,30(4):597-601.
[19] Chen Y, Wu C, Zhang H, et al. Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China [J]. Environmental Earth Sciences, 2013,70(1):239-247.
[20] Wang L, Li X G, Lv J, et al. Continuous plastic-film mulching increases soil aggregation but decreases soil pH in semiarid areas of China [J]. Soil and Tillage Research, 2017,167:46-53.
[21] 何 晶.不同分子量的聚乙烯粉末對土壤環(huán)境及作物生長的影響研究 [D]. 綿陽:西南科技大學, 2011.
He J. Comparative study on effects of different molecular weight polyethylene powder to soil environment and crop development [D]. Mianyang: Southwest University of Science and Technology, 2011.
[22] Bescansa P, Imaz M J, Virto I, et al. Soil water retention as affected by tillage and residue management in semiarid Spain [J]. Soil and Tillage Research, 2006,87(1):19-27.
[23] 尉海東,倫志磊,郭 峰.殘留農(nóng)膜對土壤性狀的影響 [J]. 生態(tài)環(huán)境學報, 2008,17(5):1853-1856.
Wei H D, Lun Z L, Guo F. Effects of mulch film residues on soil properties [J]. Ecology and Environment, 2008,17(5):1853-1856.
[24] 王志超,李仙岳,史海濱,等.農(nóng)膜殘留對土壤水動力參數(shù)及土壤結(jié)構(gòu)的影響 [J]. 農(nóng)業(yè)機械學報, 2015,46(5):101-106.
Wang Z C, Li X Y, Shi H B, et al. Effects of residual plastic film on soil hydrodynamic parameters and soil structure [J]. Transactions of The Chinese Society of Agricultural Machinery, 2015,46(5):101-106.
[25] 白一茹,張 興,王幼奇,等.不同殘膜含量對淡灰鈣土水分入滲過程的影響 [J]. 農(nóng)業(yè)資源與環(huán)境學報, 2019,36(2):227-235.
Bai Y R, Zhang X, Wang Y Q, et al. Study on influence of different agricultural residue film amounts on soil infiltration process of light sierozem [J]. Journal of Agricultural Resources and Environment, 2019,36(2):227-235.
[26] 王志超,李仙岳,史海濱,等.農(nóng)膜殘留對砂壤土和砂土水分入滲和蒸發(fā)的影響 [J]. 農(nóng)業(yè)機械學報, 2017,48(1):198-205.
Wang Z C, Li X Y, Shi H B, et al. Effects of residual plastic film on infiltration and evaporation for sandy loam and sandy soil [J]. Transactions of The Chinese Society of Agricultural Machinery, 2017,48(1):198-205.
[27] 曹俊豪,李援農(nóng),谷曉博,等.土壤殘膜對水分入滲過程的影響 [J]. 中國農(nóng)村水利水電, 2020,62(1):26-30.
Cao J H, Li Y N, Gu X B, et al. The effect of residual plastic film soil on water infiltration process [J]. China Rural Water and Hydropower, 2020,62(1):26-30.
[28] 焦曉光,高崇升,隋躍宇,等.不同有機質(zhì)含量農(nóng)田土壤微生物生態(tài)特征 [J]. 中國農(nóng)業(yè)科學, 2011,44(18):3759-3767.
Jiao X G, Gao C S, Sui Y Y, et al. Research on soil microbial ecology under different soil organic matter levels in farmland [J]. Scientia Agricultura Sinica, 2011,44(18):3759-3767.
[29] 董合干.地膜殘留對棉花產(chǎn)量影響的極限研究 [D]. 石河子:石河子大學, 2013.
Dong H G. The limit effect of film residue on cotton yield [D]. Shihezi: Shihezi University, 2013.
[30] 楊麗霞,陳少鋒,安娟娟,等.陜北黃土丘陵區(qū)不同植被類型群落多樣性與土壤有機質(zhì)、全氮關系研究 [J]. 草地學報, 2014,22(2):291- 298.
Yang L X, Chen S F, An J J, et al. Relationships among community diversity and soil organic matter, total nitrogen under different types in the gully region of loess region [J]. Actaagrestia Sinica, 2014,22(2): 291-298.
[31] 楊松梅.隨動式棉田殘膜回收機設計及關鍵技術研究 [D]. 長春:吉林大學, 2020.
Yang S M. Design and key technology research of passive cotton field residual plastic film recycling machine [D]. Changchun: Jilin University, 2020.
[32] 趙 巖,陳學庚,溫浩軍,等.農(nóng)田殘膜污染治理技術研究現(xiàn)狀與展望 [J]. 農(nóng)業(yè)機械學報, 2017,48(6):1-14.
Zhao Y, Chen X G, Wen H J, et al. Research status and prospect of control technology for residual plastic film pollution in farmland [J]. Transactions of The Chinese Society of Agricultural Machinery, 2017,48(6):1-14.
[33] 張 丹,王洪媛,胡萬里,等.地膜厚度對作物產(chǎn)量與土壤環(huán)境的影響 [J]. 農(nóng)業(yè)環(huán)境科學學報, 2017,36(2):293-301.
Zhang D, Wang H Y, Hu W L, et alEffect of film thickness on crop yield and soil environment [J]. Journal of Agro-Environment Science, 2017,36(2):293-301.
[34] 朱彩霞,楊林偉,李永前.農(nóng)用地膜污染的多層影響因素及防治策略實證研究—以云南省為例 [J]. 生態(tài)經(jīng)濟, 2019,35(9):206-211.
Zhu C X, Yang L W, Li Y Q. Empirical study on multi-layer influencing factors and control strategies of agricultural membrane pollution: taking Yunnan Province as an Example [J]. Ecological Economy, 2019,35(9):206-211.
[35] 李佳璇,閆龍成,王 寧.農(nóng)用地膜的污染與新型地膜 [J]. 內(nèi)蒙古石油化工, 2019,45(7):52-54.
Li J X, Yan L C, Wang N. Pollution of agricultural mulch and degradable plastic film [J]. Inner Mongolia Petrochemical Industry, 2019,45(7):52-54.
[36] 姜益娟,鄭德明,朱朝陽.殘膜對棉花生長發(fā)育及產(chǎn)量的影響 [J]. 農(nóng)業(yè)環(huán)境保護, 2001,20(3):177-179.
Jiang Y J, Zheng D M, Zhu C Y. Effects of remnant plastic film in soil on growth and yield cotton [J]. Journal of Agro-Environment Science, 2001,20(3):177-179.
[37] 谷成剛,相雷雷,任文杰,等.土壤中酞酸酯多界面遷移轉(zhuǎn)化與效應研究進展 [J]. 浙江大學學報(農(nóng)業(yè)與生命科學版), 2017,43(6):700- 712.
Gu C G, Xiang L L, Ren W J, et al. Multi-interfacial migration/ transformation and effects of phthalic acid esters in soils: a review [J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2017, 43(6):700-712.
[38] Tran T M, Kannan K. Occurrence of phthalate diesters in particulate and vapor phases in indoor air and implications for human exposure in Albany, New York, USA [J]. Archives of Environmental Contamination and Toxicology, 2015,68(3):489-499.
[39] Net S, Sempéré R, Delmont A, et al. Occurrence, Fate, behavior and ecotoxicological state of phthalates in different environmental matrices [J]. Environmental Science and Technology, 2015,49(7):4019-4035.
[40] Selvaraj K K, Sundaramoorthy G, Ravichandran P K, et al. Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations [J]. Environmental Geochemistry and Health, 2015,37(1):83-96.
[41] Luo Y, Liu L, Qiao W, et al. Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of lithium batteries [J]. Materials Chemistry and Physics, 2016,170:239-245.
[42] Niu L, Xu Y, Xu C, et al. Status of phthalate esters contamination in agricultural soils across china and associated health risks [J]. Environmental Pollution, 2014,195:16-23.
[43] 杜 歡.鄰苯二甲酸酯降解菌的篩選、降解特性及其在土壤修復中的應用研究 [D]. 廣州:暨南大學, 2016.
Du H. Isolation and characterization of phthalate-degrading bacteria and its application in soil remediation [D]. Guangzhou: Jinan University, 2016.
[44] 饒瀟瀟,王建超,周震峰.花生對土壤中鄰苯二甲酸酯的吸收累積特征 [J]. 環(huán)境科學學報, 2017,37(4):1531-1538.
Rao X X, Wang J C, Zhou Z F. Characteristics of uptake and accumulation of phthalic acid esters in soil by peanut () [J]. Acta Scientiae Circumstantiae, 2017,37(4):1531-1538.
[45] 楊 彥,于云江,李定龍,等.太湖流域(蘇南地區(qū))農(nóng)業(yè)活動區(qū)人群PAEs健康風險評估 [J]. 中國環(huán)境科學, 2013,33(6):1097-1105.
Yang Y, Yu Y J, Li D L, et al. PAEs health risk assessment of agriculture area in Taihu Lake Basin (Southern Jiangsu Province) [J]. China Environmental Science, 2013,33(6):1097-1105.
[46] Shi M, Sun Y, Wang Z, et al. Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains [J]. Environmental Pollution, 2019,250:1-7.
[47] 柳春紅,張明明,賴玉婷,等.鄰苯二甲酸酯暴露的大鼠尿液生物標志物研究 [J]. 中國環(huán)境科學, 2015,35(9):2868-2873.
Liu C H, Zhang M M, Lai Y T, et al. Urine biomarker of exposure to phthalate in rat [J]. China Environmental Science, 2015,35(9):2868- 2873.
[48] Magdouli S, Daghrir R, Brar S K, et al. Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: a critical review [J]. Journal of Environmental Management, 2013,127:36-49.
[49] 解 瑋,蔣頌輝,屈衛(wèi)東,等.DEHP、DBP內(nèi)分泌干擾活性的實驗研究 [J]. 中國環(huán)境科學, 2004,(1):46-49.
Xie W, Jiang S H, Qu W D, et al. Experimental studies on the endocrine disrupting activity of DEHP and DBP [J]. China Environmental Science, 2004,(1):46-49.
[50] Hauser R, Calafat A M. Phthalates and human health [J]. Occupational and Environmental Medicine, 2005,62(11):806-818.
[51] 穆希巖,李成龍,黃 瑛,等.兩種鄰苯二甲酸酯類污染物對斑馬魚胚胎發(fā)育的影響 [J]. 中國環(huán)境科學, 2017,37(9):3566-3575.
Mu X Y, Li C L, Huang Y, et al. Effects of two phthalate esters on zebrafish embryos [J]. China Environmental Science, 2017,37(9): 3566-3575.
[52] Jurewicz J, Hanke W. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies [J]. International Journal of Occupational Medicine and Environmental Health, 2011,24(2):115-141.
[53] Cho S C, Bhang S Y, Hong Y C, et al. Relationship between environmental phthalate exposure and the intelligence of school-age children [J]. Environmental Health Perspectives, 2010,118(7):1027- 1032.
[54] Shimao M. Biodegradation of plastics [J]. Current Opinion in Biotechnology, 2001,12(3):242-247.
[55] 胡瓊恩,李 婷,馬丕明,等.生物可降解地膜的研究進展 [J]. 塑料包裝, 2017,27(3):34-41.
Hu Q E, Li T, Ma P M, et al.Progress in the research of biodegradable mulching film [J]. Plastic Packaging, 2017,27(3):34-41.
[56] 樊 俊,譚 軍,鄧建強,等.不同地膜的降解性能及對煙株生長和土壤環(huán)境的影響 [J]. 中國煙草科學, 2019,40(4):22-28,36.
Fan J, Tan J, Deng J Q, et alDegradation property of degradable films and their effects on flue-cured tobacco development and soil ecological environment [J]. Chinese Tobacco Science, 2019,40(4): 22-28,36.
[57] 張俊華,謝 茵,李翠微.不同可降解地膜對土壤溫度及玉米產(chǎn)量的影響 [J]. 農(nóng)業(yè)科技通訊, 2020,(10):44-48.
Zhang J H, Xie Y, Li C W. Effects of different biodegradable plastic film on soil temperature and maize yield [J]. Bulletin of Agricultural Science and Technology, 2020,(10):44-48.
[58] 林萌萌,孫 濤,尹繼乾,等.不同生物降解地膜對花生光合特性和產(chǎn)量的影響 [J]. 中國農(nóng)學通報, 2015,31(27):190-197.
Lin M M, Sun T, Yin J Q, et al.Effects of different biodegradable films mulching on the photosynthetic characteristics and yield of peanut [J]. Chinese Agricultural Science Bulletin, 2015,31(27):190- 197.
[59] 劉姝彤,張寶時,金勝利,等.不同全生物可降解地膜降解特征及其對馬鈴薯產(chǎn)量的影響 [J]. 中國農(nóng)技推廣, 2019,35(12):65-68.
Liu S T, Zhang B S, Jin S L, et alDegradation characteristics of different biodegradable plastic film and its effect on potato yield [J]. China Agricultural Technology Extension, 2019,35(12):65-68.
[60] 張相松,王獻杰,房曉燕,等.可降解地膜農(nóng)田適用性評價 [J]. 安徽農(nóng)業(yè)科學, 2019,47(22):79-82.
Zhang X S, Wang X J, Fang X Y, et alApplicability evaluation of degradable mulching films in farmlands [J]. Journal of Anhui Agricultural Sciences, 2019,47(22):79-82.
[61] 趙彩霞,何文清,劉 爽,等.新疆地區(qū)全生物降解膜降解特征及其對棉花產(chǎn)量的影響 [J]. 農(nóng)業(yè)環(huán)境科學學報, 2011,30(8):1616-1621.
Zhao C X, He W Q, Liu S, et alDegradation of biodegradable plastic mulch film and its effect on the yield of cotton in Xinjiang region, China [J]. Journal of Agro-Environment Science, 2011,30(8):1616- 1621.
[62] 王佳蕾,霍毅欣,楊 宇.聚乙烯塑料的微生物降解 [J]. 微生物學通報, 2020,47(10):3329-3341.
Wang J L, Huo Y X, Yang Y. Microbial degradation of polyethylene [J]. Microbiology China, 2020,47(10):3329-3341.
[63] 孫 璇,俞安琪,王學松,等.富里酸在聚苯乙烯微塑料上的吸附行為 [J/OL]. 中國環(huán)境科學: 1-13. https://doi.org/10.19674/j.cnki. issn1000-6923.20210721.007.
Sun X, Yu A Q, Wang X S, et al. Adsorption behaviors of fulvic acid onto polystyrene microplastics [J/OL]. China Environmental Science: 1-13. https://doi.org/10.19674/j.cnki.issn1000-6923.20210721.007.
[64] Restrepo-Flórez J-M, Bassi A, et al. Microbial degradation and deterioration of polyethylene-A review [J]. International Biodeterioration and Biodegradation, 2014,88:83-90.
[65] 尚博菲.土壤真菌多樣性研究及塑料降解真菌菌株的篩選 [D]. 長春:吉林大學, 2013.
Shang B F. The research of soil fungal diversity and screening of degradable plastic fungal strains [D]. Changchun: Jilin University, 2013.
[66] Volke-Sepúlveda T, Saucedo-Castaeda G, Gutiérrez-Rojas M, et al. Thermally treated low density polyethylene biodegradation byand[J]. Journal of Applied Polymer Science, 2010,83(2):305-314.
[67] Shah A A, Hasan F, Hameed A, et al. Biological degradation of plastics: a comprehensive review [J]. Biotechnology Advances, 2008,26(3): 246-265.
[68] 胡逸晨.細菌sp. 4-7降解聚乙烯 [D]. 武漢:華中農(nóng)業(yè)大學, 2015.
Hu Y C. Degradation of polyethylene bysp. 4-7 [D]. Wuhan: Huazhong Agricultural University, 2015.
[69] Gilan (Orr) I, Hadar Y, Sivan A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of[J]. Applied Microbiology and Biotechnology, 2004,65(1):97-104.
[70] 李鳳珍.合成聚合物的微生物降解 [J]. 微生物學雜志, 1988, (3):69-77.
Li F Z. Microbiological degradation of synthetic polymers [J]. Journal of Microbiology, 1988,(3):69-77.
[71] Han Y N, Wei M, Han F, et al. Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium ofsp. andsp. [J]. Microorganisms, 2020, 8(12):1979.
[72] 胡亞楠,賀 旭,亞森·沙力,等.大蠟螟和黃粉蟲腸道菌中聚乙烯地膜降解細菌的篩選及其降解性能 [J]. 微生物通報, 2020,47(12): 4029-4041.
Hu Y N, He X, Yasen-Shali, et alScreening of polyethylene film-degrading bacteria from gut microbiota ofand[J]. Microbiology China, 2020,47(12):4029- 4041.
[73] Esmaeili A, Pourbabaee A A, Alikhani H A, et al. Biodegradation of low-density polyethylene (LDPE) by mixed culture ofandin Soil [J]. PLOS ONE, 2013, 8(9),doi:10.1371/journal.pone.0071720.
[74] Tribedi P, Sil A K. Low-density polyethylene degradation bysp. AKS2biofilm [J]. Environmental Science and Pollution Research, 2013,20(6):4146-4153.
[75] Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium[J]. Journal of Applied Microbiology, 2005,98(5):1093-1100.
[76] Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium[J]. Applied Microbiology and Biotechnology, 2006,72(2):346-352.
[77] Kaneeda T, Yokomizo S, Miwa A, et al. Biochemical machining-biochemical removal process of plastic [J]. Precision Engineering, 1997,21(1):57-63.
[78] Nowak B, Pajak J, Drozd-Bratkowicz M, et al. Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions [J]. International Biodeterioration and Biodegradation, 2011,65(6):757-767.
[79] Yamada-Onodera K, Mukumoto H, Katsuyaya Y, et al. Degradation of polyethylene by a fungus,YK [J]. Polymer Degradation and Stability, 2001,72(2):323-327.
[80] Orhan Y, Büyükgüng?r H. Enhancement of biodegradability of disposable polyethylene in controlled biological soil [J]. International Biodeterioration and Biodegradation, 2000,45(1/2):49-55.
[81] Zahrh S, Abbas S S, Mahsa M-T, et al. Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium [J]. Waste Management, 2010,30(3):396-401.
[82] Mathur G, Mathur A, Prasad R. Colonization and degradation of thermally oxidized high-density polyethylene by(ITCC No. 6052) isolated from plastic waste dumpsite [J]. Bioremediation Journal, 2011,15(2):69-76.
[83] 李 夏,顧文杰,楊少海,等.一株地膜降解真菌的篩選及其降解性能分析 [J]. 微生物學報, 2019,59(1):56-67.
Li X, Gu W J, Yang S H, et al. Screening of a plastic mulch film degrading fungus [J]. Acta Microbiologica Sinica, 2019,59(1):56-67.
[84] Pometto A L, Lee B T, Johnson K E. Production of an extracellular polyethylene-degrading enzyme(s) byspecies [J]. Applied and Environmental Microbiology, 1992,58(2):731.
[85] 馮 靜.白淺灰鏈霉菌對聚乙烯降解效果研究及降解酶的基因克隆 [D]. 成都:四川師范大學, 2016.
Feng J. The study on the degradation of polyethylene byand degradation enzyme gene cloning [D]. Chengdu: Sichuan Normal University, 2016.
[86] 何 紅,劉 沛,羅貝旭,等.一株降解淀粉填充聚乙烯放線菌的篩選以及誘變選育 [J]. 四川師范大學學報(自然科學版), 2016,39(3): 408-413.
He H, Liu P, Luo B X, et al. Isolation and complex mutagenesis of an actinomycetes with degraded starch/polyethylene powder [J]. Journal of Sichuan Normal University (Natural Science), 2016,39(3):408-413.
[87] 鐘 越.ZEL-1的聚乙烯降解特性及其基于轉(zhuǎn)錄組測序的降解關鍵基因和代謝通路研究 [D]. 成都:四川師范大學, 2017.
Zhong Y. Study on polyethylene degradation characteristics ofZEL-1and its key genes and metabolic pathways of polyethylene degradation based on RNA-seq [D]. Chengdu: Sichuan Normal University, 2017.
[88] Zhao J C, Guo Z A, Ma X Y, et al. Novel surface modification of high-density polyethylene films by using enzymatic catalysis [J]. Journal of Applied Polymer Science, 2004,91(6):3673–3678.
[89] Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme–laccase–in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber [J]. International Biodeterioration & Biodegradation, 2013,84:204-210.
[90] 羅貝旭.聚乙烯降解菌的篩選, 鑒定和降解特性的研究 [D]. 成都:四川師范大學, 2013.
Luo B X. Screening and identification of strains degrading polyethylene (PE) and researches on degradation characteristics of LBX-2strian [D]. Chengdu: Sichuan Normal University, 2013.
[91] Weiland M, David C, Daro A. Biodegradation of thermally oxidized polyethylene [J]. Polymer Degradation and Stability, 1995,48(2):275- 289.
[92] Roy P K, Hakkarainen M, Varma I K, et al. Degradable polyethylene: fantasy or reality [J]. Environment Science and Technology, 2011, 45(10):4217-4227.
[93] Maeng J H, Sakai Y, Tani Y, et al. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation insp. strain M-1 [J]. Journal of Bacteriology, 1996, 178(13):3695-3700.
[94] Scheller U, Zimmer T, Krgel E, et al.Characterization of the n-alkane and fatty acid hydroxylating cytochrome P450 forms 52A3 and 52A4 [J]. Archives of Biochemistry and Biophysics, 1996,328(2):245-254.
[95] 張小紅,王亞娟,陶 紅,等.寧夏土壤中PAEs污染特征及健康風險評價 [J]. 中國環(huán)境科學, 2020,40(9):3930-3941.
Zhang X H, Wang Y J, Tao H, et al. Study on pollution characteristics and health risk assessment of phthalates in soil of Ningxia [J]. China Environmental Science, 2020,40(9):3930-3941.
[96] Zheng X, Yan Z, Liu P, et al. Derivation of aquatic life criteria for four phthalate esters and their ecological risk assessment in Liao River [J]. Chemosphere, 2019,220:802-810.
[97] 沙玉娟,夏星輝,肖翔群.黃河中下游水體中鄰苯二甲酸酯的分布特征 [J]. 中國環(huán)境科學, 2006,(1):120-124.
Sha Y J, Xia X H, Xiao X Q. Distribution characters of phthalic acid ester in the waters middle and lower reaches of the Yellow River [J]. China Environmental Science, 2006,(1):120-124.
[98] He Y, Wang Q, He W, et al. The occurrence, composition and partitioning of phthalate esters (PAEs) in the water-suspended particulate matter (SPM) system of Lake Chaohu, China [J]. Science of the Total Environment, 2019,661:285-293.
[99] Paluselli A, Kim S K. Horizontal and vertical distribution of phthalates acid ester (PAEs) in seawater and sediment of East China Sea and Korean South Sea: Traces of plastic debris? [J]. Marine pollution bulletin, 2020,151,doi:10.1016/j.marpolbul.2019.110831.
[100] Li T, Fan Y, Cun D, et al. Treatment performance and microbial response to dibutyl phthalate contaminated wastewater in vertical flow constructed wetland mesocosms [J]. Chemosphere, 2019,246,doi:10. 1016/j.chemosphere.2019.125635.
[101] Net S, Delmont A, Sempéré R, et al. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): a review [J]. Science of the Total Environment, 2015,515-516: 162-180.
[102] 丁夢雨,康啟越,張釋義,等.全國23個城市水源水中鄰苯二甲酸酯代謝物濃度調(diào)查 [J]. 中國環(huán)境科學, 2019,39(10):4205-4211.
Ding M Y, Kang Q Y, Zhang S Y, et al. National survey of phthalate metabolites in drinking source water of 23 cities in China [J]. China Environmental Science, 2019,39(10):4205-4211.
[103] Thomas W. Methods for the determination of phthalates in food [J]. Outcome of A Survey, 2009,doi:10.2787/1406.
[104] 鄒德坤,王夫美,焦 姣,等.夏季學生宿舍室內(nèi)降塵中PAEs污染特征和暴露評價 [J]. 中國環(huán)境科學, 2013,33(11):2075-2080.
Zou D K, Wang F M, Jiao J, et al. Pollution characteristics of PAEs derived from indoor settled dust of dormitory and exposure assessment in summer [J]. China Environmental Science, 2013,33(11):2075- 2080.
[105] 聶湘平,吳志輝,李凱彬,等.不同暴露方式下酞酸酯在黃斑籃子魚體中的富集 [J]. 中國環(huán)境科學, 2007,(4):467-471.
Nie X P, Wu Z H, Li K B, et alEffects of different exposure ways upon the bioaccumulation of phathalate esters in[J]. China Environmental Science, 2007,(4):467-471.
[106] 韓永和,何睿文,李 超,等.鄰苯二甲酸酯降解細菌的多樣性、降解機理及環(huán)境應用 [J]. 生態(tài)毒理學報, 2016,11(2):37-49.
Han Y H, He R W, Li C, et al. Phthalic acid esters-degrading bacteria: biodiversity, degradation mechanisms and environmental applications [J]. Asian Journal of Ecotoxicology, 2016,11(2):37-49.
[107] 溫志丹,高大文,李 喆,等.鄰苯二甲酸酯降解菌的分離鑒定及降解特性 [J]. 哈爾濱工業(yè)大學學報, 2013,45(12):38-42.
Wen Z D, Gao D W, Li Z, et alIsolation and identification of phthalate-degrading bacteria and their characteristics [J]. Journal of Harbin Institute of Technology, 2013,45(12):38-42.
[108] 梁浩花,王亞娟,陶 紅,等.一株同時降解3種鄰苯二甲酸酯降解菌的篩選鑒定及降解特性 [J]. 環(huán)境化學, 2019,38(12):2808-2818.
Liang H H, Wang Y J, Tao H, et al.Isolation, identification and degradation characteristics of a three phthalates degrading bacterium [J]. Environmental Chemistry, 2019,38(12):2808-2818.
[109] Chao W L, Cheng C Y. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm [J]. Chemosphere, 2007,67(3):482-488.
[110] 李建龍,邵向麗,劉書亮,等.鄰苯二甲酸二丁酯降解菌株的篩選鑒定及其降解特性研究 [J]. 現(xiàn)代食品科技, 2014,30(10):108-144.
Li J L, Shao X L, Liu S L, et al.Isolation and identification of dibutyl phthalate-degrading strain and its degradation characteristics [J]. Modern Food Science and Technology, 2014,30(10):108-144.
[111] Chao W L, Lin C M, Shiung I I, et al. Degradation of di-butyl- phthalate by soil bacteria [J]. Chemosphere, 2006,63(8):1377-1383.
[112] Chen J, Li X, Li J, et al. Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium,sp. strain CQ0110Y [J]. Applied Microbiology and Biotechnology, 2007,74(3):676-682.
[113] 李容榛,李 成,趙 暹,等.一株高效鄰苯二甲酸二丁酯降解菌的篩選、鑒定及其降解特性研究 [J]. 環(huán)境化學, 2019,38(10):2274-2282.
Li R Z, Li C, Zhao X, et alIsolation and identification of a highly efficient DBP degrading bacteria and its degradation characteristics [J]. Environmental Chemistry, 2019,38(10):2274-2282.
[114] 金 雷,陳 瑜,嚴忠雍,等.鄰苯二甲酸二丁酯高效降解菌H-2的分離鑒定及其降解特性 [J]. 食品科學, 2014,35(15):202-206.
Jin L, Chen Y, Yan Z Y, et al. Isolation and identification of a di-n-butyl phthalate (DBP) -degrading strain H-2 and its degradation characteristics [J]. Food Science, 2014,35(15):202-206.
[115] 金德才,梁任星,王洋洋,等.一株DBP高效降解菌的篩選及其降解特性 [J]. 中南大學學報(自然科學版), 2010,41(1):8-14.
Jin D C, Liang R X, Wang Y Y, et al.Isolation and characterization of a highly efficient DBP-degrading bacterium [J]. Journal of Central South University (Science and Technology), 2010,41(1):8-14.
[116] Feng N X, Feng Y X, Liang Q F, et al. Complete biodegradation of di-n-butyl phthalate (DBP) by a novelsp. YJB6 [J]. Science of The Total Environment, 2020,doi:10.1016/j.scitotenv. 2020.143208.
[117] Wang P, Gao J, Zhao Y, et al. Biodegradability of di-(2-ethylhexyl) phthalate by a newly isolated bacteriumsp. RX [J]. Science of The Total Environment, 2021,775,doi:10.1016/j.scitotenv, 2020.142476.
[118] Khadka S, Nshimiyimana J B, Zou P, et al. Biodegradation kinetics of diethyl phthalate by three newly isolated strains of[J]. Scientific African, 2020,8,doi:10.1016/j.sciaf.2020.e00380.
[119] 韓 蕊,王冬瑩,芮 洋,等.一株降解鄰苯二甲酸酯真菌的篩選及其降解特性研究 [J]. 環(huán)境科學學報, 2013,33(11):2941-2946.
Han R, Wang D Y, Rui Y, et al. Biodegradation of PAEs by a newly isolated fungusF9. [J]. Acta Scientiae Circumstantiae, 2013,33(11):2941-2946.
[120] Vega D, Bastide J. Dimethylphthalate hydrolysis by specific microbial esterase [J]. Chemosphere, 2003,51(8):663-668.
[121] Wu X, Liang R, Dai Q, et al. Complete degradation of di-n-octyl phthalate by biochemical cooperation betweensp. strain JDC-2 andsp. strain JDC-32 isolated from activated sludge [J]. Journal of Hazardous Materials, 2010,176(1-3):262-268.
[122] Chatterjee S, Dutta T K. Metabolic cooperation ofsp. strain MTCC 4818 andsp. strain WY in the utilization of butyl benzyl phthalate: effect of a novel co-culture in the degradation of a mixture of phthalates [J]. Microbiology, 2008,154(11):3338-3346.
[123] Okamoto Y, Toda C, Ueda K, et al. Transesterification in the microbial degradation of phthalate esters [J]. Journal of Health Science, 2011,57(3):293-299.
[124] Ren L, Lin Z, Liu H, et al. Bacteria-mediated phthalic acid esters degradation and related molecular mechanisms [J]. Applied Microbiology and Biotechnology, 2018,102(3),doi:10.1007/s00253- 017-8687-5.
[125] Eaton R W. Plasmid-encoded phthalate catabolic pathway in12B [J]. Journal of Bacteriology, 2001,183(12): 3689-3703.
[126] Chang H K, Zylstra G J. Novel organization of the genes for phthalate degradation fromDBO1 [J]. Journal of Bacteriology, 1998,180(24):6529-6537.
[127] Kleerebezem R, Pol W H, Lettinga G. Anaerobic degradation of phthalate isomers by methanogenic consortia [J]. Applied and Environmental Microbiology, 1999,65(3):1152-1160.
[128] Sivamurthy K, Swamy B M, Pujar B G. Transformation of dimethylterephthalate by the fungus[J]. Fems Microbiology Letters, 1991,79(1):37-40.
[129] Ganji S H, Karigar C S, Pujar B G. Metabolism of dimethylterephthalate by[J]. Biodegradation, 1995, 6(1):61.
Progresses in microbial degradation of agricultural soil mulches.
DING Hao-jie1,2, SU Qi-qian1,2, LI Lin1,2, LI Xiao-feng1,2, XU Qi-jing1,2, RENSING Christopher1,3, LIU Xue1,2*
(1.Institute of Environment Remediation and Health, Southwest Forestry University, Kunming 650224, China;2.Institute of Ecology and Environment, Southwest Forestry University, Kunming 650224, China;3.Institute of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China)., 2021,41(9):4231~4244
Plastic film mulching can increase crop yields by maintaining soil moisture, regulating soil temperature and limiting weed growth, thus plays an indispensable role in modern agricultural production. However, its predominant component polyethylene (PE) is stable and resistant to degradation thus being accumulated in farmland soils. In addition, phthalates (PAEs) are added as plasticizers during plastic film production, which are readily being accumulated and transported in soil and water environment, together with the high biotoxicity, posing great threats to the environment, plant, animal and human. The multi-contamination of PE and PAEs is one of the most difficult form in soil organic pollution remediation. Therefore, how to remediate plastic film mulching soils attracts increasing attention in scientific researches and plays an important role in ensuring crop production safety and human health. Compared to physical and chemical methods, bioremediation using microbial degradation shows advantages in high efficiency, no secondary pollution risk, lower cost, and less environmental disturbance. As such, the present status of agricultural film mulching application and residue in soils, and the research progress of biodegradation were reviewed in order to provide basic information and technical supports for bioremediation of organic film pollutants in farmland soils.
plastic film mulching;polyethylene;phthalic acid ester;microorganism;biodegradation;bioremediation
X53,X171,X172
X
1000-6923(2021)09-4231-14
丁豪杰(1997-),男,河南信陽人,碩士研究生,主要從事有機物污染土壤生物修復研究.
2021–01–28
國家自然科學基金項目(41867066;41907129);云南省自然科學基金項目(2019FB032);云南省教育廳科學研究基金項目(2020Y0391; 2020J0406;2021Y234);云南省高端外國專家項目(YNQR-GDWG- 2018-017)
* 責任作者, 副研究員,liuxue20088002@126.com