亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一體化A2/O-MBR系統(tǒng)中抗性基因分布及去除效果研究

        2021-09-24 02:05:40李中浤杜彩麗陳素華張列宇李曉光黎佳茜田振軍
        中國環(huán)境科學(xué) 2021年9期
        關(guān)鍵詞:出水口抗性病原菌

        李中浤,杜彩麗,陳素華,張列宇,李曉光*,黎佳茜,田振軍

        一體化A2/O-MBR系統(tǒng)中抗性基因分布及去除效果研究

        李中浤1,2,杜彩麗2,3,陳素華1,張列宇2,李曉光2*,黎佳茜2,田振軍2

        (1.南昌航空大學(xué),江西省持久性污染物控制與資源循環(huán)利用重點(diǎn)實(shí)驗(yàn)室,江西 南昌 330063;2.中國環(huán)境科學(xué)研究院,國家環(huán)境保護(hù)地下水污染過程模擬與控制重點(diǎn)實(shí)驗(yàn)室,北京 100012;3.同濟(jì)大學(xué)環(huán)境科學(xué)與工程學(xué)院,上海 200092)

        選取北京市某農(nóng)村一體化A2/O-MBR污水處理系統(tǒng),系統(tǒng)研究了系統(tǒng)中抗生素抗性基因(Antibiotic Resistance Genes, ARGs)及病原菌在全流程各個(gè)處理單元中的分布特征,基于宏基因組學(xué)的高通量測(cè)序技術(shù)對(duì)農(nóng)村生活污水進(jìn)水、MBR池中污泥和出水樣品中ARGs及病原菌的豐度變化及去除效果進(jìn)行了系統(tǒng)分析.結(jié)果表明:ARGs廣泛存在于污水處理系統(tǒng)中,共檢測(cè)出包括tetracycline類、aminoglycoside類和sulfonamide類在內(nèi)的19類ARGs,進(jìn)水中ARGs的相對(duì)豐度遠(yuǎn)遠(yuǎn)高于其在出水中的濃度,通過污水處理系統(tǒng)后ARGs相對(duì)豐度下降了72.25%,而大多數(shù)的ARGs在污水處理系統(tǒng)并不能得到完全去除.微生物群落結(jié)構(gòu)變化顯示,32種潛在病原體相對(duì)豐度下降明顯,但大多數(shù)病原菌也無法得到完全去除.出水中殘留的ARGs和病原菌仍會(huì)對(duì)受納水體造成一定的潛在污染風(fēng)險(xiǎn).

        一體化A2/O-MBR;宏基因組學(xué);ARGs;病原菌

        抗生素抗性基因(ARGs)作為一種新型污染物[1],可以通過可移動(dòng)遺傳元件促進(jìn)抗生素抗性基因在不同物種間基因水平轉(zhuǎn)移[2].致病細(xì)菌攜帶各種ARGs后對(duì)抗生素產(chǎn)生耐藥性[3],這些抗生素耐藥致病菌(ARB)通過多種途徑從環(huán)境媒介中傳播給人類,進(jìn)而對(duì)人類公眾健康構(gòu)成嚴(yán)重威脅[4].目前, ARGs廣泛分布于湖泊[5]、河流[6]和海洋[7]等自然環(huán)境中.污水處理廠(WWTPs)匯集了醫(yī)院廢水、居民生活污水以及畜禽養(yǎng)殖污水等多種污水,因?yàn)榭股氐倪^度使用甚至濫用上述污水中殘留著高濃度抗生素,高濃度抗生素會(huì)對(duì)ARGs和ARB產(chǎn)生選擇性壓力,促進(jìn)其繁殖和擴(kuò)散,是ARGs和ARB的重要儲(chǔ)存庫[8-9],也是環(huán)境中ARGs和ARB的主要來源[10-11].

        目前,針對(duì)城市污水處理廠中ARGs的分布特征已經(jīng)開展了大量研究[12-13],但是極少開展對(duì)農(nóng)村污水處理系統(tǒng)ARGs變化的研究,且研究方法主要采用qPCR的方法.Chen等通過qPCR技術(shù)對(duì)4座城市生活污水處理廠和8座農(nóng)村生活污水處理系統(tǒng)中4種四環(huán)素類抗性基因(M、O、Q和W)和2種磺胺類抗性基因(1和2)的處理效果進(jìn)行評(píng)估,結(jié)果顯示城市生活污水處理廠抗生素抗性基因絕對(duì)豐度顯著減少(1~3個(gè)數(shù)量級(jí)),而農(nóng)村生活污水處理系統(tǒng)對(duì)ARGs的削減較少[14].Chen等探究人工濕地系統(tǒng)對(duì)于農(nóng)村污水中抗生素和ARGs的去除效果,采用qPCR技術(shù)對(duì)包括1、2、1、2、3、B/P、M、O、X、B和C在內(nèi)的ARGs進(jìn)行檢測(cè),結(jié)果表明1、2、M和O是主要的ARGs,人工濕地系統(tǒng)對(duì)于ARGs的去除效率>99%[15].基于qPCR的方法需要特定靶基因的序列,只能針對(duì)已知序列的單一ARGs進(jìn)行檢測(cè),無法全面了解污水處理系統(tǒng)中ARGs的分布特征和變化規(guī)律.宏基因組高通量測(cè)序技術(shù)(NGS)是研究環(huán)境中微生物ARGs的有效方法,可獲得環(huán)境中所有抗性基因的序列信息,挖掘未知抗性基因的信息,克服定量qPCR檢測(cè)技術(shù)引物或探針設(shè)計(jì)與選擇的限制[16].因此,急需對(duì)污水處理廠中的ARGs和ARB的來源、分布特征及去除效能開展系統(tǒng)性研究.

        一體化污水處理設(shè)備是一種新型農(nóng)村污水處理技術(shù),與大型傳統(tǒng)的污水處理系統(tǒng)相比,具有污染物去除率高、出水水質(zhì)良好、抗沖擊負(fù)荷能力強(qiáng)、占地面積小和投資運(yùn)行費(fèi)用低等優(yōu)點(diǎn),在農(nóng)村污水處理過程中得到廣泛應(yīng)用.本文采用宏基因組學(xué)技術(shù),開展農(nóng)村生活污水一體化A2/O-MBR設(shè)備處理過程中(進(jìn)水、污泥、出水)微生物群落結(jié)構(gòu)、ARGs和ARB的分布特征及變化規(guī)律研究,以期為一體化處理設(shè)備在農(nóng)村生活污水應(yīng)用及再生水回灌過程中環(huán)境風(fēng)險(xiǎn)評(píng)估提供科學(xué)依據(jù).

        1 材料與方法

        1.1 樣品采集

        選取北京市順義區(qū)某農(nóng)村生活污水一體化A2/O-MBR系統(tǒng)為研究對(duì)象(編號(hào)為SP),該一體化A2/O-MBR系統(tǒng)日處理生活污水為200t,主體工藝為A2/O-MBR,出水滿足(DB 11/1612-2019)一級(jí)B標(biāo)準(zhǔn).樣品采集時(shí)間為2020年4月21日,采樣點(diǎn)為進(jìn)水、MBR池中污泥和出水.進(jìn)水和出水樣品分別采集0.2L和1L,所有采集的水、污泥樣品在2h之內(nèi)于-4℃冷藏運(yùn)輸回實(shí)驗(yàn)室,進(jìn)水和出水樣品均經(jīng)過0.22μm濾膜過濾后收集微生物,將過濾后進(jìn)水和出水樣品與污泥一起凍存于-80℃冰箱中用于DNA提取.

        1.2 基因組提取

        濾膜樣品先用無菌剪刀剪碎,參考標(biāo)準(zhǔn)流程,剪碎的濾膜樣品和污泥樣品采用FastDNA? SPIN Kit for Soil(MP Biomedicals,CA,USA)試劑盒完成基因組DNA抽提.完成DNA抽提后的樣本使用1%瓊脂糖凝膠電泳檢測(cè)DNA的質(zhì)量和完整性,并采用Qubit 2.0熒光光譜儀(Thermo Fisher Scientific, MA,USA)檢測(cè)PCR擴(kuò)增后DNA的產(chǎn)量和純度.基因組DNA樣品用干冰保藏并立即送往上海美吉生物醫(yī)藥科技有限公司進(jìn)行測(cè)序,測(cè)序平臺(tái)為Illumina HiSeq 4000,采用PE150測(cè)序策略進(jìn)行雙端測(cè)序.

        1.3 生物信息學(xué)分析

        使用Trimmonatic[17]對(duì)原始測(cè)序數(shù)據(jù)進(jìn)行質(zhì)量控制,去除低質(zhì)量測(cè)序數(shù)據(jù),得到clean reads.基于質(zhì)量控制后的clean reads采用Kraken2法[18]對(duì)污泥樣品在門、屬兩個(gè)層級(jí)開展微生物群落組成分析.應(yīng)用USEARCH(accel£0.5,e-value£10-5)和BlastX (alignment length 25aa,amino acids380% and evalue 1e-5)與SARG v2.0抗生素抗性基因數(shù)據(jù)庫進(jìn)行對(duì)比注釋[19],對(duì)注釋后的數(shù)據(jù)按照SARG抗生素抗性基因數(shù)據(jù)庫分類成不同的抗生素抗性類型以及亞型.

        注釋出的ARGs相對(duì)豐度結(jié)果基于16S拷貝數(shù)標(biāo)準(zhǔn)化(copies of ARG per copy of 16S rRNA)[20]

        式中:ARG-like sequence序列為檢測(cè)某一種特定ARG的clean reads數(shù)量,reads為高通量測(cè)序中clean reads的長度,本研究中樣本均為150bp,ARG reference sequence為這一種特定ARG參考序列的長度,16S sequence是在高通量測(cè)序中識(shí)別的16S序列數(shù)量,16S sequence序列是Greengene數(shù)據(jù)庫中16S序列的平均長度1432bp[20-21].計(jì)算出的ARGs相對(duì)豐度單位為ARG拷貝數(shù)/16S rRNA拷貝數(shù)(簡稱ratio)[20]..

        本文采用origin 2018進(jìn)行數(shù)據(jù)繪圖.使用SPSS 24.0進(jìn)行spearman相關(guān)性分析.

        2 結(jié)果與討論

        2.1 抗生素抗性基因變化規(guī)律

        基于抗生素抗性基因數(shù)據(jù)庫(SARG v2.0)對(duì)農(nóng)村生活污水一體化A2/O-MBR處理系統(tǒng)不同生物單元抗性基因類型進(jìn)行分析.結(jié)果顯示,該一體化污水處理過程中共檢出19類ARGs,包括tetracycline類、multidrug類、beta-lactam類、macrolide- lincosamide-streptogramin(MLS)類、aminoglycoside類、sulfonamide類、bacitracin類、chloramphenicol類、fosmidomycin類、polymyxin類、trimethoprim類、kasugamycin類、rifamycin類、quinolone類、vancomycin類、fosfomycin類、bleomycin類、carbomycin類和unclassified類ARGs(圖1a和圖1b).不同處理單元采集樣品中主要的ARGs為tetracycline類、multidrug類、beta-lactam類、MLS類、aminoglycoside類、sulfonamide類和bacitracin類,這與已有研究報(bào)道一致[22-23].

        生活污水進(jìn)水樣品中檢測(cè)出上述19類ARGs,總相對(duì)豐度達(dá)到了0.8283ratio,其中beta-lactam類、tetracycline類、aminoglycoside類、sulfonamide類、multidrug類及MLS類ARGs是進(jìn)水樣品中主要的ARGs,其相對(duì)豐度分別達(dá)到了0.1445ratio、0.1399ratio、0.1184ratio、0.1129ratio、0.0992ratio和0.0956ratio,占進(jìn)水樣品中總ARGs的85.79%.這6類ARGs是污水處理廠進(jìn)水中常見的ARGs[24-25]. MBR池中污泥共檢測(cè)出16類ARGs,總ARGs相對(duì)豐度為0.3302ratio,出水口檢測(cè)出18類ARGs,總的ARGs相對(duì)豐度為0.2298ratio.其中kasugamycin和bleomycin類ARGs均未在污泥中檢出,而在出水樣品中檢出,但其相對(duì)豐度極低,僅為0.0002ratio和0.00008ratio,這可能由于出水口樣品收集時(shí)受到污染造成的.MBR池中污泥和出水樣品中主要的ARGs類型基本相同,主要是multidrug類、bacitracin類和MLS類ARGs,在污泥中相對(duì)豐度分別達(dá)到為0.0725ratio、0.0597ratio和0.0320ratio,出水口中相對(duì)豐度分別為0.0526ratio、0.0434ratio和0.0234ratio.與進(jìn)水口相比,multidrug類和bacitracin類ARGs在MBR池中污泥和出水中占比有所上升,說明農(nóng)村一體化設(shè)備對(duì)這兩類ARGs去除率相對(duì)較低.

        一體化處理設(shè)備處理后,除了不同生物單元水樣中優(yōu)勢(shì)ARGs會(huì)發(fā)生了一定的變化,部分ARGs類型相對(duì)豐度也會(huì)顯著下降.在出水口樣品中carbomycin類ARGs的相對(duì)豐度為0,經(jīng)過污水處理該ARGs完全被去除,Tetracycline類、beta-lactam類和aminoglycoside類ARGs去除率高,分別達(dá)到了90.92%、89.36%和87.51%.但也有個(gè)別ARGs相對(duì)豐度有所上升,如rifamycin類ARGs在進(jìn)水口相對(duì)豐度為0.0042ratio,而在MBR池污泥中達(dá)0.0167ratio.整體而言,與進(jìn)水口相比,出水口ARGs相對(duì)豐度降低了0.5985ratio,去除率達(dá)到了72.25%. Du等[26]使用qPCR技術(shù)研究基于A2O-MBR工藝的城市污水處理廠污水處理過程中5種ARGs(GWX1和1)的變化趨勢(shì),結(jié)果表明ARGs在進(jìn)水和出水中的下降趨勢(shì)為1?>1?>X>G?>W.其與基于A2O-MBR的一體化污水處理系統(tǒng)ARGs的變化趨勢(shì)相一致,且宏基因組學(xué)反映更多種類ARGs的變化規(guī)律.

        2.2 抗生素抗性基因亞型變化規(guī)律

        圖2 樣品中共有的和特有的ARGs數(shù)目

        樣品經(jīng)生物信息學(xué)分析共注釋出408種ARGs,進(jìn)水口、污泥和出水口中各注釋出371、210和217種ARGs,其各自特有的基因數(shù)分別為152種、10種和13種,共有的ARGs為157種,占比為38.4%(圖2).Tetracycline類、aminoglycoside類和sulfonamide類ARGs是污水處理廠進(jìn)水口樣品中相對(duì)豐度最高的3種抗性基因.四環(huán)素是目前應(yīng)用最廣泛的一種抗生素,可應(yīng)用于人類治療、畜禽養(yǎng)殖和水產(chǎn)養(yǎng)殖等多個(gè)行業(yè)中,研究表明四環(huán)素使用量在中國抗生素中排第一,且難以被人和動(dòng)物代謝和吸收,其中有75%以上的四環(huán)素可以通過人和動(dòng)物的排泄物釋放到環(huán)境中[27],.因此醫(yī)療廢水、生活污水和畜禽養(yǎng)殖廢水等中會(huì)殘留高濃度的四環(huán)素類抗生素和抗性基因,污水處理廠作為這些廢水處理的中間站,會(huì)是四環(huán)素類抗性基因的重要儲(chǔ)存庫.通過生物信息學(xué)分析在進(jìn)水口樣品中共注釋出37種tetracycline類ARGs,其中C、E、Q36和A是主要ARGs,相對(duì)豐度分別為0.0271ratio、0.0250ratio、0.0163ratio和0.0160ratio,總占比為68.99%,MBR池中污泥和出水口分別注釋出27和26種tetracycline類ARGs,主要是V、W、G和M抗性基因.與進(jìn)水口相比,污泥和出水口中除V和G相對(duì)豐度上升外,大部分抗性基因相對(duì)豐度都有不同程度的下降,甚至個(gè)別抗性基因如34、J、R、S、X1、X5和Y等經(jīng)過處理后已完全被去除(圖3a).其中部分ARGs相對(duì)豐度的增加可能由于抗生素的選擇壓力和/或廢水處理過程中廣泛地去除了敏感細(xì)菌[28].磺胺類藥物具有高溶解性、持久性和化學(xué)穩(wěn)定性等特點(diǎn),可在環(huán)境中長期存在[29],因此導(dǎo)致污水處理廠中磺胺類ARGs相對(duì)豐度較高.在進(jìn)水口樣品中共注釋出4種sulfonamide類ARGs,包括1、2、3和44種ARGs,MBR池中污泥和出水口均注釋出3種,1和2是3個(gè)樣品中主要ARGs,其都可以通過使抗生素?zé)o法作用于目標(biāo)酶來抑制抗生素[30],1也是最早被發(fā)現(xiàn)質(zhì)粒攜帶的耐藥基因之一[31],總占比分別為98.42%、99.36%和99.34%.通過污水處理廠后,廢水中1相對(duì)豐度顯著下降,為87.52%,3完全被去除,但2相對(duì)豐度在MBR池中污泥和出水口有所上升.氨基糖苷類抗生素也是一類常常用于醫(yī)療、農(nóng)業(yè)和養(yǎng)殖業(yè)等多領(lǐng)域中的抗生素[32],其中(3)-Ⅰ、(3)- Ⅱ/Ⅵ、(3)-Ⅲ/Ⅳ、(6’) -Ⅱ/Ⅰb、(2”)-Ⅰ、(2”)-Ⅰ等是在污水、廢水、糞便等環(huán)境媒介中最容易頻繁檢出的aminoglycoside類ARGs[33].本研究均檢測(cè)這些ARGs,其中在進(jìn)水口水樣中共注釋出21種aminoglycoside類ARGs,MBR池中污泥和出水口均注釋出17種(圖3b),A是主要ARGs,與環(huán)境菌株整合子相關(guān),并通過質(zhì)粒在糞腸球菌間轉(zhuǎn)移[34].通過一體化A2/O-MBR污水處理設(shè)備后,其去除達(dá)到了91.53%.

        圖3 一體化A2/O-MBR污水處理設(shè)備中ARGs亞型相對(duì)豐度

        白色方塊表示相對(duì)豐度為0

        2.3 菌群及病原菌變化規(guī)律

        微生物群落結(jié)構(gòu)是影響污水中ARGs動(dòng)態(tài)變化的重要因素[35],本文依據(jù)kraken2的分類結(jié)果得到基于了門、屬水平分類上的微生物群落結(jié)構(gòu).如圖4所示,農(nóng)村生活污水中主要的微生物為細(xì)菌(99.81%),其余為古菌(0.19%).變形菌門(Proteobacteria)在進(jìn)水廢水、污泥和出水樣品中相對(duì)豐度最高(53.04%~ 82.19%,平均64.50%),其次為放線菌門(Actinobacteria, 2.23%~20.07%,平均值11.82%)和厚壁菌門(Firmicutes,1.34%~5.74%,平均值2.85%),該研究結(jié)果與相關(guān)研究報(bào)道相一致[36].農(nóng)村生活污水的微生物多樣性較為單一,變形菌門相對(duì)豐度較高,而在污泥和出水樣本中,微生物群落結(jié)構(gòu)發(fā)生了較大的變化,除了變形菌門外,硝化螺旋菌門(Nitrospirae)也是主要微生物菌門.

        圖4 一體化A2/O-MBR污水處理設(shè)備中微生物群落變化(門)

        為了探究一體化A2/O-MBR污水處理系統(tǒng)中病原菌的相對(duì)豐度變化趨勢(shì),通過宏基因組測(cè)序?qū)FDB數(shù)據(jù)庫[37]中列出的32個(gè)病原菌屬進(jìn)行了系統(tǒng)分析(圖5).結(jié)果顯示進(jìn)水、MBR污泥和出水樣品中共檢測(cè)到32種潛在病原體,其中進(jìn)水、污泥和出水樣品中均檢測(cè)出這些潛在病原體.進(jìn)水、MBR污泥及出水樣品中病原菌占總菌屬的相對(duì)豐度均超過5%,分別達(dá)到23.25%、9.37%和8.52%.進(jìn)水樣品中主要的病原菌屬為氣單胞菌屬(, 16.57%)、假單胞菌屬(,1.93%)和不動(dòng)桿菌屬(,1.05%),MBR污泥樣品中主要的病原菌屬為分枝桿菌屬(,2.61%)、假單胞菌屬(,2.45%)和布克氏菌屬(1.34%);出水樣品中主要的病原菌屬為(,2.62%)、布克氏菌屬(, 1.43%)和分枝桿菌屬(,1.24%).進(jìn)水樣品中紅孢子蟲屬()未檢出,在污泥和出水樣本中志賀氏菌屬()未檢出.

        農(nóng)村生活污水經(jīng)過一體化A2/O-MBR系統(tǒng)處理后,32種病原菌屬占總菌屬的相對(duì)豐度有所下降,除紅孢子蟲屬和志賀氏菌屬外,主要病原菌屬也出現(xiàn)了變化,其中14種病原菌屬占總菌屬的相對(duì)豐度出現(xiàn)了下降,其中紅孢子蟲屬()、不動(dòng)桿菌屬()和埃希氏桿菌屬()的下降幅度最大,分別達(dá)到了15.89%、0.82%和0.81%;16種病原菌屬占總菌屬的相對(duì)豐度出現(xiàn)小幅度的上升,在整個(gè)污水處理過程中李斯特菌屬()的相對(duì)豐度沒有變化.

        圖5 一體化A2/O-MBR污水處理系統(tǒng)中病原微生物(屬)相對(duì)豐度變化

        白色方塊表示相對(duì)豐度為0

        ARGs廣泛存在于病原菌中[38],病原菌攜帶ARGs尤其是攜帶多種ARGs后將對(duì)人體健康的威脅遠(yuǎn)高于單種ARGs的威脅,為探究每類ARGs與病原菌之間的相關(guān)性,使用SPSS 24.0軟件對(duì)所有ARGs與病原菌進(jìn)行Pearson相關(guān)性分析,如表1所示.Chloramphenicol類、polymyxin類和tetracycline類ARGs與多種病原菌屬具有顯著的正相關(guān)性(<0.05),這3類ARGs廣泛分布于各種宿主中;作為進(jìn)水樣品中相對(duì)豐度最高的氣單胞菌屬,其與beta-lactam類、chloramphenicol類、polymyxin類和tetracycline類具有顯著的正相關(guān)性,這4類ARGs極有可能共存于一種病原菌中,形成多重耐藥菌的“超級(jí)細(xì)菌”.羅曉等[39]發(fā)現(xiàn)多種菌屬與ARGs存在相關(guān)性,與本研究一致.病原菌屬在一體化污水處理設(shè)備中并沒有得到完全去除,其可能攜帶的多種ARGs對(duì)人類健康存在著風(fēng)險(xiǎn).

        表1 ARGs與病原微生物(屬)的皮爾遜相關(guān)性分析

        注:重復(fù)值、無顯著性關(guān)系值的值未列出; *<0.05 **<0.01.

        3 結(jié)論

        3.1 基于宏基因組學(xué)的高通量測(cè)序方法對(duì)北京市某農(nóng)村生活污水一體化A2/O-MBR污水處理系統(tǒng)處理工藝各單元樣本ARGs進(jìn)行檢測(cè),生活污水進(jìn)水中的總ARGs相對(duì)豐度達(dá)到0.8283ratio, beta- lactam類、tetracycline類、aminoglycoside類、sulfonamide類、multidrug類和MLS類ARGs為進(jìn)水中優(yōu)勢(shì)的ARGs,相對(duì)豐度占85.79%以上.出水中的總ARGs相對(duì)豐度達(dá)到0.2298ratio,抗生素抗性基因相對(duì)豐度下降了72.25%,ARGs沒有得到完全去除,污水處理系統(tǒng)出水對(duì)收納水體造成一定的抗性基因污染風(fēng)險(xiǎn).

        3.2 微生物多樣性分析結(jié)果顯示,變形菌門(Proteobacteria)是一體化A2/O-MBR污水處理系統(tǒng)中數(shù)量最多、種類最豐富的細(xì)菌類群;農(nóng)村生活污水中存在著大量病原菌,進(jìn)水中氣單胞菌屬()、假單胞菌屬()和不動(dòng)桿菌屬()的比例較高,病原菌相對(duì)豐度明顯減少,皮爾遜相關(guān)性分析結(jié)果顯示多種病原菌屬可能同時(shí)攜帶多種ARGs.

        [1] Sanderson H, Fricker C, Brown R S, et al. Antibiotic resistance genes as an emerging environmental contaminant [J]. Dossiers Environnement, 2016,24(2):205-218.

        [2] Frost L S, Leplae R, Summers A O, et al. Mobile genetic elements: the agents of open source evolution [J]. Nature Reviews Microbiology, 2005,3(9):722-732.

        [3] Zhang H, He H, Chen S, et al. Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis [J]. Journal of Environmental Sciences, 2019,82(8): 24-38.

        [4] Martínez J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008,321(5887):365-367.

        [5] Wang Z, Han M, Li E, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: Their links with microbial communities, antibiotics, and water quality [J]. Journal of Hazardous Materials, 2020,393:122426.

        [6] Sun J, Jin L, He T, et al. Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China [J]. Science of The Total Environment, 2020,740:140001.

        [7] Zhang Y, Hu H, Yan H, et al. Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils [J]. Science of The Total Environment, 2019,668:193-203.

        [8] Guo J, Li J, Chen H, et al. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements [J]. Water Research, 2017,123:468-478.

        [9] Ju F, Li B, Ma L, et al. Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters [J]. Water Research, 2016,91:1-10.

        [10] Manaia C M, Rocha J, Scaccia N, et al. Antibiotic resistance in wastewater treatment plants: Tackling the black box [J]. Environment International, 2018,115:312-324.

        [11] Lapara T M, Burch T R, Mcnamara P J, et al. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into duluth-superior harbor [J]. Environmental Science & Technology, 2011,45(22):9543-9549.

        [12] Mao D, Yu S, Rysz M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants [J]. Water Research, 2015,85:458-466.

        [13] 馬 奔,黃雅夢(mèng),王若楠,等.城市污水廠MCR-1基因及其攜帶菌的污染 [J]. 中國環(huán)境科學(xué), 2018,38(4):235-242.

        Ma B, Huang Y M, Wang R N, et al. The pollution of MCR-1and MCR-1hosting bacteria in municipal wastewater treatment plants [J]. China Environmental Science, 2018,38(4):235-242.

        [14] Chen H, Zhang M. Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China [J]. Environment International, 2013,55: 9-14.

        [15] Chen J, Liu Y S, Su H C, et al. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland [J]. Environmental Science & Pollution Research International, 2015,22(3):1794-1803.

        [16] Szczepanowski R, Linke B, Krahn I, et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics [J]. Microbiology, 2009,155(7):2306-2319.

        [17] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014,30(15):2114-2120.

        [18] Wood D E, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2 [J]. Genome biology, 2019,20(1):257.

        [19] Yin X, Jiang X, Chai B, et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes [J]. Bioinformatics, 2018,34(13):2263- 2270.

        [20] Li B, Yang Y, Ma L, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes [J]. The ISME Journal, 2015,9(11):2490-2502.

        [21] Albertsen M, Hugenholtz P, Skarshewski A, et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes [J]. Nature Biotechnology, 2013,31(6):533- 538.

        [22] Tang J Y, Bu Y Q, Zhang X X, et al. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water [J]. Ecotoxicology & Environmental Safety, 2016,132:260-269.

        [23] Yang Y, Li B, Zou S, et al. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach [J]. Water Research, 2014,62:97-106.

        [24] Zhang T, Yang Y, Pruden A. Effect of temperature on removal of antibiotic resistance genes by anaerobic digestion of activated sludge revealed by metagenomic approach [J]. Applied Microbiology & Biotechnology, 2015,99(18):7771-7779.

        [25] Yoo K, Yoo H, Lee J, et al. Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis [J]. Journal of Microbiology, 2020,58(2):123-130.

        [26] Du J, Geng J, Ren H, et al. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A 2O-MBR system [J]. Environmental Science and Pollution Research, 2015,22(5):3715- 3726.

        [27] Lekunberri, Itziar, Rafraf, et al. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia [J]. Environmental Pollution, 2016,219:353-358.

        [28] Figueira V, Serra E, Manaia C M. Differential patterns of antimicrobial resistance in population subsets of Escherichia coli isolated from waste-and surface waters [J]. Science of the Total Environment, 2011, 409(6):1017-1023.

        [29] Wang Z, Zhang X X, Huang K, et al. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant [J]. Plos One, 2013,8(10):e76079.

        [30] Huovinen P, Sundstr?m L, Swedberg G, et al. Trimethoprim and sulfonamide resistance. [J]. Antimicrobial agents and chemotherapy, 1995,39(2):279-289.

        [31] Akiba T, Koyama K, Ishiki Y, et al. On the mechanism of the development of multiple drug-resistant clones of Shigella [J]. Jpn J Microbiol, 1960,4(2):219-227.

        [32] Lamba M, Graham D W, Ahammad S Z. Hospital wastewater releases of carbapenem-resistance pathogens and genes in urban India [J]. Environmental Science & Technology, 2017,51(23): 13906-13912.

        [33] Heuer H, Binh C T T, Jechalke S, et al. IncP-1eplasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1integron gene cassettes [J]. Frontiers in microbiology, 2012,3:2.

        [34] Clark N C, Olsvik ?, Swenson J M, et al. Detection of a streptomycin/ spectinomycin adenylyltransferase gene (aadA) in enterococcus faecalis [J]. Antimicrobial Agents & Chemotherapy, 1999,43(1):157- 160.

        [35] Tong J, Lu X, Zhang J, et al. Factors influencing the fate of antibiotic resistance genes during thermochemical pretreatment and anaerobic digestion of pharmaceutical waste sludge [J]. Environmental Pollution, 2018,243(PT.B):1403-1413.

        [36] 孔 曉,崔丙健,金德才,等.農(nóng)村污水膜生物反應(yīng)器系統(tǒng)中微生物群落解析 [J]. 環(huán)境科學(xué), 2015,36(9):3329-3338.

        Kong X, Cui B J, Jin D C, et al. Analysis of microbial community in the membrane bio-reactor(MBR) rural sewage treatment system [J]. Environmental Science, 2015,36(9):3329-3338.

        [37] Jian Y, Lihong C, Lilian S, et al. VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics [J]. Nucleic Acids Research, 2008,36:539-542.

        [38] Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens [J]. 2012,337(6098):1107-1111.

        [39] 羅 曉,袁立霞,張文麗,等.制藥廢水廠抗性基因和微生物群落相關(guān)性研究 [J]. 中國環(huán)境科學(xué), 2019,39(2):831-838.

        Luo X, Yuan L X, Zhang W L, et al. Correlation study between resistance genes and microbial communities in pharmaceutical wastewater treatment plants [J]. China Environmental Science, 2019, 39(2):831-838.

        Study on the distribution and removal effect of resistance genes in integrated system of A2/O-MBR.

        LI Zhong-hong1,2, DU Cai-li2,3, CHEN Su-hua1, ZHANG Lie-yu2, LI Xiao-guang2*, LI Jia-xi2, TIAN Zhen-jun2

        (1.Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China;2.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;3.College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)., 2021,41(9):4135~4141

        The increase of antibiotic resistance genes among microorganisms has become the main transmission source for sewage treatment plants. The purpose of this study was to explore the removal effect of Antibiotic Resistance Genes (ARGs) and pathogenic bacteria in rural domestic sewage treatment process and evaluate the water quality safety. This study selected a integration A2/O-MBR wastewater treatment system in the village of Beijing,systematic study was implemented in integrated system of A2/O-MBR wastewater treatment system to get the distribution law of ARGs and pathogenic bacteria in the each processing unit. Based on macro genomics, the high-throughput sequencing technology was used to analysis the the ability of removing ARGs and pathogenic bacteria in genus through integrated system of A2/O-MBR. Results showed that the ARGs widely existed in sewage treatment system, 19kinds of ARGs including tetracycline class, aminoglycoside class and sulfonamide class were detected, the relative abundance of the ARGs in influent was much higher than its concentration in the effluent, relative abundance of the ARGs fell by 72.25%, but most of the ARGs in sewage treatment system was not fully removed. The changes of microbial community structure showed that the relative abundance of 32potential pathogens decreased significantly, and most pathogenic bacteria could not be completely removed. The residual ARGs and pathogenic bacteria in the water will lead to the potential pollution risk of receiving water body.

        integrated system of A2/O-MBR;metagenomics;ARGs;pathogenic bacteria

        X703

        A

        1000-6923(2021)09-4135-07

        李中浤(1995-),男,江西南昌人,南昌航空大學(xué)碩士研究生,主要從事污水生物處理工藝研究.

        2021-02-25

        國家重點(diǎn)研究計(jì)劃(2019YFC0409202)

        * 責(zé)任作者, 副研究員, xgli1982@163.com

        猜你喜歡
        出水口抗性病原菌
        杧果采后病原菌的分離、鑒定及致病力研究
        一個(gè)控制超強(qiáng)電離輻射抗性開關(guān)基因的研究進(jìn)展
        沒有水龍頭的洗手池
        陜西檔案(2019年2期)2019-05-07 06:07:42
        潛流式人工濕地對(duì)生活污水生物需氧量和化學(xué)需氧量的影響分析
        發(fā)動(dòng)機(jī)出水口金屬墊片的密封設(shè)計(jì)分析
        新型出水口保護(hù)體在小農(nóng)水工程中的應(yīng)用
        山東水利(2018年6期)2018-03-24 13:00:35
        甲基對(duì)硫磷抗性菌的篩選及特性研究
        MALDI-TOF MS直接鑒定血培養(yǎng)陽性標(biāo)本中的病原菌
        甜玉米常見病害的抗性鑒定及防治
        中國果菜(2016年9期)2016-03-01 01:28:44
        用于黃瓜白粉病抗性鑒定的InDel標(biāo)記
        中國蔬菜(2015年9期)2015-12-21 13:04:40
        精品久久亚洲中文无码| 三级国产高清在线观看| 亚洲av一区二区三区色多多| 色老板美国在线观看| 日本无码人妻波多野结衣| 国产成人免费a在线视频| 视频二区 无码中出| 日本免费一区二区精品| 日本一区二区三区高清在线视频| 777米奇色狠狠俺去啦| www国产精品内射熟女| 亚洲AV秘 无码一区二区三区| 日本熟女视频一区二区三区| 成人国产精品一区二区八戒网| 国产精品毛片一区二区三区| 韩国19禁无遮挡啪啪无码网站| 日本高清色惰www在线视频| 羞涩色进入亚洲一区二区av| 日韩有码中文字幕在线观看| 久久久国产打桩机| 国产精品免费久久久久影院| 国产丰满乱子伦无码专| 中文字幕乱码人妻在线| 蜜臀久久99精品久久久久久| 日本公与熄乱理在线播放| 亚洲AV无码久久精品成人| 国产最新一区二区三区| 青草久久婷婷亚洲精品| 性无码专区无码| 人妻去按摩店被黑人按中出| 精品国产又大又黄又粗av| 粉嫩的极品女神尤物在线| 精品国际久久久久999波多野| 国产成人精品av| 中文字幕大乳少妇| 免费人妻精品一区二区三区| 无码h黄肉3d动漫在线观看| 国产美女露脸口爆吞精| 2021最新久久久视精品爱| 国产性感午夜天堂av| 日日拍夜夜嗷嗷叫国产|