羅云飛,王毅璠,李俊杰,余正偉,魏進(jìn)超,龍紅明,2*
焦煤比對(duì)燒結(jié)煙氣中揮發(fā)性有機(jī)物排放特性的影響
羅云飛1,王毅璠1,李俊杰3,余正偉1,魏進(jìn)超3,龍紅明1,2*
(1.安徽工業(yè)大學(xué)冶金工程學(xué)院,安徽 馬鞍山 243032;2.冶金工程與資源綜合利用安徽省重點(diǎn)實(shí)驗(yàn)室(安徽工業(yè)大學(xué)),安徽 馬鞍山 243002;3.中冶長(zhǎng)天國(guó)際工程有限責(zé)任公司,湖南 長(zhǎng)沙 410205)
采用PF-300便攜式甲烷?總烴?非甲烷總烴測(cè)試儀對(duì)燒結(jié)杯實(shí)驗(yàn)產(chǎn)生的煙氣進(jìn)行揮發(fā)性有機(jī)物含量分析,研究了燒結(jié)燃料焦煤比對(duì)煙氣揮發(fā)性有機(jī)物排放特性的影響,結(jié)果表明:揮發(fā)性有機(jī)物在燒結(jié)過程中持續(xù)釋放,其排放趨勢(shì)與NOx相一致;TVOCs和MHC的生成與煤粉和焦粉的揮發(fā)分有顯著的相關(guān)性,以煤粉為主要燃料時(shí),適當(dāng)配加焦粉不僅對(duì)TVOCs和MHC具有物理減排效應(yīng),還存在煤焦混合協(xié)同減排的效應(yīng).同時(shí)對(duì)國(guó)內(nèi)某鋼鐵燒結(jié)機(jī)進(jìn)行TVOCs排放濃度及分樣組成檢測(cè),表明:該鋼鐵燒結(jié)機(jī)煙氣中揮發(fā)性有機(jī)物排放濃度較高,其結(jié)果與燒結(jié)杯實(shí)驗(yàn)所得曲線一致;燒結(jié)工序VOCs分樣檢測(cè)主要化合物為乳酸乙酯?丙酮?苯?甲苯?正己烷等.
燒結(jié);焦煤比;揮發(fā)性有機(jī)物;排放特征;工業(yè)檢測(cè)
作為二次有機(jī)氣溶膠(SOA)和臭氧生成的重要前驅(qū)體[1-3],揮發(fā)性有機(jī)物(VOCs)通常指常溫常壓下飽和蒸汽壓大于70Pa?沸點(diǎn)小于260℃,或在20℃條件下,蒸汽壓大于10Pa且具有揮發(fā)性的全部有機(jī)化合物[4-6],主要包括脂肪族和芳香族的各種烷烴、烯烴?含氧烴和鹵代烴等[7-9].大多數(shù)VOCs具有令人不適的特殊氣味[10-12],少量具有毒性、刺激性、致畸性和致癌作用,其揮發(fā)不利于空氣環(huán)境和人體健康,主要來(lái)源于煤化工?石油化工?燃料涂料制造?溶劑制造與使用等[13-16].
歐美等發(fā)達(dá)國(guó)家對(duì)VOCs研究起步較早,制訂了嚴(yán)格的排放標(biāo)準(zhǔn),并取得了較為可觀的治理效果[17-19].國(guó)內(nèi)學(xué)者對(duì)燃煤過程VOCs排放做了大量研究,徐靜穎等[20]研究了煤的粒徑、燃燒方式、過量空氣系數(shù)等對(duì)燃煤過程揮發(fā)性有機(jī)物排放的影響,認(rèn)為煤的成分和燃煤工藝,導(dǎo)致燃煤過程產(chǎn)生的揮發(fā)性有機(jī)物種類復(fù)雜的主要原因.程杰等[21]研究了不同氣氛和升溫速率對(duì)煤熱解過程中揮發(fā)性有機(jī)物排放的影響,認(rèn)為不同氣氛下,逸出氣中的酚類有機(jī)物最容易和氧氣反應(yīng),其次是烯烴類.范志威等[22]采用頂空固相微萃取與色質(zhì)聯(lián)用的方法研究了燃煤過程揮發(fā)性有機(jī)物的分布,表明煤種與有機(jī)物賦存形態(tài)密切相關(guān).
我國(guó)是鋼鐵生產(chǎn)大國(guó),2019年的粗鋼產(chǎn)量達(dá)到了99541.89萬(wàn)t,消耗燒結(jié)礦154289.83萬(wàn)t[23].由于燒結(jié)礦在配料過程中需要加入3%~5%的燃料(煤?焦粉),全年燃料消耗量超過6000萬(wàn)t.在燒結(jié)過程中,這部分燃料(主要是煤粉)是VOCs的潛在源頭,因此燒結(jié)工序也是工業(yè)源VOCs排放中不可忽視的來(lái)源[24-26].與燃煤工藝相比,燒結(jié)工序很大程度受限于原料種類、工控,且對(duì)燃料種類、粒徑等的選擇性較強(qiáng).王海風(fēng)[27]等人總結(jié)了國(guó)內(nèi)外鋼鐵工業(yè)燒結(jié)過程VOCs排放現(xiàn)狀及標(biāo)準(zhǔn),分析了燒結(jié)過程VOCs的生成機(jī)理.Li等[28]通過微型燒結(jié)實(shí)驗(yàn)研究燒結(jié)過程揮發(fā)性有機(jī)物排放特征,認(rèn)為揮發(fā)性有機(jī)物排放的種類及濃度與燒結(jié)料層溫度緊密相關(guān).苗沛然[29]通過檢出燒結(jié)過程9類65種VOCs,分析了燒結(jié)過程揮發(fā)性有機(jī)物排放特征.上述學(xué)者針對(duì)燒結(jié)過程揮發(fā)性有機(jī)物的排放特性進(jìn)行了研究,但鮮有提及焦煤比等因素對(duì)其排放的影響,同時(shí)對(duì)燒結(jié)現(xiàn)場(chǎng)揮發(fā)性有機(jī)物排放規(guī)律及組分的檢測(cè)鮮有報(bào)道.本文根據(jù)燒結(jié)工序工藝條件,通過燒結(jié)杯試驗(yàn),采用PF-300便攜式甲烷、總烴、非甲烷總烴測(cè)試儀對(duì)燒結(jié)煙氣進(jìn)行揮發(fā)性有機(jī)物含量分析,研究了燒結(jié)燃料焦煤比對(duì)煙氣揮發(fā)性有機(jī)物排放的影響,同時(shí)對(duì)國(guó)內(nèi)某鋼鐵燒結(jié)機(jī)進(jìn)行TVOCs排放濃度及分樣組成檢測(cè),為后續(xù)降低減少燒結(jié)過程揮發(fā)性有機(jī)物排放提供參考.
以國(guó)內(nèi)某鋼鐵公司實(shí)際燒結(jié)生產(chǎn)中使用的燒結(jié)原料,包括:鐵礦粉、返礦、熔劑,其化學(xué)成分如表1所示,根據(jù)ASTM D2234/D2234M-2010獲取樣品,采樣過程進(jìn)行縮分取樣,取500g樣品進(jìn)行分析.本研究選取兩種燒結(jié)固體燃料,其中A為無(wú)煙煤,B為焦粉,其工業(yè)分析結(jié)果如表2所示.
采用直徑200mm,高度800mm的燒結(jié)杯,點(diǎn)火負(fù)壓7kPa,點(diǎn)火溫度[(1150±50)℃],點(diǎn)火時(shí)間90s并保溫30s,燒結(jié)負(fù)壓14KPa.燒結(jié)平臺(tái)及VOCs檢測(cè)系統(tǒng)示意圖如圖1所示.
表1 原料化學(xué)成分(wt.%)
表2 固體燃料工業(yè)分析(%)
圖1 燒結(jié)杯實(shí)驗(yàn)平臺(tái)及采樣系統(tǒng)
1.3.1 燒結(jié)實(shí)驗(yàn) 將各種燒結(jié)原料按照特定的配比進(jìn)行了配料,總料重60kg,將配好的原料在混合機(jī)中進(jìn)行一次混合,由壓縮空氣加壓后經(jīng)噴水器將霧化水噴入進(jìn)行混合,混合時(shí)間為6min,一次混合完畢后繼續(xù)圓筒混料機(jī)中進(jìn)行二次混合,二次混合不加水,混勻時(shí)間3min.混合料水分控制在7.0%,然后將混合料裝入燒結(jié)杯進(jìn)行燒結(jié)實(shí)驗(yàn),燒結(jié)實(shí)驗(yàn)在直徑為200mm的燒結(jié)杯中進(jìn)行,先在燒結(jié)杯爐篦上加入2kg鋪底料.啟動(dòng)風(fēng)機(jī),控制進(jìn)氣和放散,采用液化天然氣點(diǎn)火,控制空氣量和燃料量,點(diǎn)火溫度升至1150℃,準(zhǔn)備計(jì)時(shí),將點(diǎn)火罩轉(zhuǎn)到燒結(jié)杯上,點(diǎn)火負(fù)壓7kPa,燒結(jié)計(jì)時(shí)開始,點(diǎn)火2min關(guān)閉點(diǎn)火罩,將負(fù)壓調(diào)至14kPa,廢氣溫度和抽風(fēng)負(fù)壓由計(jì)算機(jī)自動(dòng)采集.廢氣溫度達(dá)到最高值并開始下降的那一刻,即為燒結(jié)結(jié)束時(shí)刻,記錄時(shí)間為一次完整的燒結(jié)時(shí)間.燒結(jié)終了,將抽風(fēng)負(fù)壓調(diào)至7kPa,待冷卻至廢氣溫度為250℃時(shí),關(guān)閉風(fēng)機(jī).燒結(jié)礦經(jīng)單輥破碎機(jī)破碎,然后進(jìn)行落下實(shí)驗(yàn),振動(dòng)篩分分級(jí),轉(zhuǎn)鼓強(qiáng)度檢測(cè)等實(shí)驗(yàn).
1.3.2 分析檢測(cè) 試驗(yàn)過程中,采用Titan Dry fast eco抗化學(xué)腐蝕隔膜泵(上海泰坦科技股份有限公司)從煙氣管道中抽取燒結(jié)煙氣進(jìn)行采樣,該真空泵的隔膜和連接管道氣路均為對(duì)揮發(fā)性有機(jī)物沒有吸附作用的聚四氟乙烯材質(zhì).采用PF-300便攜式甲烷、總烴、非甲烷總烴測(cè)試儀(意大利Pollution公司)對(duì)采樣氣體進(jìn)行揮發(fā)性有機(jī)物含量測(cè)定,總烴測(cè)試儀氣路管道材質(zhì)為AlSl316不銹鋼,采樣系統(tǒng)及檢測(cè)器溫度為200℃,采樣流量為1L/min,數(shù)據(jù)檢測(cè)量程范圍為0~500mgC/m3且精度為1%F.S.
1.3.3 數(shù)據(jù)處理 定義焦煤比為燒結(jié)過程中配加焦粉的質(zhì)量與煤粉質(zhì)量的比值,計(jì)算公式為:
=1/2(1)
式中:為焦煤比;1為燒結(jié)過程中焦粉加入的質(zhì)量, kg;2為燒結(jié)過程中焦粉加入的質(zhì)量,kg.
對(duì)燒結(jié)煙氣中TVOCs?MHC?NMHC數(shù)據(jù)進(jìn)行積分處理,計(jì)算不同水分條件下燒結(jié)過程TVOCs?MHC和NMHC平均排放濃度,再通過燒結(jié)煙氣平均流量計(jì)算排放總量,計(jì)算公式為:
=××(2)
式中:為排放總量,′103mg;為燒結(jié)煙氣平均流量, m3/h;為燒結(jié)時(shí)間(去掉前4min),min;為平均排放濃度,mg/m3.
T1-T5組燒結(jié)杯以A#煤粉和B#焦粉混合作為固體燃料,配比為4.5%,水分為7.0%,焦煤比分別為0:1、1:3、1:1、3:1、1:0,在燒結(jié)煙氣管道內(nèi)抽取煙氣,測(cè)量燒結(jié)煙氣中TVOCs、MHC、NMHC排放特征及產(chǎn)生量,選取了焦煤比為0:1時(shí)結(jié)果VOCs排放特征,如圖2所示.發(fā)現(xiàn)TVOCs在燒結(jié)過程中持續(xù)釋放,燒結(jié)點(diǎn)火階段,由于實(shí)驗(yàn)室燒結(jié)杯點(diǎn)火采用的是以丙烷為主的天然氣,在點(diǎn)火的瞬間,由于燒結(jié)抽風(fēng)的作用,煙氣管道會(huì)產(chǎn)生大量的TVOCs;點(diǎn)火結(jié)束之后,由于燒結(jié)點(diǎn)火氣體的不斷消耗,導(dǎo)致TVOCs的排放有小幅度的降低,此時(shí)的TVOCs是由固體燃料所產(chǎn)生;隨著燒結(jié)過程的持續(xù)進(jìn)行,燒結(jié)料層透氣性變好,燃料燃燒的速度加快,TVOCs排放濃度逐漸增加,但由于燒結(jié)過程的復(fù)雜性和各燒結(jié)帶的交替變化,導(dǎo)致TVOCs的排放特征在小范圍內(nèi)的規(guī)律性并不明顯;隨著煙氣溫度的增加,燒結(jié)臨近終點(diǎn),過濕層逐漸消失,TVOCs的排放濃度降低.當(dāng)燒結(jié)過程開始升溫時(shí),TVOCs排放出現(xiàn)濃度峰值,為248.14mg/m3.隨著燒結(jié)溫度的不斷上升,煙氣中TVOCs含量逐步下降,從整體來(lái)看,TVOCs在燒結(jié)過程中的排放趨勢(shì)與NO一致,見圖3.
圖2 燒結(jié)煙氣中TVOCs排放特征
同時(shí),隨著混合燃料中焦粉用量的提高,燒結(jié)煙氣中TVOCs?MHC呈顯著下降趨勢(shì),表明TVOCs和MHC的生成與煤粉和焦粉的揮發(fā)分有顯著的相關(guān)性.在焦煤比為0:1(即100%煤粉)時(shí)排放總量分別達(dá)到了10893.55mg和10502.32mg,平均濃度分別為161.9mg/m3和156.1mg/m3;當(dāng)焦煤比為1:3時(shí), TVOCs的排放總量降低到3577.33mg,降低了67.16%;繼續(xù)降低燒結(jié)煤粉比例至50%(焦煤比1:1),TVOCs的排放總量降低到1772.55mg,降低了83.73%;繼續(xù)降低燒結(jié)煤粉比例至25%(焦煤比3:1),TVOCs的排放總量降低到945.47mg,降低了91.32%;在焦煤比為1:0(即100%焦粉)時(shí),TVOCs的排放總量降低了94.46%,如圖4?5.分析認(rèn)為可能使用煤作為燃料時(shí),隨著燒結(jié)過程的進(jìn)行,煤粉的燃燒和熱解釋放了大量的VOCs,同時(shí)由于燒結(jié)抽風(fēng)負(fù)壓和燃燒的作用,煤粉分子內(nèi)部的空隙變大,同時(shí)內(nèi)部的壓力升高,加快了其燃燒和熱解的速率,促進(jìn)了VOCs的釋放.當(dāng)固體燃料為焦粉時(shí),分析認(rèn)為可能由于焦粉生產(chǎn)時(shí)經(jīng)過干餾等工序的處理,對(duì)其分子內(nèi)部結(jié)構(gòu)進(jìn)行了填充,導(dǎo)致其分子間隙較小,在一定程度抑制或延遲了其熱解,同時(shí)由于揮發(fā)分含量較低,熱解反應(yīng)產(chǎn)生VOCs的量較少.
圖3 燒結(jié)煙氣中NOx排放特征
圖4 不同焦煤比條件下TVOCs和MHC排放總量變化
以煤粉為燒結(jié)燃料時(shí),燒結(jié)TVOCs和MHC平均排放濃度和總量較高,TVOCs和MHC平均排放濃度和總量隨著混合燃料中焦粉比例的提高顯著降低,但減排幅度大于混合燃料中焦粉比例的提高,而不是線性或近似線性的降低,說明以煤粉為主要燃料時(shí),適當(dāng)配加焦粉不僅對(duì)TVOCs和MHC減排具有物理減排效應(yīng),還存在煤焦混合協(xié)同減排的效應(yīng),具體原因有待進(jìn)一步研究.
圖5 不同焦煤比條件下TVOCs和MHC排放平均值
圖6 不同焦煤比條件下NMHC總量變化
不同焦煤比條件下,燒結(jié)煙氣中NMHC的平均排放濃度和排放總量波動(dòng)較大,如圖6?7,與焦煤比無(wú)明顯的相關(guān)關(guān)系.在焦煤比為3:1時(shí)NMHC達(dá)到最大值,為12.5mg/m3,在焦煤比為1:3時(shí)平均排放濃度僅為3.2mg/m3,說明燃料種類及燃料揮發(fā)分含量不是決定NMHC產(chǎn)生主要因素,其產(chǎn)生機(jī)理,有待進(jìn)一步研究和揭示.
圖7 不同焦煤比條件下NMHC平均值變化
采用JFID便攜式總烴/非甲烷總烴分析儀對(duì)國(guó)內(nèi)某鋼鐵企業(yè)燒結(jié)機(jī)各風(fēng)箱支管及南北側(cè)大煙道進(jìn)行TVOCs排放濃度檢測(cè).燒結(jié)生產(chǎn)現(xiàn)場(chǎng)燃料用量3.35%,煤粉占燃料比例為20%~25%,總管負(fù)壓14.2~14.8kPa,16號(hào)以后風(fēng)箱開度控制,17號(hào)控制50%,后續(xù)風(fēng)箱依次遞減5%.
2.2.1 燒結(jié)機(jī)風(fēng)箱支管揮發(fā)性有機(jī)物釋放特性 不同風(fēng)箱支管揮發(fā)性有機(jī)物排放濃度如圖8?9和10所示,可知,該鋼鐵企業(yè)燒結(jié)機(jī)煙氣中揮發(fā)性有機(jī)物排放濃度較高,通過對(duì)圖8中TVOCs和MHC排放進(jìn)行積分,其中TVOCs排放總量為4281.50mg,MHC排放總量為3390.50mg,超過79%為MHC.燒結(jié)點(diǎn)火(1-3#支管)結(jié)束后,燒結(jié)煙氣中TVOCs排放濃度較為穩(wěn)定,4-17#風(fēng)箱支管TVOCs平均排放濃度為164.86mg/m3,其中MHC平均排放濃度為117.29mg/ m3.在接近燒結(jié)終點(diǎn)時(shí),煙氣溫度升高,TVOCs排放濃度在18#支管出現(xiàn)下降,降為38mg/m3,此時(shí)NMHC排放濃度為24mg/m3,上述結(jié)果與燒結(jié)杯實(shí)驗(yàn)結(jié)果一致.
2.2.2 燒結(jié)機(jī)南北側(cè)大煙道揮發(fā)性有機(jī)物釋放特性 對(duì)燒結(jié)機(jī)南北側(cè)大煙道揮發(fā)性有機(jī)物進(jìn)行30min持續(xù)檢測(cè),結(jié)果如圖11所示,大煙道中TVOCs濃度較為穩(wěn)定,30min南側(cè)TVOCs平均排放濃度為209.47mg/m3,北側(cè)TVOCs平均濃度為93.51mg/m3.南側(cè)比北側(cè)高的原因主要是燒結(jié)機(jī)將前端風(fēng)箱支管通入南側(cè)煙道,后半段風(fēng)箱支管通入北側(cè)煙道,而燒結(jié)過程TVOCs排放濃度前端高于后端,因此南側(cè)揮發(fā)性有機(jī)物排放總量高于北側(cè).
圖8 燒結(jié)機(jī)風(fēng)箱支管TVOCs和MHC排放特性
圖9 燒結(jié)機(jī)風(fēng)箱支管NMHC排放特性
圖13 VOCs分樣化合物檢測(cè)濃度(mg/m3)
圖10 燒結(jié)機(jī)風(fēng)箱支管揮發(fā)性有機(jī)物含量分布
圖11 燒結(jié)機(jī)南北側(cè)大煙道揮發(fā)性有機(jī)物排放特性
圖12 24種揮發(fā)性有機(jī)物的參考標(biāo)準(zhǔn)總離子圖
2.2.3 現(xiàn)場(chǎng)工業(yè)分樣檢測(cè)結(jié)果分析 依據(jù)中華人民共和國(guó)國(guó)家環(huán)境保護(hù)標(biāo)準(zhǔn)HJ734-2014《固定污染源廢氣揮發(fā)性有機(jī)物的測(cè)定固相吸附-熱脫附/氣相色譜-質(zhì)譜法》[30],對(duì)燒結(jié)煙氣中24種揮發(fā)性有機(jī)物進(jìn)行測(cè)定.將所得到的峰面積進(jìn)行定量,VOCs的測(cè)量濃度均位于93.4ng~102.7ng之間,其中有21種VOCs的誤差在5%之內(nèi),故認(rèn)為此方法可以較為準(zhǔn)確的測(cè)定目標(biāo)的24種VOCs,如圖12?13.總體分析檢測(cè)結(jié)果而言,燒結(jié)工序VOCs分樣檢測(cè)主要化合物為乳酸乙酯?丙酮?苯?甲苯?正己烷等.
3.1 揮發(fā)性有機(jī)物在燒結(jié)過程中持續(xù)釋放,點(diǎn)火結(jié)束后,揮發(fā)性有機(jī)物濃度小幅降低后趨于穩(wěn)定,隨著燒結(jié)過程的進(jìn)行,其排放濃度逐漸升高,燒結(jié)過程開始升溫時(shí),揮發(fā)性有機(jī)物逐步降低,直到燒結(jié)結(jié)束.
3.2 TVOCs和MHC的生成與燃料的揮發(fā)分及焦煤比有顯著的相關(guān)性,以煤粉為主要燃料時(shí),適當(dāng)配加焦粉不僅對(duì)TVOCs和MHC具有物理減排效應(yīng),還可能存在煤焦混合協(xié)同減排的效應(yīng).NMHC的平均排放濃度和排放總量波動(dòng)較大,與焦煤比無(wú)明顯的相關(guān)關(guān)系,表明燃料揮發(fā)分及焦煤比不是決定NMHC產(chǎn)生主要因素.
3.3 對(duì)國(guó)內(nèi)某鋼鐵燒結(jié)機(jī)進(jìn)行VOCs排放濃度及分樣組成檢測(cè),表明該鋼鐵燒結(jié)機(jī)煙氣中揮發(fā)性有機(jī)物排放濃度較高,其結(jié)果與燒結(jié)杯實(shí)驗(yàn)結(jié)果一致;燒結(jié)工序VOCs分樣檢測(cè)主要化合物為乳酸乙酯?丙酮、苯、甲苯、正己烷等.
[1] Yuan B, Hu W W, Shao M, et al. VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China [J]. Atmospheric Chemistry and Physics Discussions, 2013,13(3):6631- 6679.
[2] 馮 旸,劉銳源,劉雷璐,等.廣州典型印刷企業(yè)VOCs排放特征及環(huán)境影響和健康風(fēng)險(xiǎn)評(píng)價(jià)[J]. 中國(guó)環(huán)境科學(xué), 2020,40(9):3791-3800.
Feng yang, Liu Rui-yuan, Liu Lei-lu, et al. VOCs emission characteristics, environmental impact and health risk assessment of typical printing enterprises in Guangzhou [J]. China Environmental Science,2020,40(9):3791-3800.
[3] 王玉玲,宋 敏,孟凡躍. CeO2-MnO/CF對(duì)甲苯的催化氧化性能[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020,51(1):261-268.
Wang Yuling, Song Min, Meng Fanyue. Catalytic performance of CeO2-MnO/CF for oxidation of toluene [J]. Journal of Central South University (Science and Technology), 2020,51(1):261-268.
[4] Zou Y, Deng X J, Zhu D, et al. Characteristics of l year of observational data of VOCs, NOand O3at a suburban site in Guangzhou, China [J]. Atmospheric Chemistry & Physics, 2015, 15(12):6625-6636.
[5] 王家德,金旦軍,顧震宇,等.金屬表面涂裝行業(yè)VOCs排放特征及排放系數(shù)[J]. 中國(guó)環(huán)境科學(xué), 2020,40(5):1940-1945.
Wang Jia-de, Jin Dan-jun, Gu zhen-yu, et al. The VOCs emission characteristics of metal surface coating industryand its emission factors [J]. China Environmental Science,2020,40(5):1940-1945.
[6] 王 川,夏士勇,曹禮明,等.深圳西部城區(qū)大氣O3污染特征及超標(biāo)成因[J]. 中國(guó)環(huán)境科學(xué), 2020,40(4):1414-1420.
Wang C. Xia S X, Cao L M, et al. Study on the characteristics and the cause of atmospheric O; pollution in western urban of Shenzhen [J]. China Environmental Science, 2020.40(4):1414-1420.
[7] 張 穎,孔少飛,鄭 煌,等.牛糞燃燒實(shí)時(shí)排放揮發(fā)性有機(jī)物特征研究[J]. 中國(guó)環(huán)境科學(xué), 2020,40(5):1932-1939.
Zhang Ying, Kong Shao-fei, Zheng Huang, et al.Real-time emission of volatile organic compounds from cow dung combustion [J]. China Environmental Science,2020,40(5):1932-1939.
[8] 張瑞旭,劉煥武,鄧順熙,等.寶雞市秋冬季大氣VOCs濃度特征及其O3和SOA生成潛勢(shì)[J]. 中國(guó)環(huán)境科學(xué), 2020,40(3):983-996.
Zhang R X, Liu H W, Deng S X, et al. Characteristics of VOCs and formation potential of O; and SOA in autumn and winter in Baoji. China [J]. China Environmental Science, 2020,40(3):983-996.
[9] 寧 平,郭 霞,田森林,等.昆明地區(qū)典型喬木主要揮發(fā)性有機(jī)物釋放規(guī)律[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013,44(3):1290-1296.
Ning Ping, Guo Xia, Tian Senlin, et al. Emission of main BVOCS for typical landscape trees in Kunming [J]. Journal of Central South University (Science and Technology), 2013,44(3):1290-1296.
[10] 李婷婷,梁小明,盧 清,等.泡沫塑料鞋制造區(qū)VOCs污染特征及臭氧生成潛勢(shì)[J]. 中國(guó)環(huán)境科學(xué), 2020,40(8):3260-3267.
Li Ting-ting, Liang Xiao-ming, LU Qing, et al. Pollution characteristics and ozone formation potential of VOCs in the plastic foam shoe manufacturing centre [J]. China Environmental Science, 2020,40(8):3260-3267.
[11] Chen C H, Chuang Y C, Hsieh C C, et al. VOC characteristics and source apportionment at a PAMS site near an industrial complex in central Taiwan [J]. Atmospheric Pollution Research, 2019,10(4)1060- 1074.
[12] Huang Y S. Hsieh C C. Ambient volatile organic compound presence in the highly urbanized city: source apportionment and emission position [J]. Atmospheric Environment, 2019,206:45-59.
[13] 李 璇,王雪松,劉 中,等.寧波人為源VOC清單及重點(diǎn)工業(yè)行業(yè)貢獻(xiàn)分析[J]. 環(huán)境科學(xué), 2014,35(7):2497-2502.
Li Xuan, Wang Xue-song, Liu Zhong, et al. Anthropogenic VOC emission inventory and contribution from industrial sources in Ningbo [J]. Environmental Science, 2014,35(7):2497-2502.
[14] 王 超,趙 彬,楊旭東.一種評(píng)價(jià)揮發(fā)性有機(jī)物污染水平的室內(nèi)空氣質(zhì)量健康指數(shù)[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014,45(6): 2099-2104.
Wang Chao, Zhao Bin, Yang Xudong. Indoor air quality health index based on evaluation of volatile organic compounds pollution [J]. Journal of Central South University (Science and Technology), 2014,45(6):2099-2104.
[15] Zhang X F, Yin Y Y, Wen J H, et al. Characteristics, reactivity andsource apportionment of ambient volatile organic compounds (VOCs) in a typical tourist city [J]. Atmospheric Environment, 2019,215:116898.
[16] Yan Y L, Peng L, Li R M, et al. Concentration, ozone formationpotential and source analysis of volatile organic compounds (VOCs) ina thermal power station centralized area: A study in Shuozhou, China [J]. Environmental Pollution, 2017,223:295-304.
[17] Cheng H R, Guo H, Saunders S M, et al. Assessing photochemical ozone formation in the Pearl River Delta with a photochemical trajectory model [J]. Atmospheric Environment, 2010,44(34):4199- 4208.
[18] Environmental Affairs Division. Nippon steel and sumitomo metal sustainability report [R]. Japan:Nippon Steel and Sumitomo Metal Corporation, 2017.
[19] Serge Roudier, Luis Delgado Sancho, Rainer Remus, et al. Best available techniques (BAT) reference document for iron and steel productionp [R]. [S.l.]: Joint Research Centre JCR69967, 2012.
[20] 徐靜穎,卓建坤,姚 強(qiáng).燃煤有機(jī)污染物生成排放特性與采樣方法研究進(jìn)展[J]. 化工學(xué)報(bào), 2019,70(8):2823-2834.
Xu Jingying, Zhuo Jiankun, Yao Qiang.Research progress on formation, emission characteristics and sampling methods of organic compounds from coal combustion [J].CIESC Journal, 2019,70(8): 2823-2834.
[21] 程 杰.燃煤電廠揮發(fā)性有機(jī)污染物排放機(jī)理及脫除研究[D]. 北京:華北電力大學(xué), 2019.
CHENG Jie. Study on emission mechanism and removal of volatile organic pollutants from coal-fired power plants [D]. Beijing: North China Electric Power University, 2019.
[22] 范志威,周俊虎,谷月玲,等.頂空固相微萃取與色質(zhì)聯(lián)用研究煤中揮發(fā)性有機(jī)物[J]. 煤炭科學(xué)技術(shù), 2004,32(10):0053-0055.
An Zhi-wei, Zhou Jun-hu, Gu Yue-ling, et al.Research on volatile organic matter of coal with top solid phase micro-extraction and color-quality combination [J]. Coal Science and Technology, 2004, 32(10):0053-0055.
[23] 國(guó)家統(tǒng)計(jì)局.2019年國(guó)家統(tǒng)計(jì)年鑒[EB/OL]. https://data.stats. gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2019.
National Bureau of Statistics. National statistical yearbook 2019 [EB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2019.
[24] 劉 政,徐晨曦,陳軍輝,等.典型鋼鐵企業(yè)揮發(fā)性有機(jī)物排放量測(cè)算及組分特征[J]. 中國(guó)環(huán)境科學(xué), 2020,40(10):4292-4303.
Liu Zheng, Xu Chen-xi, Chen Jun-hui, et al. Emission estimation and component characteristics of volatile organic compounds in typical iron and steel enterprise. [J]. China Environmental Science, 2020,40(10):4292-4303.
[25] 劉亞男,鐘連紅,閆 靜,等.民用燃料燃燒碳質(zhì)組分及VOCs排放特征[J]. 中國(guó)環(huán)境科學(xué), 2019,39(4):1412-1418.
Liu Ya-nan, Zhong Lian-hong, Yan Jing, et al. Carbon compositions and VOCs emission characteristics of civil combustion fuels. [J]. China Environmental Science, 2020,40(10):4292-4303.
[26] 李國(guó)昊,魏 巍,程水源,等.煉焦過程VOCs排放特征及臭氧生成潛勢(shì).北京工業(yè)大學(xué)學(xué)報(bào), 2014,1(40):91-99.
Li Guo-hao, Wei Wei, Cheng Shui-yuan, et al. Emission characterization and ozone formation potential of VOCs during the coking process [J]. Journal of Beijing University of Technology, 2014,1(40):91-99.
[27] 王海風(fēng),秦 松,姜 曦,等.鋼鐵工業(yè)燒結(jié)過程VOCs減排研究進(jìn)展[J]. 鋼鐵, 2018,53(1):7-13.
Wang Hai-feng, Qin Song, Jiang Xi, et al. Research development of VOCs emission reduction during iron ore sintering in steel industry [J]. Iron & Steel, 2018,53(1):7-13.
[28] Li J, He X, Pei B, et al. The ignored emission of volatile organic compounds from iron ore sinter process [J]. Journal of Environmental Sciences, 2019,77:282-290.
[29] 苗沛然.鋼鐵工業(yè)揮發(fā)性有機(jī)物(VOCs)排放特性研究[J]. 環(huán)境與發(fā)展, 2017,(2):79-86.
Miao Peiran. Research on VOCs emission characteristics in sintering process [J]. Environment and Development, 2017,(2):79-86.
[30] Wang H F , Zhang C X , Qie J M , et al. Development trends of environmental protection technologies for Chinese steel industry [J]. Journal of Iron and Steel Research, International, 2017.
Influence of coking coal ratio on emission characteristics of volatile organic compounds in sintering flue gas.
LUO Yun-fei1, WANG Yi-fan1, LI Jun-jie3, YU Zheng-wei1, WEI Jin-chao3, LONG Hong-ming1,2*
(1.School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui 243032, China;2.Anhui Province Key Laboratory of Metallurgical Engineering & Resources Recycling (Anhui University of Technology), 243002 Maanshan, PR China;3.MCC Changtian International Engineering Co., Ltd., Changsha 410205, Hunan)., 2021,41(9):4077~4084
The PF-300 portable methane, total hydrocarbon, and non-methane total hydrocarbon tester was used to analyze the volatile organic compound content of the flue gas generated in the sintering cup experiment, and the effect of the sintering fuel coke-to-coal ratio on the emission characteristics of flue gas volatile organic compounds was studied.: Volatile organic compounds are continuously released during the sintering process, and their emission trends are consistent with NO; the generation of TVOCs and MHC is significantly related to the volatile content of pulverized coal and coke powder. When pulverized coal is used as the main fuel, appropriate mixing Coke powder not only has a physical emission reduction effect on TVOCs and MHC, but also has the effect of coal coke mixing and synergistic emission reduction. At the same time, a domestic steel sintering machine was tested for TVOCs emission concentration and sub-sample composition, which showed that the volatile organic compound emission concentration in the flue gas of the steel sintering machine was higher, and the result was consistent with the curve obtained from the sintering cup experiment; the sintering process VOCs was tested separately. The main compounds are ethyl lactate, acetone, benzene, toluene, n-hexane and so on.
sintering;coking coal ratio;volatile organic compounds;emission characteristics;industrial testing
X511,TQ132.32
A
1000-6923(2021)09-4077-08
羅云飛(1993-),男,甘肅定西人,安徽工業(yè)大學(xué)碩士研究生,主要從事燒結(jié)煙氣污染物減排技術(shù)研究.發(fā)表論文3篇.
2021-01-28
國(guó)家自然科學(xué)基金重點(diǎn)資助項(xiàng)目(U1660206);國(guó)家自然科學(xué)基金面上資助項(xiàng)目(51674002)
* 責(zé)任作者, 教授, yaflhm@126.com