張晶晶,陳 娟*,王沛芳,王 超,高 寒,胡 煜
中國(guó)典型湖泊四大類抗生素污染特征
張晶晶1,2,陳 娟1,2*,王沛芳1,2,王 超1,2,高 寒1,2,胡 煜1,2
(1.河海大學(xué),淺水湖泊綜合治理與資源開(kāi)發(fā)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210098;2.河海大學(xué)環(huán)境學(xué)院,江蘇 南京 210098)
基于已有文獻(xiàn)資料數(shù)據(jù),以中國(guó)東部平原湖區(qū)(31個(gè)),蒙新湖區(qū)(4個(gè)),二龍湖,青海湖及撫仙湖共38個(gè)典型湖泊為研究對(duì)象,總結(jié)分析四大類常用抗生素(四環(huán)素類,磺胺類,喹諾酮類和大環(huán)內(nèi)酯類)在湖泊水體和沉積物中的污染特征.結(jié)果表明,四大類抗生素污染在中國(guó)典型湖泊中普遍存在,其中水體中抗生素污染水平依次為磺胺類(2147ng/L)>喹諾酮類(1458ng/L)> 四環(huán)素類(481ng/L)> 大環(huán)內(nèi)酯類(205ng/L),沉積物中抗生素的分布具有垂向差異特征,表層沉積物抗生素濃度高于深層沉積物.抗生素檢出濃度在不同湖區(qū)間存在較大差異,其中東部平原湖區(qū)水體和沉積物中抗生素濃度顯著高于其他湖區(qū).相比入湖河流,湖區(qū)(如太湖貢湖灣和青海湖)水體中抗生素污染相對(duì)較高,表明湖區(qū)可能作為抗生素的匯集地.湖泊水體中的抗生素濃度分布呈現(xiàn)季節(jié)性差異,如太湖水體中抗生素濃度在春,夏及冬季高于秋季,而鄱陽(yáng)湖,白洋淀和二龍湖在旱季(4月)高于雨季(8月);而湖泊沉積物中抗生素季節(jié)性差異較不明顯,這可能與抗生素在沉積物中的遷移性有關(guān).
抗生素;湖泊;污染特征;湖泊分區(qū)
抗生素是由微生物產(chǎn)生的具有抗病原體或其他活性的一類次級(jí)代謝產(chǎn)物,已被廣泛應(yīng)用于人和動(dòng)物疾病的防治,或是添加于飼料中促進(jìn)動(dòng)物生長(zhǎng)發(fā)育.自首次發(fā)現(xiàn)青霉素以來(lái),抗生素的合成,生產(chǎn)和使用成為常態(tài).由于抗生素在極低濃度下依然具有活性,并且會(huì)誘導(dǎo)微生物產(chǎn)生耐藥性[1],對(duì)環(huán)境中微生物群落的結(jié)構(gòu)和功能造成損害,現(xiàn)已被公認(rèn)為環(huán)境中的新型污染物.自然環(huán)境中大約有200~220種抗生素,根據(jù)其不同的功能化學(xué)結(jié)構(gòu),抗生素可分為10大類:氨基糖苷類,β-內(nèi)酰胺類,林可酰胺類,大環(huán)內(nèi)酯類(MLs),多肽類,喹諾酮類(QNs),磺胺類(SAs),四環(huán)素類(TCs)和氯霉素類等[2],其中,SAs, TCs, QNs, MLs是中國(guó)消費(fèi)量最大的四類抗生素[3-4].抗生素可以通過(guò)各種途徑進(jìn)入到環(huán)境中,抗生素制造業(yè),醫(yī)院,污水處理廠,畜牧業(yè)等均是環(huán)境中抗生素的潛在貢獻(xiàn)者[5].研究顯示,人體或動(dòng)物攝入抗生素后不能將它完全吸收,大部分抗生素以母體化合物或代謝產(chǎn)物的形式通過(guò)排泄物進(jìn)入環(huán)境中[6].抗生素在環(huán)境中遷移轉(zhuǎn)化的最終歸宿是水體[7],進(jìn)入水體的抗生素會(huì)吸附在懸浮顆粒上并沉降至沉積物中[8],加大其分解難度[9].自然流域沉積物中的抗生素濃度一般為納克(ng)級(jí),但各流域水體周邊生產(chǎn)消費(fèi)的抗生素總量存在較大差異,可能導(dǎo)致不同流域沉積物中的抗生素分布差異顯著[10].近年來(lái),在世界各地的河流,湖泊,海灣和海岸沿岸[11-17]中均發(fā)現(xiàn)了多種抗生素,其中城市溪流[18]以及牲畜和水產(chǎn)養(yǎng)殖場(chǎng)周圍的地表水中抗生素濃度相對(duì)較高[19].湖泊作為重要水生態(tài)系統(tǒng),其環(huán)境質(zhì)量與人類健康息息相關(guān).目前已有研究主要集中在湖泊抗生素的污染現(xiàn)狀及生態(tài)影響,但大多局限于單個(gè)或少數(shù)幾個(gè)湖泊,且研究的空間和時(shí)間跨度較小,缺乏對(duì)中國(guó)湖泊抗生素污染特征的系統(tǒng)認(rèn)識(shí),成為影響中國(guó)湖泊抗生素生態(tài)風(fēng)險(xiǎn)評(píng)估和科學(xué)控制措施制定的瓶頸問(wèn)題.本文根據(jù)已有文獻(xiàn)資料,以我國(guó)東部平原湖區(qū)(31個(gè)),蒙新湖區(qū)(4個(gè))中的典型湖泊及位于東北平原與山地湖區(qū)的二龍湖,位于青藏高原湖區(qū)的青海湖和位于云貴高原湖區(qū)的撫仙湖為研究對(duì)象,分析探明四大類常用抗生素(SAs, TCs, QNs, MLs)在湖泊水體和沉積物中的污染特征,對(duì)比揭示不同湖區(qū),不同介質(zhì),不同季節(jié)的污染水平差異,為湖泊抗生素的污染控制與風(fēng)險(xiǎn)評(píng)估提供數(shù)據(jù)支撐,為湖泊抗生素的科學(xué)治理提供參考依據(jù).
本文基于中國(guó)知網(wǎng)(http://www.cnki.net/)和Web of Science(http://apps.webofknowledge.com)數(shù)據(jù)庫(kù)平臺(tái),選擇關(guān)鍵詞“antibiotics”+“l(fā)ake”(包括具體湖泊名稱)作為檢索策略,檢索時(shí)間范圍為2000年1月至2020年10月,篩選針對(duì)中國(guó)湖泊抗生素的研究,最終獲得有效論文74篇,包括中文32篇,英文42篇,涉及不同湖區(qū)38個(gè)湖泊,覆蓋14個(gè)省份與直轄市,不同湖區(qū)抗生素相關(guān)研究數(shù)量占比見(jiàn)圖1.參考Xu等[20]對(duì)天然湖泊抗生素研究的數(shù)據(jù)分析方法,湖區(qū)及大類抗生素總污染水平計(jì)算方法為加權(quán)平均法,湖泊總污染水平計(jì)算方法為不同種類抗生素濃度值相加.使用Origin 8.5 軟件繪制典型湖泊四大類抗生素分布差異的箱式圖,并且使用SPSS 22.0軟件(SPSS Inc., Chicago, IL, USA)中的Pearson相關(guān)性分析方法揭示不同典型湖泊四大類抗生素分布的相關(guān)性.
圖1 中國(guó)不同湖區(qū)抗生素相關(guān)研究數(shù)量占比
總體而言,東部平原湖區(qū)的抗生素污染水平高于其他湖區(qū)湖泊.東部平原湖區(qū)湖泊面積約占全國(guó)湖泊總面積的27.5%,是中國(guó)湖泊分布密度最大的地區(qū)之一.該區(qū)域內(nèi)湖泊水深較淺,生物生產(chǎn)力較高,種群類型和生態(tài)系統(tǒng)較為復(fù)雜,受人類活動(dòng)影響強(qiáng)烈,是中國(guó)湖泊抗生素現(xiàn)狀研究涉及最多的區(qū)域.某一大類抗生素中的不同抗生素也會(huì)因?yàn)槠洳煌沫h(huán)境行為(例如,吸附,光解和生物降解效應(yīng))導(dǎo)致其檢出頻率不同,如NOR的檢出率高于OFL[21].四大類抗生素的總污染水平高低順序依次是Sas (2147ng/L)>QNs (1458ng/L)>TCs(481ng/L)>MLs(205ng/L).
SAs具有抗菌譜廣,價(jià)格低廉,化學(xué)性質(zhì)穩(wěn)定,使用方便等優(yōu)點(diǎn),被廣泛用于牲畜養(yǎng)殖業(yè)中,是使用量最大的獸用抗菌藥之一.調(diào)查表明常用的獸用SAs主要是磺胺嘧啶(SDZ),磺胺間甲氧嘧啶,磺胺二甲嘧啶,磺胺氯噠嗪,磺胺氯吡嗪等,其中SDZ使用量較高[22].SAs在水體中具有較好的溶解性和化學(xué)穩(wěn)定性,是自然水環(huán)境中最常見(jiàn)的抗生素類藥物.由于SAs的抑菌性較強(qiáng),導(dǎo)致微生物對(duì)它的降解作用偏弱,在環(huán)境中主要通過(guò)化學(xué)降解,水解等非生物作用消減去除.在我國(guó)五大湖區(qū)的38個(gè)典型湖泊水體中均檢出SAs,其中磺胺甲惡唑(SMX), SDZ,磺胺甲嘧啶(SMZ),磺胺塞唑(STZ)和甲氧芐氨嘧啶(TMP)為主要抗生素類型.湖泊水體中單種SA濃度范圍為n.d.~771ng/L,不同湖泊水體中SAs總污染濃度依次為二龍湖(2017~2018年,771ng/L)>龍感湖(2018年,659ng/L)>太湖(2017年,577ng/L)>月湖(2017年,270ng/L)>洪湖(2015年,243ng/L)>鄱陽(yáng)湖(2014~2015年,126ng/L);不同湖區(qū)SAs總平均污染濃度依次是東部平原湖區(qū)(1308ng/L)>二龍湖(771ng/L)>蒙新湖區(qū)(65.92ng/L)>青海湖(1.82ng/L)>撫仙湖(0.12ng/L)(表1).
表1 湖泊水體中主要磺胺類抗生素檢出濃度范圍(ng/L)
注:-:無(wú)檢測(cè)數(shù)據(jù);n.d.:低于檢出限.
圖2 典型湖泊水體中磺胺類抗生素的濃度比較
箱體上不同字母a,b和c代表p<0.05,即差異顯著
如圖2所示,在選取的5個(gè)典型湖泊中,SAs在固城湖與鄱陽(yáng)湖及洞庭湖與鄱陽(yáng)湖之間存在顯著分布差異.SAs在湖泊水體中的高污染水平,與其在水產(chǎn)養(yǎng)殖中大量使用有關(guān)[47].Li等[48]于2017年6月(雨季),2017年10月(旱季)和2018年5月在二龍湖共采集了69個(gè)表層水體樣品,分析了五種SAs的污染特征,發(fā)現(xiàn)SMX的濃度范圍為67.85~2231ng/L,平均濃度為771ng/L,高于中國(guó)東北地區(qū)抗生素污染嚴(yán)重的飲馬河流域.二龍湖總面積的40%以上為水產(chǎn)養(yǎng)殖區(qū),且遼源市的生活污水和工業(yè)廢水大部分出水排入二龍湖,這可能是二龍湖SMX嚴(yán)重污染的原因[46].相比河流中SMX的檢出濃度(中國(guó)長(zhǎng)江(2018年):3.86ng/L,巴西Barigui河(2019年):3.80 μg/L[49-50],中國(guó)湖泊中SMX污染水平較高.而在肯尼亞內(nèi)羅畢河(2014年)的SMX檢出濃度高達(dá)13800ng/L,與沿岸高人口密度,抗生素大量消費(fèi)且生活污水直排入河有關(guān)[51].廈門市蓮花水庫(kù)中未檢出SMX[52],大連市碧流河水庫(kù)中檢出較低濃度SMX(0~15ng/L)[53],以上兩個(gè)水庫(kù)均為飲用水源地,其低污染水平與水庫(kù)周邊較少的農(nóng)業(yè)活動(dòng)有關(guān).根據(jù)美國(guó)食品和藥物管理局報(bào)道,SMX在中國(guó)的生產(chǎn)規(guī)模和使用頻率是世界上最高的,故SMX是需要重點(diǎn)關(guān)注的SAs類別[54].與太湖水體中TMP濃度(313ng/L)相比,海河流域(71.80ng/L)的TMP污染程度較輕[55].總體來(lái)看,中國(guó)湖泊中SAs污染水平可能與人口密度和人類活動(dòng)強(qiáng)度相關(guān)[20,46,56],在人口密度相對(duì)東部平原湖區(qū)較低的蒙新湖區(qū),青海湖和撫仙湖周圍,SAs的污染水平較低.
TCs是由鏈霉菌產(chǎn)生的一類廣譜抗生素,在化學(xué)結(jié)構(gòu)上屬于多環(huán)并四苯羧基酰胺母核的衍生物.TCs主要包括四環(huán)素(TCC),土霉素(OTC),金霉素(CTC)和強(qiáng)力霉素(DCC)等.TCs由于成本低廉,使用方便且具有廣譜殺菌性及低毒性,被廣泛應(yīng)用于農(nóng)業(yè),畜牧業(yè),在畜牧養(yǎng)殖中常作為抗病藥物,生長(zhǎng)促進(jìn)劑等添加于飼料中.肯尼亞每年有14.6t的抗生素用于畜禽生產(chǎn), 其中TCs占比為56%[57];TCs也是中國(guó)使用最多的藥物添加劑,2003年中國(guó)僅OTC產(chǎn)量高達(dá)10000t,占世界OTC生產(chǎn)總量的65%[58].在重點(diǎn)關(guān)注的38個(gè)典型湖泊中,18個(gè)湖泊水體中檢出了較高濃度的TCs,其中TCC, OTC, CTC和DCC為主要抗生素類別.湖泊水體中單種TC濃度范圍為n.d.~2633ng/L, 不同湖泊的水體中TCs總污染濃度依次為太湖(2013年,3990ng/L)>洪湖(2015年,1254ng/L)>駱馬湖(2019年,330ng/L)>鄱陽(yáng)湖(2014~2015年,117ng/L)>巢湖(2012年,61.40ng/L);不同湖區(qū)TCs總平均污染濃度依次是東部平原湖區(qū)(465ng/L)>蒙新湖區(qū)(15.06ng/L)>青海湖(0.48ng/L)>撫仙湖(0.12ng/L)(表2).
表2 湖泊水體中四環(huán)素類主要檢出濃度(ng/L)
注:-:無(wú)檢測(cè)數(shù)據(jù);n.d.:低于檢出限.
如圖3所示,在選取的5個(gè)典型湖泊中,TCs均無(wú)顯著分布差異.Qin等[25]于2013年8月在引江濟(jì)太工程引水期采集9個(gè)太湖貢湖灣的水樣和5個(gè)入湖河流望虞河的水樣,檢測(cè)結(jié)果顯示TCs濃度范圍為1082~15310ng/L,平均濃度為3920±3479ng/L;相比望虞河,貢湖灣水體抗生素濃度較高,而引水工程對(duì)貢湖灣的抗生素污染負(fù)荷有一定的削減作用[25].貢湖灣北部灣中檢測(cè)出微克級(jí)的TCs濃度與該區(qū)域城鎮(zhèn)化程度較高有關(guān),而作為人類疾病治療常用抗生素,TCs在貢湖灣北部灣的使用量遠(yuǎn)高于貢湖灣南部灣的農(nóng)村地區(qū)[59].
圖3 典型湖泊中四環(huán)素類抗生素的濃度比較
箱體上不同字母a,b和c代表p<0.05,即差異顯著
Xu等[20]于2017年1月,4月,7月和10月在太湖流域采集水體樣品,對(duì)其中4種TCs進(jìn)行測(cè)定,TCs濃度范圍為0.10~83.80ng/L,遠(yuǎn)低于Qin等[25]在2013年的檢測(cè)結(jié)果.與海洋和江河水體相比,渤海灣TCC濃度(2008年,n.d.~30ng/L)與白洋淀湖(2009年,27.7ng/L)相當(dāng)[60],黃浦江(2009年,n.d.~114ng/L)介于洪湖與白洋淀湖之間[61].已有研究表明,進(jìn)入動(dòng)物體內(nèi)的TCC大部分不能被機(jī)體完全吸收,經(jīng)過(guò)代謝后仍有50%~80%以原藥或者代謝物形式進(jìn)入環(huán)境,這可能可以解釋河湖水體中較高的TCC濃度[62].對(duì)于另兩種TCs(OTC和CTC)而言,大部分湖泊中的OTC濃度低于長(zhǎng)江(2012年,n.d.~22.5ng/L)和黃浦江(2012年,n.d.~219ng/ L)[63-64];而CTC在太湖和洪湖的污染濃度均較高,分別達(dá)到673ng/L和590ng/L,表明CTC可能是太湖流域和洪湖流域主要的TCs污染類型[59,65].城市湖泊水體中抗生素的濃度水平可以在一定程度上反映了湖泊周邊區(qū)域抗生素的使用及排放特征[40].例如,位于武漢市區(qū)的南湖的DCC濃度高達(dá)20.43ng/L,高于另外兩個(gè)武漢市區(qū)湖泊沙湖(11.30ng/L)和東湖(9.94ng/L)[40],南湖較高的DCC污染水平可能受到周邊環(huán)境中醫(yī)療廢水,工業(yè)污水,科研單位實(shí)驗(yàn)廢水及居民生活污水等多種污染源的影響[66].
QNs是一類人工合成的廣譜類抗菌藥,是喹諾酮的哌嗪基派生物,在治療人和動(dòng)物細(xì)菌性感染方面具有良好治療效果.QNs的使用量位于抗感染藥物前列,2009 年占據(jù)全球抗生素17%的市場(chǎng)份額[67]. WHO(1998年)調(diào)查顯示[68],美國(guó),日本,韓國(guó)和歐盟等國(guó)家和組織的年消費(fèi)QNs約為120噸;而中國(guó)高達(dá)1820噸,其中諾氟沙星(NOR),環(huán)丙沙星(CIP)和氧氟沙星(OFX)的生產(chǎn)量最大[69].在重點(diǎn)關(guān)注的38個(gè)中國(guó)典型湖泊中,28個(gè)湖泊水體中有QNs檢出,其中NOR,CIP,OFX,依諾沙星(ENO),恩諾沙星(ENR)和氟甲喹(FLU)為主要抗生素類別.湖泊水體中單種QN濃度范圍為n.d.~2635ng/L,各湖泊水體中QNs總污染水平依次為白洋淀湖(2018年,3774ng/L)>二龍湖(2017~2018年,840ng/L)>太湖(2017年, 562ng/L)>巢湖(2012年,320ng/L)>月湖(2017年, 267ng/L)>南湖(2017年,105ng/L),不同湖區(qū)QNs總平均污染水平依次是二龍湖(840ng/L)>東部平原湖區(qū)(613ng/L)>蒙新湖區(qū)(59.12ng/L)>撫仙湖(3.40ng/L)>青海湖(0.74ng/L)(表3).
表3 湖泊水體中主要喹諾酮類檢出濃度(ng/L)
續(xù)表3
注:-:無(wú)檢測(cè)數(shù)據(jù);n.d.:低于檢出限.
圖4 典型湖泊中喹諾酮類抗生素的濃度比較
箱體上不同字母a,b和c代表p<0.05,即差異顯著
如圖4所示,在選取的5個(gè)典型湖泊中,QNs均無(wú)顯著分布差異.王瑞杰等[39]在位于寧波市市中心的月湖中檢測(cè)到QNs濃度高達(dá)267ng/L,可能與月湖周邊人口密集區(qū)生活污水大量排放有關(guān).相比太湖貢湖灣北部灣(331ng/L),南部灣檢測(cè)的OFX濃度較高(474ng/L),這與南部灣農(nóng)村人口居多,牲畜養(yǎng)殖業(yè)發(fā)達(dá),且OFX作為人畜共用抗生素在該區(qū)域大量使用有關(guān)[59].Zhang等[33]發(fā)現(xiàn)白洋淀湖中存在較高的QNs生態(tài)風(fēng)險(xiǎn),其中FLU(2635ng/L)檢出濃度最高,這與當(dāng)?shù)氐男笄蒺B(yǎng)殖業(yè)中FLU的廣泛應(yīng)用有關(guān).盡管FLU在白洋淀等少數(shù)幾個(gè)湖泊中高濃度檢出,但相比其他QNs類型,FLU在38個(gè)典型湖泊中的檢出頻率較低,可能與FLU在水環(huán)境中易被光解和生物降解去除有關(guān)[21].對(duì)于另外兩種QNs(CIP和NOR),相比歐洲河流水體中的檢出濃度(CIP:513ng/L; NOR:33ng/L),我國(guó)東北平原與山地湖區(qū)的二龍湖(四平市飲用水源地)水體中CIP和NOR濃度較高,分別達(dá)到645ng/L和179ng/L[70],暗示QNs類抗生素在該區(qū)域可能存在潛在生態(tài)風(fēng)險(xiǎn)[46].
MLs是指鏈霉菌產(chǎn)生的廣譜抗生素,具有基本的內(nèi)酯環(huán)結(jié)構(gòu),對(duì)革蘭陽(yáng)性菌和革蘭陰性菌均有抑制作用,尤其能有效殺滅支原體,衣原體,軍團(tuán)菌,螺旋體和立克次體,對(duì)治療呼吸道感染發(fā)揮重要作用[86],主要用于人類疾病治療[39].在38個(gè)典型湖泊中,MLs在19個(gè)湖泊水體中檢出,其中紅霉素(ETM),羅紅霉素(RTM),阿奇霉素(ATM)和泰樂(lè)菌素(TYL)是主要的抗生素類別.相比SAs, TCs和QNs, MLs在湖泊水體中的檢出濃度最低,這可能與其高疏水性,強(qiáng)親脂性以及沉積物對(duì)MLs的強(qiáng)吸附性有關(guān)[71].湖泊水體中單種ML濃度范圍為n.d.~566ng/L,各湖泊水體中MLs總污染水平依次為駱馬湖(2019年,644ng/L)>淀山湖(2018年,564ng/L)>太湖(2017年,432ng/L)>月湖(2017年,227ng/L)>東湖(2017年,195ng/L)>巢湖(2012年,136ng/L),不同湖區(qū)MLs總平均污染水平依次是東部平原湖區(qū)(197ng/L)>蒙新湖區(qū)(5.28ng/L)>撫仙湖(2.25ng/L)>青海湖(0.61ng/L)(表4).
如圖5所示,在選取的5個(gè)典型湖泊中,MLs在洞庭湖與鄱陽(yáng)湖之間存在顯著分布差異.楊宇軒等[38]對(duì)駱馬湖及其入湖河流表層水體中的MLs的調(diào)查結(jié)果顯示,湖區(qū)RTM的最高濃度高達(dá)566ng/L.同時(shí)在太湖水體中檢測(cè)出了較高濃度的RTM (60.2ng/L),與蓮花水庫(kù)濃度相當(dāng)(72.58ng/L),而其余湖泊的污染水平與河流水體一致,比如海河(2008年,n.d.~12ng/L),松花江(2016年,0.2~11.5ng/L)和位于韓國(guó)的漢江(2005年,3~14ng/L)[72-74].在淀山湖中檢出了最高濃度的ETM(564ng/L),可能與淀山湖周邊存在的污染源如醫(yī)院等有關(guān)[23].ETM在長(zhǎng)江中下游三大淡水湖泊(太湖,洞庭湖和巢湖)中的濃度分別為0.07~1139ng/L,0.26~182ng/L和1.57~136ng/L,明顯高于長(zhǎng)江水體(8~24ng/L)[23,75].而對(duì)位于云貴高原湖區(qū)的撫仙湖的研究表明,靠近居民區(qū)的采樣點(diǎn)的抗生素濃度最高,其次為采礦區(qū),農(nóng)業(yè)區(qū)和游客區(qū),與青海湖不同的是,撫仙湖流入河流中的MLs平均濃度是湖泊中MLs的5.6倍,這可能與水體稀釋作用和抗生素降解有關(guān)[44].
表4 湖泊水體中主要大環(huán)內(nèi)酯類檢出濃度(ng/L)
注:-:無(wú)檢測(cè)數(shù)據(jù);n.d.:低于檢出限.
圖5 典型湖泊中大環(huán)內(nèi)酯類抗生素的濃度比較
箱體上不同字母a,b和c代表p<0.05,即差異顯著
相比湖泊水體中抗生素污染水平,關(guān)于湖泊沉積物中抗生素的報(bào)道相對(duì)較少,已有文獻(xiàn)主要關(guān)注東部平原湖區(qū)和蒙新湖區(qū).總體來(lái)說(shuō),湖泊沉積物中TCs和QNs的濃度水平明顯高于水體,檢出濃度均達(dá)微克級(jí),這可能與沉積物顆粒對(duì)QNs和TCs的強(qiáng)吸附性有關(guān),其中TCs可利用陽(yáng)離子吸附架橋作用對(duì)沉積物中的有機(jī)質(zhì)有較高親和力[76-77].QNs與陽(yáng)離子具有很強(qiáng)的螯合作用,延緩了它們?cè)诔练e物中的降解過(guò)程[36],進(jìn)一步導(dǎo)致 QNs 在沉積物中的殘留濃度較高.在土壤/沉積物環(huán)境中,SAs及其代謝產(chǎn)物不易發(fā)生降解,會(huì)長(zhǎng)期存在并積累于沉積物中[78],這可能是SAs在沉積物環(huán)境中的檢出濃度較高的原因.在重點(diǎn)關(guān)注的38個(gè)典型湖泊中,9個(gè)湖泊沉積物中檢出了一定濃度的抗生素,其中ETM, OFX, TCC和SDZ為主要抗生素類別.湖泊沉積物中單種抗生素濃度范圍為n.d.~2663ng/g,各湖泊沉積物中抗生素的總污染水平依次為(2015年,3888ng/g)>白洋淀湖(2018年,1623ng/g)>博斯騰湖(2012年,391ng/g)>太湖(2017年,272ng/g)>南四湖(2017年,22.43ng/g),不同湖區(qū)沉積物中抗生素總平均污染水平高低順序依次是東部平原湖區(qū)(901ng/g)>蒙新湖區(qū)(391ng/g)(表5).
表5 湖泊沉積物中主要檢出抗生素及濃度(ng/g)
注:-:無(wú)檢測(cè)數(shù)據(jù);n.d.:低于檢出限.
Okugbe等[80]對(duì)比了城鄉(xiāng)湖泊(太湖,玄武湖,五龍?zhí)?沉積物中7種抗生素的垂直分布規(guī)律,結(jié)果表明太湖抗生素總濃度高于玄武湖和五龍?zhí)?表層沉積物抗生素濃度基本高于深層,且抗生素濃度一般隨沉積物深度的增加而降低.可能原因?yàn)樵诔掷m(xù)的點(diǎn)源和面源污染下,湖泊附近醫(yī)療廢水和生活污水從地表徑流再到湖泊,使得湖泊表層沉積物匯集了大量抗生素,同時(shí)在湖泊沉積物內(nèi)抗生素的移動(dòng)或再分配率較低[81].而Li等[45]對(duì)青海湖及其入湖河流沉積物樣本中的83種目標(biāo)抗生素等微污染物進(jìn)行定量分析,包括抗生素的降解產(chǎn)物;研究表明由于紅霉素的降解產(chǎn)物AETM的Kd值最大,即具有高吸附性和強(qiáng)疏水性,使其在沉積物中占主導(dǎo)地位[45].
洪湖沉積物中SAs總濃度高達(dá)706ng/g,可能與洪湖廣泛的水產(chǎn)養(yǎng)殖面積相關(guān).中國(guó)珠江(n.d.~ 3.24ng/g)和美國(guó)Choptank River(n.d.~0.82ng/g)中SAs濃度低于10ng/g,低于中國(guó)湖泊沉積物中SAs濃度[82,83].在白洋淀湖的沉積物中檢測(cè)出了較高濃度的OFX(260ng/g),明顯高于美國(guó)明尼蘇達(dá)州的湖泊[84](2014年,66.10ng/g)和美國(guó)的密歇根湖[85](2009~2010年,7.7ng/g)沉積物中的OFX濃度.據(jù)Li等報(bào)道[86],新疆畜牧業(yè)發(fā)達(dá),而大部分農(nóng)場(chǎng)又遠(yuǎn)離城市無(wú)基本污水處理設(shè)施,導(dǎo)致大量殘余抗生素的廢水排入自然環(huán)境,進(jìn)一步富集至湖泊沉積物中.在屬于蒙新湖區(qū)的博斯騰湖表層沉積物中發(fā)現(xiàn)QNs類占主導(dǎo)地位,尤其是CIP(213ng/g);同時(shí)靠近城區(qū)和河口的沉積物采樣點(diǎn)中抗生素污染濃度普遍偏高,與水體結(jié)果一致[42].Zhang等[87]發(fā)現(xiàn)QNs的高污染水平可能由于其為某些抗生素分解的副產(chǎn)物,同時(shí)抗生素的降解產(chǎn)物可能比母體抗生素毒性更大,加劇抗生素污染的嚴(yán)重性[88-89].在洪湖沉積物中檢出了微克級(jí)濃度的TCC(2663ng/g),遠(yuǎn)高于三峽庫(kù)區(qū)長(zhǎng)壽湖中TCC濃度(12.81ng/g)[90];同樣也在洪湖沉積物中檢出了較高濃度OTC和CTC,分別為68.45和438ng/g,進(jìn)一步表明人類活動(dòng)對(duì)洪湖沉積物生態(tài)環(huán)境造成了影響[56].而河北石家莊汪洋河沉積物中TCC濃度(4.23~16799ng/g)遠(yuǎn)高于中國(guó)湖泊[91],可能由于該河流為河北高新技術(shù)產(chǎn)業(yè)開(kāi)發(fā)區(qū)污水處理系統(tǒng)出水的唯一接收水體.MLs在湖泊沉積物中的低檢出濃度可能與該藥物主要用于人類疾病治療有關(guān)[10].其中ETM在湖泊沉積物中的最高濃度為27.7ng/g(太湖),低于海河沉積物(67.7ng/g)和黃河沉積物(49.8ng/g)[73].
在同一湖泊中抗生素的濃度往往呈現(xiàn)季節(jié)差異,以東部平原湖區(qū)的典型湖泊太湖為例.對(duì)太湖抗生素濃度的實(shí)地調(diào)查已有多篇報(bào)道,但其不同季節(jié)的污染水平差異或相似性仍有待闡明.Xu等[20]對(duì)太湖流域4個(gè)季節(jié)的四大類抗生素時(shí)空分布特征進(jìn)行了調(diào)查研究,結(jié)果表明太湖流域季節(jié)差異性明顯,春,夏,冬季的污染量顯著高于秋季.抗生素在不同季節(jié)的分布差異可能是由于非生物因素導(dǎo)致的,例如流體動(dòng)力條件,風(fēng)向和風(fēng)速[92].且其一般是多個(gè)外部驅(qū)動(dòng)因素的協(xié)同作用導(dǎo)致,例如降雨既可能加劇污染——大量雨水驅(qū)動(dòng)地表徑流,而這些徑流可能攜帶抗生素進(jìn)入接收河流或湖泊,又可能是雨水匯入河湖,起到稀釋水體抗生素濃度的作用[92].抗生素在夏季的生物降解和光解作用比其他季節(jié)更強(qiáng)烈;但在夏季高溫時(shí)病原微生物更活躍,為了促進(jìn)畜禽生長(zhǎng)或防治畜禽感染疾病,畜禽和水產(chǎn)養(yǎng)殖業(yè)中抗生素的使用量可能增加[93].白洋淀旱季(4月)和雨季(8月)QNs含量的研究結(jié)果與上述太湖的研究結(jié)果相反,旱季抗生素濃度整體高于雨季[94],故降雨對(duì)抗生素起到了稀釋作用,這與對(duì)鄱陽(yáng)湖,二龍湖的研究結(jié)果一致[46,95].而對(duì)固城湖地表水中鄰近河川和蟹塘的水體抗生素進(jìn)行季節(jié)性檢測(cè)發(fā)現(xiàn),固城湖水體抗生素濃度存在明顯的季節(jié)性變化,且夏季抗生素濃度最高[26].位于蒙新湖區(qū)的烏倫古湖抗生素分布主要受周邊河流水文和氣候條件變化影響,導(dǎo)致抗生素在枯水期含量普遍高于豐水期[41].鑒于湖泊沉積物受溫度和降雨的影響程度相對(duì)湖泊水體偏低且抗生素在沉積物中遷移性較差[96],沉積物中抗生素季節(jié)性差異較水體并不明顯,還需考慮湖泊底泥擾動(dòng)時(shí)抗生素釋放至上覆水中的復(fù)雜情況.
基于文獻(xiàn)資料數(shù)據(jù),系統(tǒng)分析了跨越14個(gè)省份與直轄市的中國(guó)不同湖區(qū)共38個(gè)典型湖泊中的四大類抗生素的污染特征.中國(guó)湖泊中抗生素污染較為普遍;受人類活動(dòng)干擾大的湖泊污染程度較重,典型代表為太湖,洪湖,二龍湖及博斯騰湖,其水體和沉積物中TCs和SAs均被高濃度檢出,需重點(diǎn)關(guān)注;大部分湖泊水體旱季抗生素污染水平高于雨季,靠近污染源地區(qū)的污染水平較高,表層沉積物抗生素濃度基本高于深層沉積物.然而,中國(guó)湖泊抗生素研究仍存在以下不足:湖泊水體及沉積物中抗生素組分復(fù)雜,已有研究大多選擇某幾種抗生素進(jìn)行探討,缺乏對(duì)抗生素全貌的研究,且監(jiān)測(cè)手段缺乏時(shí)效性.已有研究大部分只考慮湖泊水體或沉積物,并未同時(shí)檢測(cè)入,出湖河流的污染情況,對(duì)于不同湖泊不同時(shí)間的抗生素污染情況難以進(jìn)行對(duì)比.目前研究區(qū)域局限于東部平原湖區(qū),其他四大湖區(qū)的研究數(shù)據(jù)較為薄弱.目前研究主要針對(duì)湖泊水體和沉積物中的抗生素污染情況,缺乏對(duì)湖泊中生物體內(nèi)抗生素的賦存和影響研究.
針對(duì)以上不足,未來(lái)研究應(yīng)從以下幾方面展開(kāi):加大自然環(huán)境中抗生素監(jiān)測(cè)技術(shù)的研發(fā)投入力度,以期可實(shí)時(shí)監(jiān)測(cè)湖泊中抗生素濃度動(dòng)態(tài)變化.加大對(duì)受人類干擾影響較小地區(qū)湖泊的關(guān)注力度,確定自然湖泊中抗生素背景濃度值,以期界定嚴(yán)重污染湖泊.為湖泊環(huán)境介質(zhì)制定抗生素的最大閾值,明確抗生素等新型污染物的環(huán)境標(biāo)準(zhǔn).針對(duì)湖泊中生物體內(nèi)抗生素濃度含量開(kāi)展研究,了解抗生素的水生生物毒理特性.
[1] Andersson D I, Hughes D. Microbiological effects of sublethal levels of antibiotics [J]. Nature Reviews Microbiology, 2014,12(7):465-478.
[2] Ben Y J, Fu C X, Hu M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review [J]. Environmental Research, 2019,169(2): 483-493.
[3] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental science & Technology, 2015,49(11):6772-6782.
[4] 孫金昭.城市生活垃圾填埋場(chǎng)中抗生素殘留濃度征及抗性基因相關(guān)性研究 [D]. 上海:華東師范大學(xué), 2017.
Sun J Z. Characteristics of antibiotics contents in municipal solid waste landfills and correlation with antibiotic resistance genes [D]. Shanghai: East China Normal University, 2017.
[5] Wang J L, Zhuan R, Chu L B. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview [J]. Science of the Total Environment, 2019,646(1):1385-1397.
[6] Hartmann A, Alder A C, Koller T, et al. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater [J]. Environmental Toxicology & Chemistry, 2010,17(3):377-382.
[7] 徐 艷,張 遠(yuǎn),郭昌勝,等.石家莊汪洋溝地區(qū)抗生素,抗性細(xì)菌和抗性基因污染特征 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2014,33(6):1174-1182.
Xu Y, Zhang Y, Guo C S, et al. Pollution characteristics of antibiotics and antibiotic-resistant bacteria and genes in Wangyanggou River, Shijiazhuang, China [J]. Journal of Agro-Environment Science, 2014, 33(6):1174-1182.
[8] Jacobsen P L, Berglind L. Persistence of oxytetracycline in sediments from fish farms [J]. Aquaculture, 1988,70(4):365-370.
[9] Samuelsen O B. Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm [J]. Aquaculture, 1989,83(1/2):7-16.
[10] 劉 潔.三峽庫(kù)區(qū)典型支流沉積物中抗生素及抗性基因多樣性研究 [D]. 重慶:重慶大學(xué), 2019.
Liu J. Study on diversity of antibiotics and resistance genes in typical tributary sediments from the Three Gorges Reservoir [D]. Chongqing: Chongqing University, 2019.
[11] Murata A, Takada H, Mutoh K, et al. Nationwide monitoring of selected antibiotics: Distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers [J]. Science of the Total Environment, 2011,409(24):5305-5312.
[12] Xu W H, Yan W, Li X D, et al. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: Concentrations, mass loading and ecological risks [J]. Environmental Pollution, 2013, 182(6):402-407.
[13] Xu W H, Zhang G, Zou S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China [J]. Water Environment Research, 2009,81(3):248.
[14] Xu J, Zhang Y, Zhou C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China [J]. Science of the Total Environment, 2014,497-498: 267-273.
[15] Tang J, Shi T Z, Wu X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment [J]. Chemosphere, 2015,122:154-161.
[16] Zhang R J, Zhang G, Zheng Q, et al. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge [J]. Ecotoxicology and Environmental Safety, 2012,80(2):208-215.
[17] Zhang R J, Tang J H, Li J, et al. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: Occurrence, distribution and ecological risks [J]. Environmental Pollution, 2013,174(3):71-77.
[18] Yang J F, Ying G G, Zhao J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China [J]. Journal of Environmental Science & Health Part B, 2011,46(3): 272-280.
[19] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J]. Environmental Science & Technology, 2011,45(5): 1827-1833.
[20] Xu Z A, Li T, Bi J, et al. Spatiotemporal heterogeneity of antibiotic pollution and ecological risk assessment in Taihu Lake Basin, China [J]. Science of the Total Environment, 2018,643:12-20.
[21] Yang J F, Ying G G, Zhao J L, et al. Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS [J]. Science of the Total Environment, 2010,408(16): 3424-3432.
[22] Kim K R, Owens G, Kwon S I, et al. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment [J]. Water Air and Soil Pollution, 2011,214(1-4):163-174.
[23] Li L, Liu D, Zhang Q, et al. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin [J]. Journal of Environmental Management, 2019,249:109396.
[24] Yan Z H, Yang H H, Dong H K, et al. Occurrence and ecological risk assessment of organic micropollutants in the lower reaches of the Yangtze River, China: A case study of water diversion [J]. Environmental Pollution, 2018,239:223-232.
[25] Qin Y W, Wen Q, Ma Y Q, et al. Antibiotics pollution in Gonghu Bay in the period of water diversion from Yangtze River to Taihu Lake [J]. Environmental Earth Sciences, 2018,77(11):419.1-419.11.
[26] Wang W X, Zhou L J, Gu X H, et al. Occurrence and distribution of antibiotics in surface water impacted by crab culturing: A case study of Lake Guchenghu, China [J]. Environmental Science and Pollution Research, 2018,25(23):22619-22628.
[27] 唐 俊,陳海燕,史陶中,等.巢湖喹諾酮及四環(huán)素類藥物污染現(xiàn)狀及來(lái)源分析 [J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013,40(6):1043-1048.
Tang J, Chen H Y, Shi T Z, et al. Occurrence of quinolones and tetracyclines antibiotics in the aquatic environment of Chaohu Lake [J]. Journal of Anhui Agricultural University, 2013,40(6):1043-1048.
[28] Han M Z, Dsouza M, Zhou C Y, et al. Agricultural risk factors influence microbial ecology in Honghu Lake [J]. Genomics Proteomics & Bioinformatics, 2019,17(1):76-90.
[29] Wang Y Q, Liu Y, Lu S Y, et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period [J]. Environmental Science and Pollution Research, 2019,26(28):28796-28807.
[30] Zhou L J, Li J, Zhang Y, et al. Trends in the occurrence and risk assessment of antibiotics in shallow lakes in the lower-middle reaches of the Yangtze River basin, China [J]. Ecotoxicology and Environmental Safety, 2019,183:109511.
[31] 劉曉暉,盧少勇.大通湖表層水體中抗生素賦存特征與風(fēng)險(xiǎn) [J]. 中國(guó)環(huán)境科學(xué), 2018,38(1):320-329.
Liu X H, Lu S Y. Occurrence and ecological risk of typical antibiotics in surface water of the Datong Lake, China [J]. China Environmental Science, 2018,38(1):320-329.
[32] Ding H J, Wu Y X, Zhang W H, et al. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China [J]. Chemosphere, 2017,184:137-147.
[33] Zhang L L, Shen L N, Qin S, et al. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no- effect concentrations (PNECs) and ecological risks by three methods [J]. Environmental Pollution, 2020,256(1):113458.1-113458.9.
[34] Zhang P W, Zhou H D, Li K, et al. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in North China [J]. Environmental Geochemistry and Health, 2018,40(4):1525-1539.
[35] Cheng D M, Liu X H, Wang L, et al. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China [J]. Science of the Total Environment, 2014,476:266-275.
[36] Li W H, Shi Y L, Gao L H, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China [J]. Chemosphere, 2012,89(11):1307-1315.
[37] Zhang G D, Liu X H, Lu S Y, et al. Occurrence of typical antibiotics in Nansi Lake's inflowing rivers and antibiotic source contribution to Nansi Lake based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020,242(12):52-69.
[38] 楊宇軒.駱馬湖表層水典型抗生素賦存特征及沉積物吸附行為研究 [D]. 徐州:中國(guó)礦業(yè)大學(xué), 2020.
Yang Y X. Occurrence characteristics of typical antibiotics in surface water of Luoma Lake and adsorption behavior on sediments [D]. Xuzhou: China University of Mining and Technology, 2020.
[39] 王瑞杰,裘錢玲琳,李國(guó)祥,等.寧波月湖水體中抗生素分布與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) [J]. 湖泊科學(xué), 2018,30(6):1616-1624.
Wang R J, QiuQian L L, Li G X, et al. Distribution characteristics and ecological risk assessment of selected antibiotics in Moon Lake, Ningbo City [J]. Journal of Lake Sciences, 2018,30(6):1616-1624.
[40] 肖鑫鑫,吳亦瀟,丁惠君,等.武漢城市湖泊抗生素及抗性基因的污染特征研究 [J]. 環(huán)境科學(xué)與技術(shù), 2019,42(3):9-16.
Xiao X X, Wu Y X, Ding H J, et al. Pollution characteristics of antibiotics and antibiotic resistance genesin urban lakes of Wuhan [J]. Environmental Science & Technology, 2019,42(3):9-16.
[41] 雷曉寧.新疆典型湖泊中抗生素的污染狀況與分布特征 [D]. 石河子:石河子大學(xué), 2014.
Lei X N. Distribution and pollution levels of antibiotics from typical lakes in Xinjiang [D]. Shihezi: Shihezi University, 2014.
[42] Lei X N, Lu J J, Liu Z L, et al. Concentration and distribution of antibiotics in water-sediment system of Bosten Lake, Xinjiang [J]. Environmental Science and Pollution Research, 2015,22(3):1670- 1678.
[43] 王倩倩.新疆阿拉山口及周邊水環(huán)境中多種抗生素的污染水平研究 [D]. 石河子:石河子大學(xué), 2016.
Wang Q Q. Pollution levels of antibiotics from aquatic environment in Alashankou Region of Xinjiang and surrounding area [D]. Shihezi: Shihezi University, 2016.
[44] Zhao B, Xu J M, Zhang G D, et al. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model [J]. Chemosphere, 2020,262:127741.
[45] Li S, Kuang Y Z, Hu J R, et al. Enrichment of antibiotics in an inland lake water [J]. Environmental Research, 2020,190:110029.
[46] Li S J, Ju H Y, Zhang J Q, et al. Occurrence and distribution of selected antibiotics in the surface waters and ecological risk assessment based on the theory of natural disaster [J]. Environmental Science and Pollution Research, 2019,26(27):28384-28400.
[47] 王 娜.環(huán)境中磺胺類抗生素及其抗性基因的污染特征及風(fēng)險(xiǎn)研究 [D]. 南京:南京大學(xué), 2014.
Wang N. Pollution characteristics and risk of sulfonamides antibiotics and their resistance genes in the environment [D]. Nanjing: Nanjing University, 2014.
[48] Li S J, Ju H Y, et al. Terrestrial humic-like fluorescence peak of chromophoric dissolved organic matter as a new potential indicator tracing the antibiotics in typical polluted watershed [J]. Journal of Environmental Management, 2018,228(12.15):65-76.
[49] Zhang G D, Lu S Y, Wang Y Q, et al. Occurrence of antibiotics and antibiotic resistance genes and their correlations in lower Yangtze River, China [J]. Environmental Pollution, 2020,257:113365.
[50] B?ger B, Surek M, Vilhena R d O, et al. Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil [J]. Journal of Hazardous Materials, 2021,402:123448.
[51] Ngumba E, Gachanja A, Tuhkanen T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya [J]. Science of the Total Environment, 2016,539:206-213.
[52] 廖 杰,魏曉琴,肖燕琴,等.蓮花水庫(kù)水體中抗生素污染特征及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) [J]. 環(huán)境科學(xué), 2020,41(9):205-211.
Liao J, Wei X Q, Xiao Y Q, et al. Pollution characteristics and risk assessment of antibiotics in Lianhua Reservoir [J]. Environmental Science, 2020,41(9):205-211.
[53] 董莞莞,何 欣,鄭洪波,等.大連碧流河水庫(kù)及河流典型抗生素污染和分布特征研究 [J]. 大連理工大學(xué)學(xué)報(bào), 2020,60(2):119-127.
Dong W W, He X, Zhen H B, et al. Research on occurrences and distribution characteristics of typical antibiotics in Biliuhe Reservoir and its inflow rivers in Dalian [J]. Journal of Dalian University of Technology, 2020,60(2):119-127.
[54] Liu X H, Lu S Y, Guo W, et al. Antibiotics in the aquatic environments: A review of lakes, China [J]. Science of the Total Environment, 2018, 627:1195-1208.
[55] Lei K, Zhu Y, Chen W, et al. Spatial and seasonal variations of antibiotics in river waters in the Haihe River Catchment in China and ecotoxicological risk assessment [J]. Environment International, 2019, 130:104919.
[56] Wang Z, Han M Z, Li E H, et al. Distribution of antibiotic resistance genes in an agriculturally disturbed lake in China: Their links with microbial communities, antibiotics, and water quality [J]. Journal of Hazardous Materials, 2020,393:122426.
[57] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006,65(5):725-759.
[58] 安清聰,張 曦,陳克嶙.動(dòng)物組織中四環(huán)素類抗生素殘留的ELISA檢測(cè)研究-土霉素抗體的制備 [J]. 畜牧與獸醫(yī), 2004,36(9):8-10.
An Q C, Zhang X, Chen K L. Detection of tetracyclines residue in animal tissues by ELISA: Preparation of anti-OTC antibodies [J]. Animal Husbandry & Veterinary Medicine, 2004,36(9):8-10.
[59] 武旭躍,鄒 華,朱 榮,等.太湖貢湖灣水域抗生素污染特征分析與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià) [J]. 環(huán)境科學(xué), 2016,37(12):4596-4604.
Wu Y H, Zou H, Zhu R, et al. Occurrence, distribution and ecological risk of antibiotics in surface water of the Gonghu Bay, Taihu Lake [J]. Environmental Science, 2016,37(12):4596-4604.
[60] Zou S C, Xu W H, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011,159(10): 2913-2920.
[61] Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China [J]. Chemosphere, 2011,82(6):822-828.
[62] 羅方園,潘根興,李戀卿,等.洪澤湖沉積物中四環(huán)素土霉素及相關(guān)抗性基因的分布特征及潛在風(fēng)險(xiǎn)分析 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2017, 36(2):369-375.
Luo F Y, Pan G X, Li L Q, et al. The distribution characteristics and potential risk of tetracycline, oxytetracycline and their corresponding genes pollution in sediment ofHongze Lake [J]. Journal of Agro- Environment Science, 2017,36(2):369-375.
[63] Yan C X, Yang Y, Zhou J L, et al. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment [J]. Environmental Pollution, 2013,175(4):22-29.
[64] Chen K, Zhou J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China [J]. Chemosphere, 2014,95(6):604-612.
[65] Tong L, Qin L T, Guan C, et al. Antibiotic resistance gene profiling in response to antibiotic usage and environmental factors in the surface water and groundwater of Honghu Lake, China [J]. Environmental Science and Pollution Research, 2020,27(25):31995-32005.
[66] Yang Y Y, Xu C, Cao X H, et al. Antibiotic resistance genes in surface water of eutrophic urban lakes are related to heavy metals, antibiotics, lake morphology and anthropic impact [J]. Ecotoxicology, 2017, 26(6):831-840.
[67] Hamad B. The antibiotics market [J]. Nature Reviews Drug Discovery, 2010,9(9):675-676.
[68] Units T. Use of quinolones in food animals and potential impact on human health [A]. 1998.
[69] Sukul P, Spiteller M. Fluoroquinolone antibiotics in the environment [J]. Reviews of Environmental Contamination and Toxicology, 2007, 191:131-162.
[70] Zuccato E, Castiglioni S, Bagnati R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment [J]. Journal of Hazardous Materials, 2010,179(1-3):1042-1048.
[71] Yue J, Cong X, Wang X Y, et al. Occurrence, seasonal variation and risk assessment of antibiotics in Qingcaosha Reservoir [J]. Water, 2018,10(2):115.
[72] Choi K, Kim Y, Park J, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea [J]. Science of the Total Environment, 2008, 405(1-3):120-128.
[73] Zhou L J, Ying G G, Zhao J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China [J]. Environmental Pollution, 2011,159(7):1877-1885.
[74] Wang W H, Wang H, Zhang W F, et al. Occurrence, distribution, and risk assessment of antibiotics in the Songhua River in China [J]. Environmental Science and Pollution Research, 2017,24(23):1-11.
[75] Chang X, Meyer M T, Liu X, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorges Reservoir in China [J]. Environmental Pollution, 2010,158(5):1444- 1450.
[76] Figueroa R A, Leonard A, Mackay A A. Modeling tetracycline antibiotic sorption to clays [J]. Environmental Science & Technology, 2004,38(2):476-483.
[77] Zhang J Q, Dong Y H. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China [J]. Journal of Hazardous Materials, 2008,151(2/3):833-839.
[78] 汪仙仙,張洪昌,沈根祥,等.典型磺胺類抗生素在稻田土中的縱向遷移 [J]. 環(huán)境化學(xué), 2018,37(8):71-79.
Wang X X, Zhang H C, Shen G X, et al. Vertical migration of typical sulfonamide antibiotics in paddy soil [J]. Environmental Chemistry, 2018,37(8):71-79.
[79] Xie Z X, Lu G H, Yan Z H, et al. Bioaccumulation and trophic transfer of pharmaceuticals in food webs from a large freshwater lake [J]. Environmental Pollution, 2017,222:356-366.
[80] Ohore O E, Addo F G, Han N N, et al. Profiles of ARGs and their relationships with antibiotics, metals and environmental parameters in vertical sediment layers of three lakes in China [J]. Journal of Environmental Management, 2020,255(2):109583.1-109583.12.
[81] Zhang S H, Pang S, Wang P F, et al. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event [J]. Environmental Science and Pollution Research, 2016,23(10):9984-9992.
[82] Arikan O A, Rice C, Codling E. Occurrence of antibiotics and hormones in a major agricultural watershed [J]. Desalination, 2008, 226(1-3):121-133.
[83] Liang X M, Chen B W, Nie X P, et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China [J]. Chemosphere, 2013,92(11):1410-1416.
[84] Kerrigan J F, Sandberg K D, Engstrom D R, et al. Sedimentary record of antibiotic accumulation in Minnesota Lakes [J]. Science of the Total Environment, 2018,621:970-979.
[85] Blair B D, Crago J P, Hedman C J, et al. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern [J]. Chemosphere, 2013,93(9):2116-2123.
[86] 李 超.新疆地區(qū)典型污染源抗生素抗性基因的污染分布的研究分析 [D]. 石河子:石河子大學(xué), 2016.
Li C. Distribution and contamination levels of ARGs from typical pollution sources in Xinjiang [D]. Shihezi: Shihezi University, 2016.
[87] Zhang S H, Gu J, Wang C, et al. Characterization of antibiotics and antibiotic resistance genes on an ecological farm system [J]. Journal of Chemistry, 2015,2015:1-8.
[88] Yan M T, Xu C, Huang Y M, et al. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China [J]. Science of the Total Environment, 2018, 631-632:840-848.
[89] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China [J]. Environment International, 2012,42(1):1-9.
[90] Lu L H, Liu J, Li Z, et al. Antibiotic resistance gene abundances associated with heavy metals and antibiotics in the sediments of Changshou Lake in the Three Gorges Reservoir area, China [J]. Ecological Indicators, 2020,113:106275.
[91] Jiang Y H, Li M X, Guo C S, et al. Distribution and ecological risk of antibiotics in a typical effluent–receiving river (Wangyang River) in north China [J]. Chemosphere, 2014,112(10):267-274.
[92] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China [J]. Environmental Pollution, 2010,158(9):2992-2998.
[93] Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010,44(19):7220-7225.
[94] Zhang L L, Shen L N, Qin S, et al. Quinolones antibiotics in the Baiyangdian Lake, China: Occurrence, distribution, predicted no- effect concentrations (PNECs) and ecological risks by three methods [J]. Environmental Pollution, 2020,256(1):113458.1-113458.9.
[95] Liang X M, Guan F L, Chen B W, et al. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China [J]. Ecotoxicology and Environmental Safety, 2020,196(6):110543.
[96] 鐘振興.磺胺抗生素在湖泊沉積物中的吸附和降解行為研究[D].重慶: 西南大學(xué), 2012.
Zhong Z X. Adsorption and degradation of sulfonamides in lake sediments [D]. Chongqing: Southwest University, 2012.
Pollution characteristics of four-type antibiotics in typical lakes in China.
ZHANG Jing-jing1,2, CHEN Juan1,2*, WANG Pei-fang1,2, WANG Chao1,2, GAO Han1,2, HU Yu1,2
(1.Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China;2.College of Environment, Hohai University, Nanjing 210098, China)., 2021,41(9):4271~4283
Based on existing literature data, we analyzed the pollution characteristics of four-type antibiotics used commonly, including tetracyclines, sulfonamides, quinolones and macrolides, in 38 typical lakes, which are distributed in eastern plain lake region (31), Mengxin lake district (4), Erlong Lake, Qinghai Lake and Fuxian Lake. The results showed that the four-type antibiotics were ubiquitous in waterbody and sediments of these lakes, and the pollution concentrations decreased as follows: SAs (2147ng/L)> quinolones (QNs, 1458ng/L)> tetracyclines (TCs, 481 ng/L)> macrolides (MLs, 205 ng/L). The antibiotics in sediments exhibited vertical difference, with higher pollution concentration in surface sediment than that in deep sediments. The antibiotics concentrations varied among different lake regions, and in the eastern plain lake region showed higher contamination level. Compared with the inflow rivers, lakes, such as the Gonghu Bay in Taihu Lake and Qinghai Lake, generally showed relatively higher contamination levels, suggesting that lakes serve as a reservoir of antibiotics. Seasonal comparison in pollution levels in waterbody of lakes showed that the antibiotic concentrations in pring, summer and winter was significantly higher than that in the autumn. For example, Poyang Lake, Baiyangdian Lake and Erlong Lake’ antibiotic pollution was higher in dry season (April) than in rainy season (August). However, antibiotics concentrations in lake sediments were comparable between different seasons, probably resulting from the migration of antibiotics in sediments.
antibiotic;lake;pollution level;lake region
X524
A
1000-6923(2021)09-4271-13
張晶晶(1997-),女,湖南永州人,碩士研究生,主要研究方向?yàn)榄h(huán)境微生物生態(tài)及抗生素抗性.發(fā)表論文1篇.
2021-02-11
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC0407604),國(guó)家自然科學(xué)基金項(xiàng)目(52022028,51779077)聯(lián)合資助
* 責(zé)任作者, 教授, chenjuanmn@hhu.edu.cn