韓長杰,肖立強,徐 陽,張 靜,李洪雷
辣椒穴盤苗自動移栽機設計與試驗
韓長杰1,肖立強1,徐 陽1,張 靜1,李洪雷2
(1.新疆農(nóng)業(yè)大學機電工程學院,烏魯木齊 830052;2. 德州福瑞特農(nóng)業(yè)機械制造有限公司,德州 253000)
針對新疆廣泛應用的半自動辣椒移栽機效率低、勞動強度大的問題,該研究設計了一種辣椒穴盤苗自動移栽機。整機主要由全自動取投苗系統(tǒng)與栽植機構組成,采用整排取苗再分苗投苗的方式,實現(xiàn)128(16列×8行)穴辣椒穴盤苗的自動取苗、投苗。在分析現(xiàn)有移栽機結構和工作原理的基礎上,確定了辣椒穴盤苗自動移栽機的整體結構,完成了全自動取投苗系統(tǒng)的關鍵參數(shù)設計;制定了全自動取投苗系統(tǒng)的氣動回路方案,并基于FluidSIM軟件進行仿真及優(yōu)化。采用平均苗高166.7 mm的辣椒苗,以取投苗成功率,栽植頻率,株距變異系數(shù),倒伏率為評價指標進行田間試驗。試驗結果表明:在工作氣壓0.4 MPa及移栽機作業(yè)速度1.4~1.7 km/h時,平均取投苗成功率為97.07%,栽植頻率為123株/min,倒伏率1.67%,株距變異系數(shù)為3.67%,各項性能指標均滿足辣椒穴盤苗移栽的農(nóng)藝要求。該研究可為自動化移栽機的研究提供參考。
農(nóng)業(yè)機械;設計;試驗;自動移栽機;辣椒穴盤苗;氣動
育苗移栽技術有提高蔬菜生長期間抗災能力、增加幼苗成活率、提高蔬菜品質等優(yōu)點,目前新疆的辣椒種植已經(jīng)開始大力推廣育苗移栽技術。新疆辣椒移栽作業(yè)以半自動辣椒移栽機為主,移栽作業(yè)時人工取苗、輸苗,勞動強度大、成本高、效率低[1-4]。辣椒穴盤苗自動移栽機可實現(xiàn)機械化自動取苗、投苗,提高工作效率,降低勞動強度,因此,辣椒穴盤苗自動移栽機是新疆地區(qū)現(xiàn)階段迫切需求的種植機械。
發(fā)達國家蔬菜移栽機的形式主要分為2類,以日本為代表的小型自動移栽機和以歐美為代表的大型自動移栽機[5-7]。小型自動移栽機如日本洋馬株式會社生產(chǎn)的PA10型及PW10型自動移栽機,久保田株式會社生產(chǎn)的A500型及SKP-100mpci型自動蔬菜移栽機,其自動化程度高、穩(wěn)定性好,但只適合小地塊壟上移栽,不適合新疆大田作業(yè)。大型自動移栽機如意大利Ferrari公司生產(chǎn)的Futura自動移栽機,美國FMC及英國Pearson生產(chǎn)的全自動移栽機,其整機體積龐大、結構復雜,無法在新疆推廣應用[8]。為滿足國內作物移栽的農(nóng)藝要求,一些學者提出了夾莖式[9-11]、夾缽式[12-16]、頂出式[17-20]等多種取投苗機構,文永雙等[21]結合頂出式和插入夾持式取苗設計了一種插入頂出式取苗裝置,解決了蔬菜穴盤苗自動取苗裝置結構復雜、取苗性能差等問題。王蒙蒙等[22]基于辣椒穴盤苗抗壓特性設計了一種曲柄擺桿式夾苗機構,對不同含水率穴盤苗適應性強、損傷小。張靜等[23]設計了一種可實現(xiàn)整排取苗間隔投苗的機械驅動式自動取投苗系統(tǒng),利用凸輪與齒輪齒條結合的機械驅動方式代替電氣裝置,完成自動取投苗作業(yè),但取投苗效率不高、結構復雜、整機質量大。作者實地調研發(fā)現(xiàn),新疆巴州良佳公司設計了一種回轉夾莖式自動移栽機,移栽效率有所提高,但該機分苗漏斗有卡苗現(xiàn)象。山東青州火絨機械制造有限公司設計了一種單擺夾缽式自動移栽機,取苗適應性好,但需要2名作業(yè)人員在兩側放置苗盤,人工成本高。
基于以上分析,為進一步提高自動移栽機的工作效率及穩(wěn)定性,本文采用整排取苗再分苗投苗的方式,由機械構件觸發(fā)機械閥,按順序控制氣缸運動,完成穴盤苗的自動移栽。通過理論與試驗,驗證辣椒穴盤苗自動移栽機設計的合理性。
辣椒穴盤苗自動移栽機如圖1所示,由懸掛主梁、栽植機構、地輪、機架、全自動取投苗系統(tǒng)組成。全自動取投苗系統(tǒng)如圖2所示,由取投苗機構、移盤機構、柔性鏈輸苗機構、氣動系統(tǒng)組成。
辣椒穴盤苗自動移栽機由拖拉機牽引,拖拉機動力輸出軸驅動的空氣壓縮機產(chǎn)生壓縮空氣為全自動取投苗系統(tǒng)提供動力,地輪驅動栽植機構和柔性鏈輸苗機構轉動。穴盤苗被移盤機構輸送至取苗位置,取投苗機構將取苗位置的穴盤苗移動至投苗位置并投入柔性鏈輸苗機構的苗杯中,柔性鏈輸苗機構將苗杯中的穴盤苗逐個投入栽植機構,由栽植機構將穴盤苗植入土壤中。
全自動取投苗系統(tǒng)的升降氣缸由機械閥DT0控制,步進氣缸、移位氣缸、分苗氣缸由機械閥DT1控制,夾苗裝置氣缸及升降控制氣缸由機械閥DT2控制。辣椒穴盤苗自動移栽機工作原理如圖3所示,柔性鏈輸苗機構每輸送8個苗杯,投苗控制裝置觸發(fā)一次機械閥DT2,夾苗裝置將8株穴盤苗投入苗杯中,取苗中,升降控制氣缸觸發(fā)機械閥DT0,升降氣缸驅動夾苗裝置及行程槽板下降,行程槽板下降至最低位置時觸發(fā)機械閥DT1,移位氣缸及分苗氣缸驅動各夾苗裝置移位合并至取苗位置,夾苗裝置固定架觸發(fā)機械閥DT2,夾苗裝置夾取8株穴盤苗;投苗中,機械閥DT0彈簧自動復位,升降氣缸驅動夾苗裝置及行程槽板上升,行程槽板上升至最高位置時觸發(fā)機械閥DT1,移位氣缸及分苗氣缸驅動各夾苗裝置移位分散至對應苗杯上方,等待投苗,同時移盤機構進行縱向移盤動作,準備執(zhí)行下次取苗過程。
辣椒穴盤苗自動移栽機性能參數(shù)如表1所示。
移盤機構用于苗盤的進給。如圖4所示,該機構由主動軸、主動鏈輪、變步距角棘輪裝置、步進氣缸、鏈條、苗盤推桿、中心導向桿、從動軸、從動鏈輪組成。作業(yè)人員將苗盤倒V型間隙卡在移盤機構中的苗盤推桿上,機械閥DT1來控制步進氣缸做往復直線運動,通過變步距角棘輪裝置驅動主動軸作間歇轉動,主動軸帶動苗盤推桿移動,使穴盤向取苗位置進給;主動軸另一端部設有摩擦輪,產(chǎn)生一定的摩擦力,防止棘輪由于慣性轉動,導致苗盤位移不準確。
2.1.1 苗盤推桿與苗穴的運動學分析
如圖5所示,將苗盤的進給運動分2個階段,第1階段從放苗盤位置,直線進給至取苗位置;第2階段取苗完成后,苗盤在左右側板的限制下,進行曲線運動,隨從動鏈輪向下彎曲,從移盤機構底部送出。為避免苗盤在運動過程中與苗盤推桿相互干涉,對苗盤推桿與苗穴的運動軌跡進行分析。
根據(jù)圖5的幾何關系有:
式中1為從動鏈輪齒數(shù);l為苗盤推桿圓心至點的距離,mm;l為點至點的距離,mm。128穴軟苗盤常規(guī)尺寸3≈100°,縱向苗穴間距為31.75 mm,l為半個縱向苗穴間距,取l=15.875 mm,且由式(1)可得1>36,為保證移盤機構動作順暢及鏈輪齒數(shù)常選奇數(shù),取1=51,計算得≥129 mm時,苗盤推桿與苗穴不相互干涉。
2.1.2 變步距角棘輪裝置的運動學分析
變步距角棘輪裝置用于苗盤的變步距角進給,實現(xiàn)兩銜接苗盤間隙的跨越。如圖6所示,變步距角棘輪裝置由棘輪、棘爪搖臂、棘爪、棘爪固定轉軸、棘爪彈簧組成,棘爪搖臂受往復運動的步進氣缸驅動,做往復擺動,棘爪隨棘爪搖臂往復擺動,棘爪受棘爪彈簧控制,始終與棘輪外邊緣接觸;棘爪搖臂帶動棘爪每次滑過的步距角大于1個正常棘齒加特殊棘齒的距離,且接近2個正常棘齒距離,即每次棘爪推動棘輪轉動1個步距角,僅當棘爪從特殊棘齒上滑過時,棘輪隨棘爪向前推進2個步距角2。移盤機構中鏈條旋轉1周可放置3個苗盤,每個苗盤對應5根(一組)苗盤推桿,每組首根苗盤推桿標記為紅色,兩銜接苗盤間隙為一個縱向苗穴間距,紅色苗盤推桿與棘輪的特殊棘齒相對位置對應不變,放置苗盤時,將苗盤起始行置于紅色苗盤推桿位置即可實現(xiàn)苗盤變步距進給。
1.主動軸 2.棘輪 3.棘爪彈簧 4.棘爪 5.棘爪搖臂 6.步進氣缸 7.連桿 8.棘爪固定轉軸 9.特殊棘齒
1.Driving shaft 2.Ratchet 3.Pawl spring 4.Pawl 5.Pawl rocker arm 6.Stepping cylinder 7.Connecting rod 8.Pawl fixed shaft 9. Special ratch
注:為步進氣缸在初始位置時與連桿鉸接點的位置;為步進氣缸在初始位置時連桿與棘爪鉸接點的位置;為步進氣缸在終止位置時與連桿鉸接點的位置;為步進氣缸在終止位置時連桿與棘爪鉸接點的位置;為步進氣缸活塞桿中心軸線至軸的垂直距離,mm;φ為棘爪搖臂的工作轉角,(°);為步進氣缸在初始位置時棘爪搖臂與軸的夾角,(°)。
Note:is the position of the hinge point of the stepping cylinder and the connecting rod when the stepping cylinder is in the initial position;is the position of the hinge point of the connecting rod and the pawl when the stepping cylinder is in the initial position;is the position of the hinge point of the stepping cylinder and the connecting rod when the stepping cylinder is at the end position;is the position of the hinge point between the connecting rod and the pawl when the stepping cylinder is at the end position;is the vertical distance from the center axis of the piston rod of the stepping cylinder to theaxis, mm;φis the working angle of the pawl rocker arm, (°);is the angle between the pawl rocker arm and theaxis when the stepping cylinder is in the initial position, (°).
圖6 變步距角棘輪裝置結構示意圖
Fig.6 Structure diagram of variable step angle ratchet device
為保證移盤位置精準,對棘輪的關鍵參數(shù)進行計算[24],設計要求棘輪轉動1周進給1個苗盤并跨越兩銜接苗盤間隙,共進給17個苗穴縱向間距,棘爪推動1個棘齒,驅動苗盤推桿前進1個縱向苗穴間距,故棘輪齒數(shù)3=17,棘輪的關鍵參數(shù)為:
式中為棘輪步距角,(°);為棘爪運動一次推過的棘齒數(shù)量;為送苗行程,mm;2為主動鏈輪齒數(shù);為節(jié)距,mm;為棘輪模數(shù);d為棘輪齒頂圓直徑,mm;為棘齒齒高,mm;d為齒根圓直徑,mm;1為棘齒齒距,mm;1為棘爪工作長度,mm;1為棘爪高度,mm。本文鏈條鏈號取10A,則=15.875 mm;128穴軟苗盤縱向苗穴間距為31.75 mm,因此送苗行程31.75 mm;按照強度要求確定模數(shù)m為7,將代入式(2)得出≈21°、2=34、d=119 mm、=5.25 mm、d=108.5 mm、1≈22 mm、1≈44 mm、1=10.5 mm。
如圖6所示,以棘輪轉動中心為原點,豎直方向作為軸建立坐標系,記φ為棘爪搖臂的工作轉角,圖中棘輪轉動中心及根據(jù)機構安裝位置給定,可得到x==148mm,棘輪各關鍵參數(shù)已知,棘輪步距角≈21°,棘爪的工作轉角應在42°~68°之間,取棘爪的工作轉角為50°,由于棘爪隨棘爪搖臂往復擺動,故棘爪搖臂的工作轉角也為50°。
為滿足機構工作要求,需同時滿足以下約束:
當機構處于初始位置時,為保證棘爪在棘輪齒根圓上,有約束式[25]:
當機構在轉動過程中,為保證搖臂轉動正常,有約束式[26]:
取不等式(4)作為設計的優(yōu)化目標,使l與l在滿足機構工作要求的條件下取得最小值,以保證變步距角棘輪裝置結構緊湊,使用Matlab對不等式(4)進行求解,最終取整得到解l=25 mm,l=146 mm。
取投苗機構用于從穴盤中自動取出穴盤苗并準確投入苗杯中。如圖7所示,該機構主要由移位氣缸、移位滑軌、分苗氣缸、分苗滑軌、夾苗裝置、升降氣缸、投苗擋片、機械閥組成。取苗行程時,分苗氣缸活塞桿收縮使夾苗裝置合并,移位氣缸活塞桿伸出使夾苗裝置移動至取苗位置,夾苗裝置夾取8株穴盤苗,升降氣缸活塞桿收縮,將穴盤苗從苗穴中取出;投苗行程時,移位氣缸活塞桿收縮使夾苗裝置移動至投苗位置,同時分苗氣缸活塞桿伸出使夾苗裝置分散至對應苗杯上方,夾苗裝置將8株穴苗準確投入苗杯中,完成1次取苗投苗的過程。取投苗機構縱向移動采用雙滑軌倒掛設計,在風沙天氣,可以減少磨粒磨損,延長使用壽命。
1.移位氣缸 2.升降氣缸 3.方管 4.夾苗裝置 5.行程槽板 6.分苗氣缸 7.機械閥DT1 8.機械閥DT2 9.移位滑軌 10.夾苗裝置固定架 11.機械閥DT0 12.限位板 13.投苗擋片
1.Shift cylinder 2.Lifting cylinder 3.Square tube 4.Seedling clamping device 5.Stroke groove plate 6.Seedling dividing cylinder 7.Mechanical valve DT1 8.Mechanical valve DT2 9.Moving slide 10.Fixing frame of seedling clamping device 11.Mechanical valve DT0 12.Limit plate 13. Seedling dropping block
注:→表示氣缸活塞桿移動方向;為移位氣缸;為升降氣缸;為分苗氣缸;下標1和2為各氣缸的運動次序。
Note: → the moving direction of cylinder rod;is shift cylinder;is lifting cylinder;is seedling dividing cylinder; subscript 1 and 2 refers to the order of movement of each cylinder.
圖7 取投苗機構工作原理圖
Fig.7 Working principle diagram of seedling picking and dropping mechanism
2.2.1 夾苗裝置
夾苗裝置用于夾取和投放辣椒苗,為實現(xiàn)準確夾取及投放苗的自動化控制,使用氣缸控制夾苗裝置的開合,夾苗裝置機構簡圖如圖8所示。
1.夾苗裝置氣缸 2.鉸接點 3.固定支點 4.夾苗臂 5.辣椒苗莖稈
1.Cylinder of seedling clamping device 2.Hinge point 3.Fixed fulcrum 4.Seedling holding arm 5.Chili seedling stem
注:L為夾苗臂總長,mm;L為夾苗臂寬度,mm;1為氣缸推力,N;F1和F2是兩側夾苗臂對辣椒苗的夾持力,N;為鉸接點氣缸壓力方向與豎直方向夾角,(°)。
Note:Lis the total length of the seedling holding arm, mm;Lis the width of the seedling holding arm, mm;1is the cylinder thrust, N;F1andF2is the clamping force of the seedling holding arms on both sides of the chili seedling, N;is the angle between the cylinder pressure direction and the vertical direction at the hinge point, (°).
圖8 夾苗裝置機構簡圖
Fig.8 Schematic diagram of seedling clamping device
為保證成功取苗,對夾苗裝置取苗狀態(tài)進行受力分析。夾苗裝置在夾持狀態(tài)下,各力之間的關系如式(5)所示:
式中為辣椒苗的重力,N;為摩擦系數(shù)。當辣椒幼苗摩擦系數(shù)較小且重力較大時,夾苗裝置可以牢固夾持辣椒幼苗,則證明夾苗裝置可以保證取苗成功。故取L=50 mm,L=10 mm,=0.49[27],=0.4 N,=5°。將已知數(shù)值代入式(5)中,可得氣缸所需的理論最小推力1=2.0 N。
2.2.2 分苗裝置
由于取苗時苗穴間距與投苗時苗杯間距不同,所以采取整排取苗再分苗的方式投苗,分苗裝置主要包括分苗導軌、分苗氣缸、方管、限位板。8個夾苗裝置安裝在8個滑塊上,相鄰夾苗裝置之間使用限位板連接,2個分苗氣缸驅動8個夾苗裝置在分苗導軌上運動,夾苗裝置合并取苗時,夾苗裝置間距L=32 mm;夾苗裝置分散投苗時,夾苗裝置間距L=127 mm,由結構關系可得
式中2為分苗氣缸行程,mm;L為分散時夾苗裝置間隔距離,mm;L為合并時夾苗裝置間隔距離,mm;為夾苗裝置氣缸個數(shù),為分苗氣缸個數(shù)。將L、L、按式(6)計算得分苗氣缸行程2=332.5 mm,取整后分苗氣缸行程為333 mm。
柔性鏈輸苗機構用于將苗杯中的穴盤苗逐個投入至栽植機構中。如圖9所示,該機構由苗杯、柔性鏈主動鏈輪、活門托板、投苗控制裝置、柔性鏈、支架組成。動力經(jīng)地輪通過鏈輪鏈條及六方軸,變速箱,傳遞至柔性鏈,苗杯隨柔性鏈移動,當苗杯移動到落苗口時,苗杯下方的活門打開,將苗落入栽植機構中。苗杯的間距127 mm,苗杯數(shù)量為18個。
投苗控制裝置用于控制取投苗機構將取出的穴盤苗投入苗杯中。如圖10所示,該裝置由柔性鏈從動鏈輪、柔性鏈主動鏈輪、變速箱、六方軸、機械閥DT3、螺栓型滾動軸承、從動齒輪、主動齒輪組成,柔性鏈主動鏈輪和主動齒輪通過方軸連接,主動齒輪與從動齒輪嚙合傳動,螺栓型滾動軸承安裝于從動齒輪側面。設計要求每經(jīng)過8個苗杯,螺栓型軸承觸發(fā)一次機械閥DT3,控制取投苗機構將8株穴盤苗準確投入苗杯中。根據(jù)運動關系有:
式中L為苗杯間距,mm;為投苗數(shù)量,株;為鏈條節(jié)距,mm;4為柔性鏈主動鏈輪齒數(shù),取4=16;5為從動齒輪齒數(shù);6為主動齒輪齒數(shù)。將4L代入式(7)得主動齒輪與從動齒輪傳動比為1∶4。
1.柔性鏈從動鏈輪 2.柔性鏈主動鏈輪 3.變速箱 4.六方軸 5.機械閥DT3 6.螺栓型滾動軸承 7.從動齒輪 8.主動齒輪
1.Flexible chain driven sprocket 2.Flexible chain driving sprocket 3.Gearbox 4.Hexagonal shaft 5.Mechanical valve DT3 6.Bolt type rolling bearing 7.Driven gear 8.Driving gear
圖10 投苗控制裝置結構示意圖
Fig.10 Structure diagram of seedling dropping control device
辣椒穴盤苗自動移栽機中的氣動元件包括升降氣缸A、步進氣缸B、移位氣缸C、分苗氣缸D、夾苗裝置氣缸E、升降控制氣缸F、投苗控制氣缸G。如圖11所示,升降氣缸由機械閥DT0控制,由節(jié)流閥1及2進行調節(jié)速度。步進氣缸、移位氣缸、分苗氣缸由機械閥DT1控制,由節(jié)流閥3及4進行調節(jié)速度。夾苗裝置氣缸及升降控制氣缸由機械閥DT2控制。投苗控制氣缸由機械閥DT3控制。
為驗證氣動系統(tǒng)中各氣缸動作時序是否滿足設計要求,對氣動回路進行仿真分析,首先利用FluidSIM對系統(tǒng)進行建模,設置各個元氣件的有關參數(shù),如氣源氣體的壓力、節(jié)流閥的開度、氣缸的缸徑、行程一系列參數(shù),再運用軟件的查錯功能對所建立的系統(tǒng)模型進行檢查,完成模型的建立[28]。
在完成系統(tǒng)建模后,針對不同的系統(tǒng)參數(shù)對氣動系統(tǒng)進行仿真,觀察各缸完成規(guī)定行程所用的時間,各氣缸動作時序是否滿足要求,從而可以設計出結構簡單、工作可靠、效率較高的最優(yōu)回路。
在表2所示的系統(tǒng)建模參數(shù)下,對氣動系統(tǒng)運行仿真。圖12為各氣缸動作時序圖,橫坐標為時間,縱坐標為各氣缸活塞桿位置,從夾苗裝置氣缸活塞桿第一次收縮至0 mm開始至第二次收縮至0 mm結束為一個工作循環(huán),整個動作循環(huán)時間約4s。整個過程氣缸時序動作為:夾苗裝置氣缸活塞桿收縮且升降控制氣缸活塞桿伸出,升降氣缸活桿伸出,移位氣缸及步進氣缸活塞桿伸出且分苗氣缸活塞桿收縮,夾苗裝置氣缸活塞桿伸出且升降控制氣缸收縮,升降氣缸活塞桿收縮,移位氣缸及步進氣缸活塞桿收縮同時分苗氣缸活塞伸出,夾苗裝置活塞桿收縮。各氣缸動作時序符合全自動取投苗系統(tǒng)投苗-下降-移位合并-取苗-提升-移位分散及縱向移盤-投苗動作次序的要求。
根據(jù)氣缸參數(shù)計算總耗氣量,并依據(jù)總耗氣量選擇較合適的空氣壓縮機。各氣缸往返一次的平均耗氣量按式(8)[29]計算。計算總耗氣量時,按自動移栽機每行栽植頻率為128株/min。各氣缸耗氣量計算結果見表3。
式中平均為氣缸耗氣量,L/min;為氣缸動作頻率;為氣缸缸徑,cm;為氣缸行程,cm;為氣缸工作壓力,MPa。
表3 耗氣量計算
由表3可知全自動取投苗系統(tǒng)耗氣總量為53.06 L/min,為保證氣源壓力穩(wěn)定,辣椒穴盤苗自動移栽機中2組全自動取投苗系統(tǒng)應選擇容積流量160 L/min以上的空氣壓縮機提供壓縮空氣。
如圖13所示,田間試驗于2020年8月在德州福瑞特農(nóng)業(yè)機械制造有限公司試驗地進行,試驗前,對試驗地進行旋耕作業(yè)保證土壤疏松平整。采用育苗大棚所培育的辣椒苗,苗齡為60 d,平均苗高為166.7 mm;基質為草炭、蛭石、珍珠巖按照體積比1∶1∶1混合制得,基質含水率24%~32%。
移栽機與拖拉機掛接方式為三點懸掛,拖拉機額定功率為36.8 kW,參照JB/T 10291-2013[30],在工作氣壓0.4 MPa及移栽機作業(yè)速度1.4~1.7 km/h時進行試驗,以取投苗成功率,栽植頻率,株距變異系數(shù),倒伏率為性能評價指標。
4.2.1 取苗投苗成功率試驗
對穴盤苗移栽機進行取投苗成功率試驗,任選8盤辣椒穴盤苗分別進行試驗。試驗前,確認穴盤內辣椒苗株數(shù)為128株;試驗中,分別統(tǒng)計取苗成功的株數(shù),投苗成功的株數(shù),苗杯輸苗成功的株數(shù);試驗后,對試驗結果進行分析。
4.2.2 栽植頻率試驗
移栽機進行3次單程作業(yè),每次每行移栽1盤辣椒苗,栽植時間用秒表計時,試驗后,分別測定每次作業(yè)一個栽植行內的栽植株數(shù)并按式(9)計算栽植頻率。
式中為栽植頻率,株/min;為栽植株數(shù);為栽植時間,s。
4.2.3 株距變異系數(shù)及倒伏率試驗
在測定栽植頻率的同時,分別測定株距變異系數(shù)及倒伏率。每行選取中間連續(xù)的120株辣椒苗進行測定,共測定6行。
理論株距為X(mm),相鄰兩株的實測株距為X(mm),株距變異系數(shù)按(10)計算。
式中CV為株距變異系數(shù),%;S為株距標準差,cm;為實測株距數(shù),株。
每行選取中間連續(xù)的120株辣椒苗測定倒伏率,共測定6行。行業(yè)標準規(guī)定秧苗主莖與地面夾角小于30°為倒伏,試驗采用萬能角度尺測量移栽后辣椒苗主莖與地面的夾角,并用式(11)計算倒伏率。
式中為倒伏率,%;N為倒伏株數(shù),株;為測定株數(shù)。
由表4試驗結果可知,辣椒穴盤苗自動移栽機平均取投苗成功率為97.07%,取苗成功率為97.85%,投苗成功率為99.50%,苗杯輸苗成功率為99.70%。各運動部件配合良好,但由于部分試驗辣椒幼苗枝葉過于緊湊,一定程度上影響了取苗成功率。由表5試驗結果可知,辣椒穴盤苗自動移栽機栽植頻率為每行123株/min,滿足設計要求。由表6試驗結果可知,辣椒穴盤苗自動移栽機倒伏率為1.67%,滿足行業(yè)標準要求。由表7試驗結果可知,辣椒穴盤苗自動移栽機株距變異系數(shù)為3.67%,結合觀察試驗過程,發(fā)現(xiàn)地輪存在打滑現(xiàn)象,導致地輪傳動存在誤差,影響了株距變異系數(shù)。
表4 取投苗成功率試驗結果
表5 栽植頻率測量結果
表6 倒伏率測量結果
表7 株距測量結果
1)本文將機械結構與氣動控制原理結合設計了一種以全自動取投苗系統(tǒng)為關鍵部件的辣椒穴盤苗自動移栽機,可完成自動送苗、取苗、投苗、栽種等多道作業(yè)環(huán)節(jié),其控制系統(tǒng)簡單,結構緊湊。
2)對全自動取投苗系統(tǒng)進行運動學及力學分析,完成了關鍵參數(shù)設計。制定了全自動取投苗系統(tǒng)氣動回路方案,并基于FluidSIM軟件進行仿真,氣動系統(tǒng)運行滿足設計要求。
3)通過田間試驗測得,在工作氣壓為0.4 MPa及移栽機作業(yè)速度為1.4~1.7 km/h時,平均取投苗成功率達97.07%,栽植頻率為123株/min,倒伏率1.67%,株距變異系數(shù)為3.67%,各項性能指標可以滿足新疆地區(qū)辣椒作物移栽的農(nóng)藝要求。在前期機械驅動式辣椒穴盤苗自動取投苗系統(tǒng)的研究基礎上,進一步提高了工作效率及取投苗成功率。
[1] 呂志軍,單伊尹,王杰,等. 蔬菜移栽裝備研究現(xiàn)狀和缽苗移栽裝備展望[J]. 中國農(nóng)機化學報,2017,38(11):30-34.
Lv Zhijun, Shan Yiyin, Wang Jie, et al. Research progress of vegetable transplanting machine and prospects of seed-ling-picking machinery of transplanter[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(11): 30-34. (in Chinese with English abstract)
[2] 周海燕,楊炳南,顏華,等. 旱作移栽機械產(chǎn)業(yè)發(fā)展現(xiàn)狀及展望[J]. 農(nóng)業(yè)工程,2015,5(1):12-13,16.
Zhou Haiyan, Yang Bingnan, Yan Hua, et al. Status quo and development prospects of dry land transplanting machine industry[J]. Agricultural Engineering, 2015, 5(1): 12-13, 16. (in Chinese with English abstract)
[3] 于曉旭,趙勻,陳寶成,等. 移栽機械發(fā)展現(xiàn)狀與展望[J]. 農(nóng)業(yè)機械學報,2014,45(8):44-53.
Yu Xiaoxu, Zhao Yun, Chen Baocheng, et al. Current situation and prospect of transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 44-53. (in Chinese with English abstract)
[4] 張雪琪,弋景剛,張秀花,等. 國內外蔬菜移栽機研究現(xiàn)狀及發(fā)展[J]. 河北農(nóng)機,2018(4):39-40.
[5] 張振國,曹衛(wèi)彬,王僑,等. 穴盤苗自動移栽機的發(fā)展現(xiàn)狀與展望[J]. 農(nóng)機化研究,2013,35(5):237-241.
Zhang Zhenguo, Cao Weibin, Wang Qiao, et al. Development status and prospect of plug seedlings automatic transplanting machine[J]. Agricultural Mechanization Research, 2013, 35(5): 237-241. (in Chinese with English abstract)
[6] 崔巍,徐盼,王海峰,等. 旱地自動移栽技術發(fā)展現(xiàn)狀及分析[J]. 農(nóng)機化研究,2015,37(6):1-5,28.
Cui Wei, Xue Pan, Wang Haifeng, et al. Present status and analysis of dry-land auto-transplanting seedling technique[J]. Agricultural Mechanization Research, 2015, 37(6): 1-5, 28. (in Chinese with English abstract)
[7] 張開興,吳昊,王文中,等. 夾緊式番茄移栽機取苗機構的設計與試驗[J]. 農(nóng)機化研究,2020,42(12):64-68.
Zhang Kaixing, Wu Hao, Wang Wenzhong, et al. Design and sxperiment of clamping picking seedling mechanism for tomato transplanter[J]. Agricultural Mechanization Research, 2020, 42(12): 64-68. (in Chinese with English abstract)
[8] 劉洋,李亞雄,李斌,等. 新疆地區(qū)作物移栽與移栽機研究現(xiàn)狀[J]. 廣東農(nóng)業(yè)科學,2013,40(09):189-191.
Liu Yang, Li Yaxiong, Li Bin, et al. Research of China’s Xinjiang Region crop transplanting machines[J]. Guangdong Agricultural Sciences, 2013, 40(09): 189-191. (in Chinese with English abstract)
[9] 李華,馬曉曉,曹衛(wèi)彬,等. 夾莖式番茄缽苗取苗機構設計與試驗[J]. 農(nóng)業(yè)工程學報,2020,36(21):39-48.
Li Hua, Ma Xiaoxiao, Cao Weibin, et al. Design and experiment of seedling picking mechanism by stem clipping for tomato plug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 39-48. (in Chinese with English abstract)
[10] 韓長杰,楊宛章,張學軍,等. 穴盤苗移栽機自動取喂系統(tǒng)的設計與試驗[J]. 農(nóng)業(yè)工程學報,2013,29(8):51-61.
Han Changjie, Yang Wanzhang, Zhang Xuejun, et al. Design and test of automatic feed system for tray seedlings transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 51-61. (in Chinese with English abstract)
[11] 徐廣鵬,張闖闖,楊鐵鋼,等. 一種種苗移栽機自動取苗送苗裝置[J]. 農(nóng)機化研究,2016,38(6):249-252.
Xu Guangpeng, Zhang Chuangchuang, Yang Tiegang, et al. An automatic picking seedling and feeding aeedling device of the seedling transplanting machine[J]. Agricultural Mechanization Research, 2016, 38(6): 249-252. (in Chinese with English abstract)
[12] 李華,曹衛(wèi)彬,李樹峰,等. 2ZXM-2型全自動蔬菜穴盤苗鋪膜移栽機的研制[J]. 農(nóng)業(yè)工程學報,2017,33(15):23-33.
Li Hua, Cao Weibin, Li Shufeng, et, al. Development of 2ZXM-2 automatic plastic film mulching plug seedling transplanter for vegetable[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 23-33. (in Chinese with English abstract)
[13] 孫良,沈嘉豪,周譽株,等. 非圓齒輪-連桿組合傳動式蔬菜缽苗移栽機構設計[J]. 農(nóng)業(yè)工程學報,2019,35(10):26-33.
Sun Liang, Shen Jiahao, Zhou Yuzhu, et, al. Design of non-circular gear linkage combination driving type vegetable pot seedling transplanting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 26-33. (in Chinese with English abstract)
[14] 王永維,何焯亮,王俊,等. 旱地蔬菜缽苗自動移栽機栽植性能試驗[J]. 農(nóng)業(yè)工程學報,2018,34(3):19-25.
Wang Yongwei, He Zhuoliang, Wang Jun, et, al. Experiment on transplanting performance of automatic vegetable pot seedling transplanter for dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 19-25. (in Chinese with English abstract)
[15] 劉念聰,楊程文,劉保林,等. 全自動單擺式蔬菜缽苗取苗系統(tǒng)研制[J]. 農(nóng)業(yè)工程學報,2020,36(22):87-95.
Liu Niancong, Yang Chengwen, Liu Baolin, et al. Development of automatic single pendulum vegetable pot seedling picking and feeding system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 87-95. (in Chinese with English abstract)
[16] 吳國環(huán),俞高紅,項筱潔,等. 三移栽臂水稻缽苗移栽機構設計與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(15):15-22.
Wu Guohuan, Yu Gaohong, Xiang Xiaojie, et, al. Design and test of rice potted-seedling transplanting mechanism with three transplanting arms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 15-22. (in Chinese with English abstract)
[17] 韓綠化,毛罕平,趙慧敏,等. 蔬菜穴盤育苗底部氣吹式缽體松脫裝置設計[J]. 農(nóng)業(yè)工程學報,2019,35(4):37-45.
Han Lühua, Mao Hanping, Zhao Huimin, et al. Design of root lump loosening mechanism using air jets to eject vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 37-45. (in Chinese with English abstract)
[18] Wan Ishan W I, Awal M A, Elango R, et al. Development of an automatic transplanter for the gantry system[J]. Asian Journal of Scientific Research, 2008, 1(4): 451-457.
[19] Ye Bingliang, Yi Weiming, Yu Gaohong, et al. Optimization design and test of rice plug seedling transplanting mechanism of planetary gear train with incomplete eccentric circular gear and non-circular gears[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6): 43-55.
[20] Xin Jin, Li Daoyi, Ma Hao, et al. Development of single row automatictransplanting device for potted vegetable seedlings[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(3): 67-75.
[21] 文永雙,張俊雄,張宇,等. 蔬菜穴盤苗插入頂出式取苗裝置研制[J]. 農(nóng)業(yè)工程學報,2020,36(22):96-104.
Wen Yongshuang, Zhang Junxiong, Zhang Yu, et al. Development of insertion and ejection type seedling taking device for vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 96-104. (in Chinese with English abstract)
[22] 王蒙蒙,宋建農(nóng),劉彩玲,等. 蔬菜移栽機曲柄擺桿式夾苗機構的設計與試驗[J]. 農(nóng)業(yè)工程學報,2015,31(14):49-57.
Wang Mengmeng, Song Jiannong, Liu Cailing, et al. Design and experiment of crank rocker type clamp seedlings mechanism of vegetable transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 49-57. (in Chinese with English abstract)
[23] 張靜,龍新華,韓長杰,等. 機械驅動式辣椒穴盤苗自動取投苗系統(tǒng)設計與試驗[J]. 農(nóng)業(yè)工程學報,2021,37(5):20-30.
Zhang Jing, Long Xinhua, Han Changjie, et al. Design and experiment on mechanical driven automatic system of picking and throwing for chili plug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 20-30. (in Chinese with English abstract)
[24] 王海洋,張偉,候永瑞. 玉米缽育移栽機自動供苗裝置設計及運動仿真[J]. 農(nóng)機化研究,2016,38(6):143-148,154.
Wang Haiyang, Zhang Wei, Hou Yongrui. The design and motion simulation of the corn pot seedling machines[J]. Agricultural Mechanization Research, 2016, 38(6): 143-148, 154. (in Chinese with English abstract)
[25] 俞高紅,杜立恒,李革,等. 高速水稻缽苗移栽機送秧裝置設計與試驗[J]. 農(nóng)業(yè)機械學報,2015,46(5):39-45.
Yu Gaohong, Du Liheng, Li Ge, et al. Design and experiment of feeding-seedling device for high-speed rice pot-seedling transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 39-45. (in Chinese with English abstract)
[26] 李獻奇,劉維維,高連興. 搖桿滑塊機構及其在農(nóng)業(yè)機械上的應用研究[J]. 農(nóng)業(yè)科技與裝備,2014(1):20-22.
Li Xianqi, Liu Weiwei, Gao Lianxing. Rocker-slider mechanism and its application in agricultural machine[J]. Agricultural Science & Technology and Equipment, 2014(1): 20-22. (in Chinese with English abstract)
[27] 韓綠化,毛罕平,繆小花,等. 基于穴盤苗力學特性的自動取苗末端執(zhí)行器設計[J]. 農(nóng)業(yè)機械學報,2013,44(11):260-265.
Han Lühua, Mao Hanping, Miao Xiaohua, et al. Design of automatic picking up seedling end-effector based on mechanical properties of plug seedlings[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013 44(11): 260-265. (in Chinese with English abstract)
[28] 何吉利. 基于FluidSIM-P的渦流探傷檢測臺氣動控制設計[J]. 機床與液壓,2008,36(8):286-288.
He Jili. Pneumatic control design of eddy current testing platform based on fluidsim-p[J]. Machine Tools and Hydraulics, 2008, 36(8): 286-288. (in Chinese with English abstract)
[29] 成大先. 機械設計手冊單行本-氣壓傳動[M]. 北京:化學工業(yè)出版社,2016.
[30] 中華人民共和國工業(yè)和信息化部. JB/T10291-2013旱地栽植機械行業(yè)標準[S]. 北京:機械工業(yè)出版社,2013.
Design and experiment of the automatic transplanter for chili plug seedlings
Han Changjie1, Xiao Liqiang1, Xu Yang1, Zhang Jing1, Li Honglei2
(1.,,830052,;2..,.,253000,)
Most of vegetable varieties have widely been applied in China at present. Transplanting plug seedlings can greatly contribute to the survival ratio of seedlings, and the resistance to disasters during the growth for better quality and yield of vegetables. However, current manual seedling fetching and transporting seedlings were commonly used in a semi-automatic transplanting machine with high cost and labor intensity. In this study, a fully automatic plug-seedling transplanting and planting machine was developed to meet the transplanting operation mode and agronomic requirements for high efficiency, where the seedlings were taken in a row to be divided, and then be dropped. The transplanting machine was mainly composed of a tray transfer, a seedling picking and dropping, a flexible chain seedling transporting, and a planting mechanism. Plug seedling transplanting was automatically realized under the cooperation of the valve control cylinder movement and mechanical transmission. The simple control system presented a novel structure to gain higher work efficiency. Furthermore, only one operator was required to place the seedling tray, indicating the labor cost-saving. A tractor was used to haul the automatic plug-seedling transplanter, where an air pump driven by a power output shaft was selected to generate the compressed air, thereby providing power for the automatic seedling picking and dropping system. The ground wheel was also utilized to drive the planting and flexible chain conveying mechanism when rotating the plug seedling. A three-dimensional design Solidworks software was used to design the specific structure after the valve control strategy was determined. Correspondingly, the movement trajectories of seedling plate putter and plug seedlings were analyzed to determine the key structure parameters of the plate-moving mechanism. A variable-step ratchet device was also characterized to confirm the size of key components. MATLAB platform was utilized to carry out the structural optimization. The force was thus determined for a seedling clamping device, together with the main component of the seedling picking and dropping mechanism. The key parameters were also determined for the cylinder of a seedling clamping device. FluidSIM software was used to simulate the pneumatic circuit system under different system parameters, further optimizing the design of a pneumatic circuit with simple structure, reliable work performance, and high efficiency. A field trial was conducted using chili seedlings with an average seedling height of 166.7 mm. Evaluation indicators were set as the success rate of seedling taking and dropping, planting frequency, coefficient of variation of plant spacing, and lodging rate. The test results showed that the average success rate of planting and dropping seedlings was 97.07%, and the planting frequency was 123 plants/min, when the working pressure was 0.4 MPa, while the operating speed of a transplanter was 1.4-1.7 km/h, and the moving parts of the machine cooperated well during working. Specifically, the lodging rate was 1.67%, and the coefficient of variation of plant spacing was 3.67%. The data was well in accordance with the machinery industry standard JB/T10291-2013 “Transplanter of dry land plant”. It verifies the rationality of plug seedlings with automatical transplanting. The finding can provide sound technical support to improve the automation level of a plug-seedling transplanter in agricultural production.
agricultural machinery; design; experiment; automatic transplanting machine; chili plug seedling; pneumatic
韓長杰,肖立強,徐陽,等. 辣椒穴盤苗自動移栽機設計與試驗[J]. 農(nóng)業(yè)工程學報,2021,37(13):20-29.
10.11975/j.issn.1002-6819.2021.13.003 http://www.tcsae.org
Han Changjie, Xiao Liqiang, Xu Yang, et al. Design and experiment of the automatic transplanter for chili plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 20-29. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.003 http://www.tcsae.org
2021-03-11
2021-05-11
國家重點研發(fā)計劃(2017YFD0700800);國家自然科學基金項目(50905153,51565059);自治區(qū)重點研發(fā)計劃(2018B01001-3);自治區(qū)天山青年計劃(2017Q018)
韓長杰,博士,教授,博士生導師,主要從事農(nóng)業(yè)機械設計與智能農(nóng)業(yè)裝備的研究。Email:hcj_627@163.com
10.11975/j.issn.1002-6819.2021.13.003
S223.9
A
1002-6819(2021)-13-0020-10