萬雨軒 王鑫
摘 要:廢水處理過程中涉及多種氮轉(zhuǎn)化途徑,其中,異化硝酸鹽還原為銨(Dissimilatory Nitrate Reduction to Ammonium,DNRA)能夠?qū)O-3/NO-2轉(zhuǎn)化為NH+4,是氮素轉(zhuǎn)化的重要一環(huán)。概述了DNRA過程的兩步反應(yīng)機理以及涉及的微生物,著重討論了廢水處理中影響DNRA過程的潛在因素,包括溶解氧、碳源種類、氮源種類、碳氮比、溫度、pH值以及廢水成分等,總結(jié)分析了各種因素如何調(diào)控DNRA與反硝化過程對硝態(tài)氮的競爭,并對廢水處理中DNRA過程的兩種主要分析手段進行了介紹。綜述了DNRA過程在廢水處理中的發(fā)生機制及其貢獻,對未來DNRA過程的深入研究及廢水中氮的去除或回收具有重要意義。
關(guān)鍵詞:異化硝酸鹽還原;廢水處理;氮回收;同位素示蹤
中圖分類號:X703.1 文獻標(biāo)志碼:A 文章編號:2096-6717(2021)06-0134-11
Abstract: There are many ways of nitrogen transformation in wastewater treatment, among which dissimilatory nitrate reduction to ammonium (DNRA) convert NO-3/NO-2 into NH+4, which is an important part of nitrogen transformation.This paper reviews the two-step reaction mechanism of DNRA process and microorganisms involved. In addition, the potential factors affecting the DNRA process in wastewater treatment, such as dissolved oxygen, types of carbon or nitrogen sources, C/N ratio, temperature, pH and special substances contained in wastewater,are emphatically discussed to explore how to regulate the competition between DNRA and denitrification fornitrate, and this paper introduces two main analytical methods for DNRA process in wastewater treatment.This paper confirms the occurrence and contribution of DNRA process in wastewater treatment, and the in-depth study of DNRA is of great significance for the removal or recovery of nitrogen in wastewater.
Keywords: dissimilatory nitrate reduction; wastewater treatment; nitrogen recovery; isotope tracing
氮在自然界中至關(guān)重要,是生物合成關(guān)鍵細胞成分所必需的重要營養(yǎng)元素,其可用性取決于微生物間進行的各種氮轉(zhuǎn)化反應(yīng)。近年來,人們對微生物的氮轉(zhuǎn)化過程進行了深入研究,將其歸納為7個過程,如圖1所示。其中,異化硝酸鹽還原為銨(Dissimilatory Nitrate Reduction to Ammonium, DNRA)的過程是由微生物介導(dǎo),將NO-3和NO-2直接還原為NH+4的酶促氧化還原反應(yīng)。早在1938年,DNRA過程就被證明可以發(fā)生在常見的土壤細菌中,如Clostridium welchii[1]。1975年,Stanford等通過15N同位素示蹤技術(shù)進一步證實了DNRA過程的存在[2]。然而,由于技術(shù)上的限制,之后的大多數(shù)研究仍然認為反硝化過程是進行硝酸鹽還原的主要途徑,而DNRA過程對硝酸鹽還原的影響較小。直到1988年,Tiedje等提出由于NH+4的流動性比NO-3小,NH+4更容易被保留在環(huán)境中[3]。反硝化過程生成N2和N2O造成氮損失,增加溫室氣體排放,而通過DNRA過程生成NH+4能夠為生態(tài)系統(tǒng)保留活性氮[3],因此,DNRA在不同生態(tài)系統(tǒng)中的重要性逐漸被意識到。
DNRA過程已經(jīng)被證明能夠在各種海洋、河口和土壤生態(tài)系統(tǒng)中發(fā)生[4-7]。而作為全球最大的人工生態(tài)系統(tǒng),污水處理廠(WWTP)涉及硝化、反硝化、厭氧氨氧化和DNRA等過程,在全球氮循環(huán)中發(fā)揮著重要作用[8]。目前,大多數(shù)污水處理廠主要應(yīng)用反硝化過程將N以N2的形式去除,同時產(chǎn)生N2O溫室氣體[9]。雖然厭氧氨氧化細菌在污水處理廠中也廣泛存在,但認為它們對氮轉(zhuǎn)化的貢獻率不大[10]。廢水處理中的反硝化和厭氧氨氧化過程已經(jīng)得到了廣泛研究,如影響因素、相關(guān)微生物和脫氮效率等[11-13]。與之相反,針對廢水處理中DNRA過程的研究相對較少。在DNRA過程中,N的最終產(chǎn)物為NH+4,能夠保留活性N促進污水處理廠副產(chǎn)品的產(chǎn)生,增加收益。同時,DNRA過程只產(chǎn)生氨氮,減少了溫室氣體N2O的排放。因此,廢水處理中DNRA過程的發(fā)生對廢水中氮的轉(zhuǎn)化,甚至全球氮循環(huán)平衡都起著至關(guān)重要的作用。
為了更深層次地理解DNRA過程以及其在氮循環(huán)中的重要作用,筆者總結(jié)了DNRA過程反應(yīng)機理,功能微生物及其生理、遺傳調(diào)控。對廢水處理中可能影響DNRA過程的因素進行了詳細探討,并介紹了用于評估DNRA過程的兩種方法。
1 DNRA的反應(yīng)過程
1.1 DNRA反應(yīng)機理
DNRA過程分為兩步(圖2),第1步是硝酸鹽還原為亞硝酸鹽,主要是由膜結(jié)合硝酸鹽還原酶(Nar)或周質(zhì)硝酸鹽還原酶(Nap)催化,其中,還原硝酸鹽的亞基NarG和NapA以醌為電子供體產(chǎn)生亞硝酸鹽[14]。第2步是亞硝酸鹽轉(zhuǎn)化為銨,由周質(zhì)五血紅素細胞色素c亞硝酸鹽還原酶(NrfA)催化,而不形成中間產(chǎn)物。NrfA是可溶的周質(zhì)蛋白,分別通過細胞色素NrfHA復(fù)合物或者NrfBCD復(fù)合物從醌獲得電子(圖2)。此外,研究發(fā)現(xiàn),NrfA蛋白質(zhì)的幾種結(jié)構(gòu)可將NO-2還原為NO,NO再被還原為NH+4和N2O(圖1虛線),這被認為是硝酸鹽氨化的額外途徑[15]。
與反硝化過程中的硝酸鹽呼吸過程不同,DNRA過程根據(jù)細菌種類、生長底物和能量獲取方式的不同可分為兩種:呼吸型和發(fā)酵型[16]。兩種DNRA方式中,NO-3到NO-2的還原過程始終是呼吸型的,其分類取決于NO-2到NH+4的還原類型。大多數(shù)DNRA過程是發(fā)酵型,細菌以有機物作為電子供體,通過底物水平磷酸化立即產(chǎn)生能量。以葡萄糖為例,糖酵解過程中產(chǎn)生的NADH在硝態(tài)氮還原過程中被氧化,生成發(fā)酵產(chǎn)物甲酸和乙酸,同時產(chǎn)生NH+4(式1)[17]。呼吸型DNRA一般指自養(yǎng)型DNRA,通常指以S2-作為電子供體,還原硝態(tài)氮為氨氮,S2-最終產(chǎn)物是單質(zhì)S或者SO-4(式(2)、式(3))[18]。
1.2 DNRA過程相關(guān)微生物
隨著DNRA過程研究的日益深入,越來越多的菌株被證明具有將NO-3/ NO-2還原成NH+4的能力。根據(jù)電子供體的不同,DNRA菌可分為自養(yǎng)菌和異養(yǎng)菌兩類。大部分DNRA菌是異養(yǎng)型,需要有機碳源作為電子供體;少數(shù)DNRA菌是自養(yǎng)型,例如化能自養(yǎng)微生物Thiobacillus denitrificans、Desulfovibrio desulfuricans和D. propionicus等。根據(jù)呼吸類型也可將DNRA細菌分為好氧菌、微好氧菌、兼性厭氧菌以及嚴格厭氧菌。相對于O2為電子受體(好氧呼吸)而言,微生物以NO-3作為電子受體進行缺氧呼吸的產(chǎn)能效率非常低,因此,DNRA細菌多為兼性厭氧菌和嚴格厭氧菌。
多種參與氮轉(zhuǎn)化的細菌在污水處理系統(tǒng)中共存,其中,DNRA細菌群落廣泛存在。最近,Wang等[19]對中國不同地區(qū)的污水處理廠的8個處理單元的微生物群落進行分析發(fā)現(xiàn),DNRA細菌群落中Nitrospira豐度最高,其次是Brocadia,Anaeromyxobacter和Geothrix。城市污水處理廠A2/O工藝系統(tǒng)的厭氧池中存在較高的有機物濃度和一定量的硝酸鹽,具備了適合DNRA細菌生存的條件。劉芹等[20]在A2/O工藝處理系統(tǒng)中鑒定出進行DNRA的菌屬主要為Thauera、Hydrogenophaga和Geobacter。但目前針對污水處理廠中DNRA相關(guān)微生物的種類、豐度以及與其他微生物群落的種間機制的深入研究還相對較少。
1.3 廢水處理中的DNRA過程
通過對傳統(tǒng)市政污水處理廠的DNRA過程進行評估,發(fā)現(xiàn)DNRA過程在6個不同規(guī)模污水處理廠的全部處理單元中廣泛存在,但對N轉(zhuǎn)化的貢獻并不顯著[19]。各國已經(jīng)開始實施污水處理廠升級,使用額外的氧化、吸附和過濾技術(shù)可能會導(dǎo)致DNRA細菌數(shù)量的增多。北京污水處理廠升級改造后,DNRA細菌與反硝化細菌之間的比率從1.10顯著增加至1.93,DNRA過程貢獻率增大[21]。此外,季節(jié)變化及地理位置差異也會影響DNRA過程在廢水處理中的貢獻。在季風(fēng)氣候期,印度煉油廠廢水經(jīng)過處理后,氨氮含量與冬季相比增加了9倍,DNRA細菌的豐度增加了3倍,DNRA對硝酸鹽轉(zhuǎn)化的貢獻率超過反硝化過程[22]。
廢水處理廠采用厭氧氨氧化細菌脫氮時,DNRA過程是維持厭氧氨氧化過程穩(wěn)定進行的關(guān)鍵步驟[11]。例如,采用同步硝化、厭氧氨氧化和反硝化工藝(SNAD)處理垃圾滲濾液時,DNRA細菌催化還原硝酸鹽,與氨氧化細菌和厭氧氨氧化細菌協(xié)同作用實現(xiàn)氮的去除[23]。使用氣升式反應(yīng)器去除低碳氮比廢水中的氮,也是基于厭氧氨氧化、同步硝化反硝化和DNRA的共同作用[24]。因此,即使DNRA過程在廢水處理中的貢獻率不高,但其作用不容忽視。
2 廢水處理中DNRA過程的潛在影響因素
廢水處理過程中涉及多個氮素轉(zhuǎn)化反應(yīng),其中DNRA與反硝化過程是還原硝態(tài)氮的兩個競爭途徑。兩者都是以有機物或無機物為碳源,在低氧條件下發(fā)生,大部分情況下存在此消彼長的關(guān)系。因此,針對DNRA過程潛在影響因素的討論,主要從影響DNRA和反硝化過程之間競爭的因素進行分析。
2.1 溶解氧
溶解在水中的分子態(tài)氧稱為溶解氧,水中溶解氧的含量與空氣中氧的分壓、水的溫度都有密切關(guān)系。污水處理廠通過改變水中溶解氧濃度實現(xiàn)不同的好氧和厭氧生物工藝,進而轉(zhuǎn)化或去除廢水中的氮。已有研究表明[25-26],溶解氧的變化會影響生物膜反應(yīng)器、生物接觸氧化池和生物流化床等的脫氮效果。理論上,在厭氧條件下,每摩爾NO-3在DNRA過程中傳遞的電子(8e-)比反硝化過程(5e-)多,而厭氧條件下終端電子受體短缺,細菌更傾向于使用DNRA而非反硝化作為獲取能量的途徑[27-32]。因此,DNRA過程傾向于在強還原條件下發(fā)生。已有研究表明[33-34],在強還原條件下,DNRA過程的活性較高。在周期性缺氧的河口,DNRA過程起主導(dǎo)作用,缺氧持續(xù)一段時間后,反硝化過程幾乎完全消失[35]。但對6個市政污水處理廠所有處理單元的微生物群落進行調(diào)查顯示,DNRA細菌在好氧區(qū)域仍然存在[19]。在實驗室中對氧氣如何調(diào)控DNRA和反硝化過程之間的競爭進行探究,發(fā)現(xiàn)反硝化過程在低于1 μmol/L O2的條件下優(yōu)于DNRA,而在更高的O2水平下,DNRA過程占據(jù)優(yōu)勢[36]。推測出現(xiàn)這一現(xiàn)象的原因是DNRA對氧化還原條件變化的敏感性低于反硝化過程,對O2的敏感性較低[37]。在氧氣控制實驗中,污水處理廠溶解氧含量會影響DNRA與反硝化過程對硝態(tài)氮的競爭,調(diào)整溶解氧周期性變化可能對DNRA過程更有利。
2.2 碳源種類
絕大多數(shù)污水處理廠都以微生物為處理污水的核心,在這種處理方式下,微生物本身的生長需求是污水廠首要解決的問題。因此,污水處理廠通常人工投加甲醇、乙酸和葡萄糖等簡單的有機化合物維持微生物的生長,進而保證脫氮過程順利進行。DNRA細菌可利用多種有機物作為碳源,碳源的化學(xué)性質(zhì)是決定DNRA和反硝化過程競爭的另一個關(guān)鍵因素。一些研究表明,葡萄糖的添加會刺激DNRA過程,而其他碳源,如稻草、甘油、甲醇和琥珀酸鹽不促進DNRA,Yin等[38]將該現(xiàn)象歸因于上述碳源是發(fā)酵的不良產(chǎn)物。當(dāng)使用發(fā)酵碳源作為電子供體時,發(fā)酵過程會產(chǎn)生大量還原劑,有利于DNRA過程[30]。除了針對發(fā)酵型碳源的研究,乙酸鹽作為呼吸型DNRA的底物時,其速率低于發(fā)酵型DNRA,而同作為呼吸型DNRA底物的丙酸鹽,DNRA速率低于乙酸鹽[30]。此外,研究人員發(fā)現(xiàn)[39],與反硝化過程相比,天然有機碳源對DNRA過程的促進作用更大。因此,污水處理廠中可投加發(fā)酵型碳源葡萄糖或者天然有機碳源促進DNRA過程。Carlson等[40]探究了94種碳源對硝態(tài)氮還原終產(chǎn)物的影響,發(fā)現(xiàn)同一碳源對不同微生物DNRA過程的影響并不相同。因此,碳源的選擇還需要結(jié)合污水處理廠的微生物種類進行具體分析。
2.3 氮源種類
除了碳源的化學(xué)性質(zhì),氮源的種類對DNRA過程也十分重要,NO-3和NO-2的供應(yīng)是決定硝酸鹽異化還原途徑的一個重要因素。Kraft等[27]認為驅(qū)動DNRA和反硝化細菌之間競爭的是NO-3和NO-2的供應(yīng),并在恒化器中對此進行了驗證。當(dāng)提供足夠NO-3作為電子受體時,DNRA過程是主要的還原途徑;當(dāng)NO-2作為生物反應(yīng)器中的末端電子受體時,反硝化作用普遍存在。進一步研究證明,DNRA細菌對硝酸鹽的親和力強,硝酸鹽可能是更有利于DNRA細菌生長的氮源[41]。而Yoon等[28]則認為決定兩個過程競爭的是NO-2相對于NO-3的比例。高的NO-2/NO-3比例有利于DNRA過程,低比例有利于反硝化,而在沒有NO-3的情況下,NO-2的濃度并不影響兩個過程的競爭。目前,對于氮源的種類如何影響DNRA和反硝化過程的競爭還存在爭議,硝態(tài)氮種類是否會成為廢水處理中DNRA過程的潛在影響因素還需要進一步的研究。
2.4 碳氮比
碳源和氮源分別是DNRA過程的電子供體和受體,兩者的比例對硝酸鹽異化還原途徑的選擇具有重要影響,即碳氮比能調(diào)節(jié)DNRA和反硝化過程對環(huán)境中硝態(tài)氮的競爭。最初,Tiedje[3]和Smith[42]的研究相繼證明了碳氮比在分配DNRA和反硝化之間的重要性?;诖?,在實驗室進行了大量分批培養(yǎng)和恒化器實驗,探究DNRA在高碳氮比下占優(yōu)的潛在機制。使用恒化器對來自海洋環(huán)境中的混合菌群進行培養(yǎng),發(fā)現(xiàn)在缺乏硝酸鹽的條件下DNRA過程更活躍,而碳源供應(yīng)不足時,硝態(tài)氮主要通過反硝化過程去除[27]。為了進一步闡明驅(qū)動DNRA和反硝化之間生態(tài)平衡的確切機制,Van den Berg等[31]使用乙酸鹽作為電子供體對反硝化細菌和DNRA細菌之間的微生物競爭進行了探究。碳源供應(yīng)不足時(<1.86 mol C/mol N),反硝化細菌占主導(dǎo)地位,恒化器系統(tǒng)中檢測不到DNRA過程;提高進水中乙酸鈉的含量(>1.86 mol C/mol N),DNRA細菌逐漸取代反硝化細菌,超過70%的NO-3還原為NH+4。在高碳氮比的條件下,NO-3供應(yīng)不足,DNRA細菌對NO-3的底物親和力更大,在與反硝化細菌的競爭中占據(jù)優(yōu)勢。碳氮比的影響在電化學(xué)系統(tǒng)處理硝酸鹽廢水的研究中也得到了進一步證明,DNRA過程在高碳氮比下占據(jù)優(yōu)勢,可將44%的NO-3轉(zhuǎn)化為NH4+[43]。不同地區(qū)由于飲食習(xí)慣和工業(yè)類型的差異,導(dǎo)致污水處理廠進水的碳氮比并不相同,DNRA過程也會受到不同程度的影響,控制高碳氮比是促進DNRA過程發(fā)生的重要手段。
2.5 溫度和pH
溫度對于微生物的生命活動起決定性的影響,而由微生物介導(dǎo)的DNRA過程在溫度較高的自然區(qū)域反應(yīng)更劇烈,例如亞熱帶河口、海岸和海洋。在大多數(shù)海岸生態(tài)系統(tǒng)中,DNRA過程的占比和速率隨季節(jié)變化,夏季高溫增加了沉積物耗氧量,創(chuàng)造了更多的還原性條件,有利于DNRA過程[44]。然而,受季節(jié)變化和地理緯度位置的影響,污水處理廠中水溫很難保持恒定,這會導(dǎo)致活性污泥中細菌群落發(fā)生變化,從而影響處理效果[45]。污水處理中,改變溫度可調(diào)控硝態(tài)氮通過DNRA過程生成氨根,從而實現(xiàn)資源循環(huán)利用。Lai等[46]針對DNRA過程如何受溫度調(diào)控進行了進一步探究,發(fā)現(xiàn)隨著溫度從10 ℃提高到40 ℃,DNRA過程顯著增強。與反硝化過程相比,兩者的速率隨溫度升高均增大,但DNRA速率的增量更大[44]。
pH值的變化會影響亞硝酸鹽還原酶的活性,進而對DNRA和反硝化的機理過程產(chǎn)生影響[47]。反硝化過程的最適pH值范圍為6~8,在此范圍內(nèi),反硝化速率隨pH值的增大先增大后減小[48]。而DNRA過程的最適pH值范圍為5~9,與反硝化過程相比,中性及偏堿性的環(huán)境能夠增強DNRA過程對硝態(tài)氮的競爭力[34, 49-50]。在中性和堿性水稻土中,DNRA過程是主要的氮轉(zhuǎn)化途徑,而在酸性水稻土中,這一過程可忽略不計[51]。根據(jù)DNRA反應(yīng)式(1),DNRA過程是一個產(chǎn)堿的過程,因此pH值和DNRA過程相互影響,相互制約。
實際污水處理過程中,適當(dāng)提高水溫、維持中性、偏堿性的環(huán)境更有利于DNRA過程。
2.6 廢水中的其他元素
廢水中的水質(zhì)復(fù)雜,不同地區(qū)的廢水水質(zhì)往往存在很大差異,而廢水中含有的其他元素也會影響DNRA過程,例如二價鐵離子和硫化物。在澳大利亞亞拉河口證實了存在Fe2+驅(qū)動的DNRA過程(式(4)),添加高含量的Fe2+時會大大抑制反硝化作用,促進DNRA過程[4, 52-53]。Roberts等發(fā)現(xiàn)[54],在有氧條件下,沉積物孔隙水中Fe2+含量的增多會提高DNRA過程的比例,當(dāng)沉積物孔隙水中的Fe2+含量達到峰值(>400 μmol/L)時,硝酸鹽還原逐漸從反硝化向DNRA轉(zhuǎn)變。在血清瓶實驗中,高含量的Fe2+使DNRA速率增加了一倍,而反硝化速率卻下降[55]。這一現(xiàn)象可能是由于高含量的Fe2+通過破壞細胞內(nèi)電子傳輸抑制了反硝化作用,從而促進DNRA過程[52, 56]。在東非卡布諾灣的含鐵水柱中發(fā)現(xiàn)了不同的現(xiàn)象,添加Fe2 +可以不同程度地增強反硝化和DNRA過程,前者比后者高3.3倍,然而,由于技術(shù)限制,目前還無法建立確切機制來描述這一過程[57]。此外,最近研究發(fā)現(xiàn)[58-59],電纜細菌可以通過溶解FeS來改變周圍沉積物中的Fe2 +濃度,間接影響反硝化和DNRA過程。Fe2 +可以改變硝酸根還原路徑,廢水中含有高含量的Fe2+時,DNRA過程可能更占優(yōu)勢。
污水中缺乏有機物作為碳源時,硫化物可以作為無機碳源,為反硝化和DNRA過程提供能源。硫化物也是決定呼吸DNRA和反硝化之間競爭的關(guān)鍵因素。最初研究表明[60],緩慢氧化的FeS更有利于反硝化過程,而迅速氧化的H2S產(chǎn)生大量S2-,有利于DNRA過程。游離硫化物(S2-)可以抑制反硝化作用中的N2O或NO還原為N2的過程,從而積累亞硝酸鹽,為DNRA和硫化物代謝提供電子供體[61]。進一步研究發(fā)現(xiàn)[62-63],游離硫化物與硝酸根的比值高會導(dǎo)致DNRA過程占優(yōu),低比例有利于反硝化。當(dāng)比值大于1.3 mol S/ mol N時,硝酸鹽易通過DNRA途徑還原為氨,硫化物也更偏向于被氧化為硫酸鹽。在波羅的海中也觀察到了同樣趨勢,S2-濃度達到40 μmol/L會刺激反硝化作用,更高的濃度則有利于DNRA過程[64-65]。
3 DNRA過程測定方法
目前,針對DNRA過程的測定通常可以采用兩種方法:一是通過nrfA基因?qū)NRA微生物的數(shù)量和功能基因的豐度進行定量;二是采用15N同位素示蹤技術(shù)確定DNRA過程的總轉(zhuǎn)化率和速率,進而評估DNRA的重要性。
硝酸鹽還原酶在DNRA和反硝化途徑中都很常見,而nrfA基因編碼的周質(zhì)五血紅素細胞色素c亞硝酸鹽還原酶能夠?qū)NRA和反硝化過程區(qū)分開[27, 66-67]。nrfA基因在進行DNRA過程的不同細菌中被發(fā)現(xiàn),包括變形菌門、擬桿菌門、厚壁菌門和浮霉菌門等[16, 68]。因此,nrfA基因可以作為DNRA的功能基因,通過PCR定量其基因豐度是評估DNRA潛力的重要方法[69-70]。Li等[71]通過nrfA功能基因定量對中國富營養(yǎng)化程度不同的淺水湖泊的微生物群落進行分析發(fā)現(xiàn),DNRA細菌的豐度和群落結(jié)構(gòu)可能是湖泊富營養(yǎng)化的重要調(diào)節(jié)劑。Wang等[19]確定污水處理廠8個處理單元中Nitrospira是主要的DNRA菌屬,所采用的方法也是對nrfA基因進行定量。通過基因定量除了可以確定污水處理廠中DNRA相關(guān)微生物的分布,還可以估計DNRA過程的活性。研究發(fā)現(xiàn)[70, 72-73],在不同生態(tài)系統(tǒng)中DNRA過程的活性與nrfA基因的豐度之間存在顯著聯(lián)系,例如河口、河流、海岸和稻田生態(tài)系統(tǒng)等。Shu等[8, 13]通過nrfA基因定量先后證明了厭氧氨氧化、反硝化和DNRA在廢水處理過程中共存;其次,nrfA基因具有較高的豐度,表明廢水處理中DNRA過程不可忽視。
DNRA微生物的數(shù)量和功能基因的豐度不一定能完全反映DNRA的活性,還需要研究總轉(zhuǎn)化率和速率來評估DNRA的重要性。1992年,Ambus等[74]第1次針對河岸沼澤提出了土壤總DNRA率的測量,添加15NO-3作為示蹤劑后,計算NH+4中15N的富集來分析DNRA轉(zhuǎn)化率,之后Silver等[75]、Huygens等[76]據(jù)此提出了分析方程用于研究各種生態(tài)系統(tǒng)中的DNRA。有研究認為[77-78],數(shù)值模擬可以成為對NO-3所有代謝途徑進行分析的替代方法,同時提出了包含DNRA的15N示蹤模型。近幾年,15N同位素示蹤技術(shù)成為研究生態(tài)系統(tǒng)中氮的最終歸宿或者量化氮轉(zhuǎn)化率的主要手段[79-81]。針對土壤生態(tài)系統(tǒng),通過15N同位素示蹤技術(shù)發(fā)現(xiàn)土壤水分增加會導(dǎo)致DNRA過程在NO-3還原中的占比增加,達到92.9%[82]。Pan等[83]結(jié)合功能基因定量、高通量分析和網(wǎng)絡(luò)分析等多種手段,研究了華北4種肥沃農(nóng)田的硝酸鹽還原過程,DNRA是主導(dǎo)過程,占比達到84%±14%。15N同位素示蹤技術(shù)也被用來評估水生生態(tài)系統(tǒng)DNRA的轉(zhuǎn)化率和速率。Li等[84]測定閩江口的DNRA速率范圍在0.45~2.92 nmol/(g·h)之間,進一步預(yù)測了亞熱帶河口DNRA過程的大小和空間分布。DNRA是湖泊沉積物中重要的硝酸鹽還原途徑,對中國12個淺水湖泊沉積物的DNRA速率和轉(zhuǎn)化率進行定量,發(fā)現(xiàn)碳氮比和nrfA基因豐度是影響DNRA過程的非生物和生物因素[73]。在上海國家濕地公園,利用該技術(shù)首次同時測定了反硝化作用、厭氧氨氧化和DNRA的速率,以此評估DNRA在人工濕地系統(tǒng)中的作用[7]。Wang等[19]利用15N同位素示蹤對廢水處理中的DNRA過程進行評估,發(fā)現(xiàn)DNRA潛在速率低于反硝化,但高于厭氧氨氧化。15N同位素示蹤技術(shù)幫助量化DNRA過程的速率和貢獻率,但其測量方法的不完善仍然制約有關(guān)DNRA過程的研究。優(yōu)化同位素測定儀器是量化DNRA過程速率的關(guān)鍵,通過優(yōu)化可以準確快速測定15N標(biāo)記的產(chǎn)物(29N2、30N2)進而評估DNRA過程。開發(fā)數(shù)學(xué)模型同時計算多個轉(zhuǎn)化過程(反硝化、厭氧氨氧化和DNRA等)的速率,并用實測數(shù)據(jù)對數(shù)學(xué)模型進行驗證,對于準確評估DNRA的貢獻率至關(guān)重要。
4 結(jié)論與展望
在自然生態(tài)系統(tǒng)中,由于DNRA過程不僅能夠減少溫室氣體的排放,還可以將較難利用的NO-3-N轉(zhuǎn)化為更容易被微生物利用的NH+4-N,因此,其在氮循環(huán)中的作用得到了越來越多的關(guān)注和認可。但目前關(guān)于DNRA過程的研究大多數(shù)集中在土壤系統(tǒng)中,在水體系統(tǒng)中的研究則相對較少。在自然水體中,DNRA過程雖然不能夠?qū)⒖偟档偷揭欢ǖ乃?,但可以通過與反硝化過程競爭,從而減少N2O溫室氣體的排放。在人工水體(例如污水處理廠)中,DNRA過程可以將廢水中的NO-3降低到排放標(biāo)準,同時產(chǎn)生的含有NH+4的廢水可以通過二次處理加工成為營養(yǎng)肥料,實現(xiàn)廢水的資源化。
DNRA與反硝化作為兩個競爭性的硝酸鹽還原過程,在廢水處理過程中同時存在。了解影響兩個過程之間競爭的因素,對于更好預(yù)測DNRA過程在廢水處理中的發(fā)生和貢獻率具有重要意義。溶解氧、碳源種類、氮源種類、碳氮比、溫度、pH值以及廢水組分等都會不同程度地影響DNRA過程,調(diào)控其與反硝化過程之間的競爭。通過優(yōu)化廢水處理中的運行參數(shù),可以使廢水達標(biāo)排放,同時回收資源,降低運行成本,例如,在高碳氮比的條件下,DNRA優(yōu)于反硝化過程。實際應(yīng)用中為了確定各參數(shù)的影響,還需要通過nrfA功能基因定量和15N同位素示蹤技術(shù)來評估DNRA的活性并量化DNRA的速率和貢獻率。
參考文獻:
[1]WOODS D D. The reduction of nitrate to ammonia by Clostridium welchii[J]. The Biochemical Journal, 1938, 32(11): 2000-2012.
[2]STANFORD G, LEGG J O, DZIENIA S, et al. Denitrification and associated nitrogen transformations in soils[J]. Soil Science, 1975, 120(2): 147-152.
[3]TIEDJE J M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium[J]. Environmental Microbiology of Anaerobes, 1988(April): 179-244.
[4]KESSLER A J, ROBERTS K L, BISSETT A, et al. Biogeochemical controls on the relative importance of denitrification and dissimilatory nitrate reduction to ammonium in estuaries[J]. Global Biogeochemical Cycles, 2018, 32(7): 1045-1057.
[5]WANG S Y, PI Y X, SONG Y P, et al. Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones[J]. Water Research, 2020, 173: 115539.
[6]LUVIZOTTO D M, ARAUJO J E, DE CSSIA P SILVA M, et al. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils[J]. Anais Da Academia Brasileira De Ciências, 2019, 91(Sup1): 14.
[7]ZHAO Y Y, BU C N, YANG H L, et al. Survey of dissimilatory nitrate reduction to ammonium microbial community at national wetland of Shanghai, China[J]. Chemosphere, 2020, 250: 126195.
[8]SHU D T, HE Y L, YUE H, et al. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems[J]. Chemical Engineering Journal, 2016, 290: 21-30.
[9]MCCARTY P L. What is the best biological process for nitrogen removal:When and why?[J]. Environmental Science & Technology, 2018, 52(7): 3835-3841.
[10]WANG S Y, PENG Y Z, MA B, et al. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked[J]. Water Research, 2015, 84: 66-75.
[11]WANG Q K, DING C, TAO G H, et al. Analysis of enhanced nitrogen removal mechanisms in a validation wastewater treatment plant containing anammox bacteria[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1255-1265.
[12]YUAN Q, WANG H Y, CHU Z S, et al. Influence of C/N ratio on MBBR denitrification for advanced nitrogen removal of wastewater treatment plant effluent[J]. Desalination and Water Treatment, 2017, 66: 158-165.
[13]SHU D T, HE Y L, YUE H, et al. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172.
[14]SIMON J, KLOTZ M G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2013, 1827(2): 114-135.
[15]KERN M, SIMON J. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2009, 1787(6): 646-656.
[16]MOHAN S B, SCHMID M, JETTEN M, et al. Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification[J]. FEMS Microbiology Ecology, 2004, 49(3): 433-443.
[17]卜翠娜. 異化硝酸鹽還原菌(DNRA)的環(huán)境分布及富集培養(yǎng)研究[D]. 濟南: 山東大學(xué), 2018.
BU C N. Study on environmental distribution and enrichment culture of dissimilatory nitrate reduction to ammonium(DNRA)bacteria[D]. Jinan: Shandong University, 2018. (in Chinese)
[18]LU W W, ZHANG H L, SHI W M. Dissimilatory nitrate reduction to ammonium in an anaerobic agricultural soil as affected by glucose and free sulfide[J]. European Journal of Soil Biology, 2013, 58: 98-104.
[19]WANG S Y, LIU C L, WANG X X, et al. Dissimilatory nitrate reduction to ammonium (DNRA) in traditional municipal wastewater treatment plants in China: Widespread but low contribution[J]. Water Research, 2020, 179: 115877.
[20]劉芹, 彭黨聰. 城市污水生物脫氮系統(tǒng)中DNRA的檢測與分析[J]. 中國給水排水, 2019, 35(19): 1-6.
LIU Q, PENG D C. Detection and genetic analysis of dissimilatory nitrate reduction to ammonium in biological nitrogen removal system for municipal sewage[J]. China Water & Wastewater, 2019, 35(19): 1-6. (in Chinese)
[21]WANG Q J, LIANG J S, ZHAO C, et al. Wastewater treatment plant upgrade induces the receiving river retaining bioavailable nitrogen sources[J]. Environmental Pollution, 2020, 263: 114478.
[22]SOARES-CASTRO P, YADAV T C, VIGGOR S, et al. Seasonal bacterial community dynamics in a crude oil refinery wastewater treatment plant[J]. Applied Microbiology and Biotechnology, 2019, 103(21/22): 9131-9141.
[23]WANG Y M, LIN Z Y, HE L, et al. Simultaneous partial nitrification, anammox and denitrification (SNAD) process for nitrogen and refractory organic compounds removal from mature landfill leachate: Performance and metagenome-based microbial ecology[J]. Bioresource Technology, 2019, 294: 122166.
[24]MIRGHORAYSHI M, ZINATIZADEH A A, VAN LOOSDRECHT M. Evaluating the process performance and potential of a high-rate single airlift bioreactor for simultaneous carbon and nitrogen removal through coupling different pathways from a nitrogen-rich wastewater[J]. Bioresource Technology, 2018, 260: 44-52.
[25]ZIELINSKA M, BERNAT K, CYDZIK-KWIATKOWSKA A, et al. Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations[J]. Journal of Environmental Sciences, 2012, 24(6): 990-998.
[26]許德超, 朱婷婷, 陽立平, 等. 溶解氧對生物接觸氧化+生物流化床聯(lián)合脫氮效果的影響[J]. 環(huán)境污染與防治, 2020, 42(12): 1557-1562.
XU D C, ZHU T T, YANG L P, et al. Effects of dissolved oxygen on nitrogen removal by a combination of biological contact oxidation and biological fluidized bed[J]. Environmental Pollution & Control, 2020, 42(12): 1557-1562. (in Chinese)
[27]KRAFT B, TEGETMEYER H E, SHARMA R, et al. The environmental controls that govern the end product of bacterial nitrate respiration[J]. Science, 2014, 345(6197): 676-679.
[28]YOON S, CRUZ-GARCA C, SANFORD R, et al. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO-3/NO-2 reduction pathways in Shewanella loihica strain PV-4[J]. The ISME Jounal, 2015, 9(5): 1093-1104.
[29]VAN DEN BERG E M, VAN DONGEN U, ABBAS B, et al. Enrichment of DNRA bacteria in a continuous culture[J]. The ISME Journal, 2015, 9(10): 2153-2161.
[30]VAN DEN BERG E M, ELISRIO M P, KUENEN J G, et al. Fermentative bacteria influence the competition between denitrifiers and DNRA bacteria[J]. Frontiers in Microbiology, 2017, 8: 1684.
[31]VAN DEN BERG E M, BOLEIJ M, KUENEN J G, et al. DNRA and denitrification coexist over a broad range of acetate/N-NO-3 ratios, in a chemostat enrichment culture[J]. Frontiers in Microbiology, 2016, 7: 1842.
[32]PANDEY A, SUTER H, HE J Z, et al. Dissimilatory nitrate reduction to ammonium dominates nitrate reduction in long-term low nitrogen fertilized rice paddies[J]. Soil Biology and Biochemistry, 2019, 131: 149-156.
[33]PATRICK W H, WILLIAMS B G, MORAGHAN J T. A simple system for controlling redox potential and pH in soil suspensions[J]. Soil Science Society of America Journal, 1973, 37(2): 331-332.
[34]陳韜, 李劍灃, 鄒子介, 等. 氧化還原電位和pH對生物滯留系統(tǒng)硝酸鹽異化還原為氨作用的影響[J]. 科學(xué)技術(shù)與工程, 2018, 18(4): 368-373.
CHEN T, LI J F, ZOU Z J, et al. Effects of redox potential and pH on the effect of dissimilatory nitrate reduction to ammonium in bioretention system[J]. Science Technology and Engineering, 2018, 18(4): 368-373. (in Chinese)
[35]JNTTI H, AALTO S L, PAERL H W. Effects of ferrous iron and hydrogen sulfide on nitrate reduction in the sediments of an estuary experiencing hypoxia[J]. Estuaries and Coasts, 2021, 44(1): 1-12.
[36]COJEAN A N Y, ZOPFI J, GERSTER A, et al. Direct O2 control on the partitioning between denitrification and dissimilatory nitrate reduction to ammonium in lake sediments[J]. Biogeosciences, 2019, 16(23): 4705-4718.
[37]PETT-RIDGE J, SILVER W L, FIRESTONE M K. Redox fluctuations frame microbial community impacts on N-cycling rates in a humid tropical forest soil[J]. Biogeochemistry, 2006, 81(1): 95-110.
[38]YIN S X, CHEN D, CHEN L M, et al. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J]. Soil Biology and Biochemistry, 2002, 34(8): 1131-1137.
[39]RAHMAN M M, ROBERTS K L, GRACE M R, et al. Role of organic carbon, nitrate and ferrous iron on the partitioning between denitrification and DNRA in constructed stormwater urban wetlands[J]. Science of the Total Environment, 2019, 666: 608-617.
[40]CARLSON H K, LUI L M, PRICE M N, et al. Selective carbon sources influence the end products of microbial nitrate respiration[J]. The ISME Journal, 2020, 14(8): 2034-2045.
[41]DONG L F, SOBEY M N, SMITH C J, et al. Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries[J]. Limnology and Oceanography, 2011, 56(1): 279-291.
[42]SMITH M S. Dissimilatory reduction of NO-2 to NH+4 and N2O by a soil Citrobacter sp[J]. Applied and Environmental Microbiology, 1982, 43(4): 854-860.
[43]WAN Y X, HUANG Z L, ZHOU L A, et al. Bioelectrochemical ammoniation coupled with microbial electrolysis for nitrogen recovery from nitrate in wastewater[J]. Environmental Science & Technology, 2020, 54(5): 3002-3011.
[44]RAHMAN M, GRACE M R, ROBERTS K L, et al. Effect of temperature and drying-rewetting of sediments on the partitioning between denitrification and DNRA in constructed urban stormwater wetlands[J]. Ecological Engineering, 2019, 140: 105586.
[45]賀赟, 李魁曉, 王佳偉, 等. 不同季節(jié)城市污水處理廠微生物群落特性[J]. 環(huán)境科學(xué), 2021, 42(3): 1488-1495.
HE Y, LI K X, WANG J W, et al. Microbial community structure of waste water treatment plants in different seasons[J]. Environmental Science, 2021, 42(3): 1488-1495. (in Chinese)
[46]LAI T V, RYDER M H, RATHJEN J R, et al. Dissimilatory nitrate reduction to ammonium increased with rising temperature[J]. Biology and Fertility of Soils, 2021, 57(3): 363-372.
[47]殷士學(xué). 淹水土壤中硝態(tài)氮異化還原成銨過程的研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2000.
YIN S X.Dissimilatory nitrate reduction to ammonium in submerged soils[D]. Nanjing: Nanjing Agricultural University, 2000. (in Chinese)
[48]李權(quán)斌, 榮宏偉, 張朝升, 等. pH對生物膜同步硝化反硝化脫氮及其N2O產(chǎn)量的影響[J]. 水處理技術(shù), 2016, 42(1): 121-124,135.
LI Q B, RONG H W, ZHANG C S, et al. Effects of pH on SND and the N2O production in biofilm reactor[J]. Technology of Water Treatment, 2016, 42(1): 121-124,135. (in Chinese)
[49]韋宗敏, 黃少斌, 蔣然. 碳源對微生物硝酸鹽異化還原成銨過程的影響[J]. 工業(yè)安全與環(huán)保, 2012, 38(9): 4-7,14.
WEI Z M, HUANG S B, JIANG R. Effect of carbon on dissimilatory nitrate reduction to ammonium process[J]. Industrial Safety and Environmental Protection, 2012, 38(9): 4-7,14. (in Chinese)
[50]FERNANDES S O, BONIN P C, MICHOTEY V D, et al. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J]. Scientific Reports, 2012, 2: 419.
[51]ZHANG J B, LAN T, MLLER C, et al. Dissimilatory nitrate reduction to ammonium (DNRA) plays an important role in soil nitrogen conservation in neutral and alkaline but not acidic rice soil[J]. Journal of Soils and Sediments, 2015, 15(3): 523-531.
[52]ROBERTSON E K, THAMDRUP B. The fate of nitrogen is linked to iron(II) availability in a freshwater lake sediment[J]. Geochimica et Cosmochimica Acta, 2017, 205: 84-99.
[53]COJEAN A N Y, LEHMANN M F, ROBERTSON E K, et al. Controls of H2S, Fe2+, and Mn2+ on microbial NO-3-reducing processes in sediments of an eutrophic lake[J]. Frontiers in Microbiology, 2020, 11: 1158.
[54]ROBERTS K L, KESSLER A J, GRACE M R, et al. Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary[J]. Geochimica et Cosmochimica Acta, 2014, 133: 313-324.
[55]ROBERTSON E K, ROBERTS K L, BURDORF L D W, et al. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary[J]. Limnology and Oceanography, 2016, 61(1): 365-381.
[56]CARLSON H K, CLARK I C, MELNYK R A, et al. Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification[J]. Frontiers in Microbiology, 2012, 3: 57.
[57]MICHIELS C C, DARCHAMBEAU F, ROLAND F A E, et al. Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans[J]. Nature Geoscience, 2017, 10(3): 217-221.
[58]RAO A M F, MALKIN S Y, HIDALGO-MARTINEZ S, et al. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment[J]. Geochimica et Cosmochimica Acta, 2016, 172: 265-286.
[59]KESSLER A J, WAWRYK M, MARZOCCHI U, et al. Cable bacteria promote DNRA through iron sulfide dissolution[J]. Limnology and Oceanography, 2019, 64(3): 1228-1238.
[60]BRUNET R C, GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiology Ecology, 1996, 21(2): 131-138.
[61]AELION C M, WARTTINGER U. Low sulfide concentrations affect nitrate transformations in freshwater and saline coastal retention pond sediments[J]. Soil Biology and Biochemistry, 2009, 41(4): 735-741.
[62]YIN Z X, XIE L, ZHOU Q. Effects of sulfide on the integration of denitrification with anaerobic digestion[J]. Journal of Bioscience and Bioengineering, 2015, 120(4): 426-431.
[63]POKORNA D, ZABRANSKA J. Sulfur-oxidizing bacteria in environmental technology[J]. Biotechnology Advances, 2015, 33(6): 1246-1259.
[64]DALSGAARD T, DE BRABANDERE L, HALL P O J. Denitrification in the water column of the central Baltic Sea[J]. Geochimica et Cosmochimica Acta, 2013, 106: 247-260.
[65]BONAGLIA S, KLAWONN I, DE BRABANDERE L, et al. Denitrification and DNRA at the Baltic Sea oxic-anoxic interface: Substrate spectrum and kinetics[J]. Limnology and Oceanography, 2016, 61(5): 1900-1915.
[66]WANG X G, TAMIEV D, ALAGURAJAN J, et al. The role of the NADH-dependent nitrite reductase, Nir, from Escherichia coli in fermentative ammonification[J]. Archives of Microbiology, 2019, 201(4): 519-530.
[67]KIM H, PARK D, YOON S. pH control enables simultaneous enhancement of nitrogen retention and N2O reduction in Shewanella loihica strain PV-4[J]. Frontiers in Microbiology, 2017, 8: 1820.
[68]GILES M, MORLEY N, BAGGS E M, et al. Soil nitrate reducing processes-drivers, mechanisms for spatial variation, and significance for nitrous oxide production[J]. Frontiers in Microbiology, 2012, 3: 407.
[69]YIN G, HOU L, LIU M, et al. DNRA in intertidal sediments of the Yangtze Estuary[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(8): 1988-1998.
[70]LI X F, SARDANS J, GARGALLO-GARRIGA A, et al. Nitrogen reduction processes in paddy soils across climatic gradients: Key controlling factors and environmental implications[J]. Geoderma, 2020, 368: 114275.
[71]LI X W, SONG C L, ZHOU Z J, et al. Comparison of community and function of dissimilatory nitrate reduction to ammonium (DNRA) bacteria in Chinese shallow lakes with different eutrophication degrees[J]. Water, 2020, 12(1): 174.
[72]LI X F, GAO D Z, HOU L J, et al. Soil substrates rather than gene abundance dominate DNRA capacity in the Spartina alterniflora ecotones of estuarine and intertidal wetlands[J]. Plant and Soil, 2019, 436(1/2): 123-140.
[73]PANG Y M, JI G D. Biotic factors drive distinct DNRA potential rates and contributions in typical Chinese shallow lake sediments[J]. Environmental Pollution, 2019, 254: 112903.
[74]AMBUS P, MOSIER A, CHRISTENSEN S. Nitrogen turnover rates in a riparian Fen determined by 15N dilution[J]. Biology and Fertility of Soils, 1992, 14(4): 230-236.
[75]SILVER W L, HERMAN D J, FIRESTONE M K. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils[J]. Ecology, 2001, 82(9): 2410-2416.
[76]HUYGENS D, BOECKX P, TEMPLER P, et al. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils[J]. Nature Geoscience, 2008, 1(8): 543-548.
[77]RTTING T, MLLER C. 15N tracing models with a Monte Carlo optimization procedure provide new insights on gross N transformations in soils[J]. Soil Biology and Biochemistry, 2007, 39(9): 2351-2361.
[78]RTTING T, HUYGENS D, STAELENS J, et al. Advances in 15N-tracing experiments: New labelling and data analysis approaches[J]. Biochemical Society Transactions, 2011, 39(1): 279-283.
[79]WANG J, ZHANG J B, MLLER C, et al. Evaluation of the mixing of sands into soils on nitrification potential from different land-use systems[J]. European Journal of Soil Biology, 2017, 81: 25-30.
[80]LIU X, HAN J G, MA Z W, et al. Effect of Carbon source on dissimilatory nitrate reduction to ammonium in Costal Wetland sediments[J]. Journal of Soil Science and Plant Nutrition, 2016, 16(2): 337-349.
[81]PANDEY A, SUTER H, HE J Z, et al. Dissimilatory nitrate ammonification and N2 fixation helps maintain nitrogen nutrition in resource-limited rice paddies[J]. Biology and Fertility of Soils, 2021, 57(1): 107-115.
[82]CHEN Z M, DING W X, XU Y H, et al. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis[J]. Soil Biology and Biochemistry, 2015, 91: 65-75.
[83]PAN H W, QIN Y, WANG Y T, et al. Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil[J]. Environmental Research, 2020, 186: 109612.
[84]LI X F, QIAN W, HOU L J, et al. Soil organic carbon controls dissimilatory nitrate reduction to ammonium along a freshwater-oligohaline gradient of Min River Estuary, Southeast China[J]. Marine Pollution Bulletin, 2020, 160: 111696.
(編輯 胡玲)