劉海燕,喻陽(yáng)華,熊康寧,張仕豪,楊珊
摘要:【目的】分析喀斯特生境3種經(jīng)濟(jì)林樹種葉片對(duì)光強(qiáng)的光合生理響應(yīng),為喀斯特石漠化區(qū)生態(tài)修復(fù)植物選種育種提供理論依據(jù)?!痉椒ā渴褂肔i-6800便攜式光合作用測(cè)定儀測(cè)定相同生境條件下花椒(Zanthoxylum bungeanum)、枇杷(Eriobotrya japonica)與核桃(Juglans regia)的光合作用—光響應(yīng)和葉綠素?zé)晒忭憫?yīng)特征及暗下熒光參數(shù),采用SPSS 25.0對(duì)光響應(yīng)擬合參數(shù)進(jìn)行單因素方差分析,比較喀斯特高原峽谷不同經(jīng)濟(jì)林樹種的光合能力?!窘Y(jié)果】核桃葉片的凈光合速率(Pn)、蒸騰速率(Tr)、氣孔導(dǎo)度(Gs)和電子傳遞速率(ETR)光響應(yīng)曲線與枇杷和花椒葉片差異顯著 (P<0.05,下同),均先呈大幅上升,后趨于平穩(wěn),枇杷和花椒光響應(yīng)曲線的上升幅度則顯著高于核桃,且枇杷葉片在高光強(qiáng)下仍有上升趨勢(shì);三者的胞間CO2濃度(Ci)、氣孔限制值(Ls)與水分利用效率(WUE)對(duì)光強(qiáng)的響應(yīng)差異不顯著(P>0.05),總體上升/下降幅度排序?yàn)榛ń?枇杷>核桃。3種經(jīng)濟(jì)林的最大凈光合速率(Pnmax)為2.89~8.80 μmol/(m2·s),表觀量子效率(AQY)為0.055~0.067 μmol/(m2·s),光飽和點(diǎn)(LSP)為866.06~2283.86 μmol/(m2·s),光補(bǔ)償點(diǎn)(LCP)為13.29~49.90 μmol/(m2·s),花椒的光合性能最好,而枇杷的光合潛力最高。核桃葉片初始熒光(Fo)、最大熒光(Fm)及PSII光化學(xué)效率(Fv/Fm)均顯著低于枇杷和花椒。【結(jié)論】枇杷和花椒的光合生理特性對(duì)光強(qiáng)表現(xiàn)出明顯的響應(yīng),花椒光合能力最強(qiáng),而枇杷生態(tài)適應(yīng)性最好,在未來(lái)的種植中可考慮增加枇杷的土壤養(yǎng)分,以增加枇杷的光合能力,進(jìn)而提高植物生產(chǎn)力;核桃易發(fā)生光抑制,建議在最大光強(qiáng)較低的地區(qū)種植。綜上所述,花椒和枇杷更適宜做喀斯特高原峽谷地區(qū)石漠化治理的經(jīng)濟(jì)樹種。
關(guān)鍵詞: 喀斯特石漠化區(qū);經(jīng)濟(jì)林;光合能力;葉綠素?zé)晒?生態(tài)適應(yīng)性
中圖分類號(hào): S728.918.45? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)09-2507-09
Response characteristics of photosynthesis to light intensity of three non-wood forests tree species in karst habitat
LIU Hai-yan, YU Yang-hua, XIONG Kang-ning*, ZHANG Shi-hao, YANG Shan
(Institute of Karst Science, Guizhou Normal University/State Technology Center for Karst Desertification Control Engineering, Guiyang? 550001, China)
Abstract:【Objective】The photosynthetic physiological responses of leaves of three non-wood forests tree species in karst habitat to light intensity were analyzed to provide theoretical basis for selection and breeding of ecological restoration plants in the karst rocky desertification area. 【Method】Used the Li-6800 portable photosynthesis meter to determine the photosynthesis-light response and chlorophyⅡ fluorescence response characteristics of Zanthoxylum bungeanum, Eriobo-trya japonica and Juglans regia under the same habitat conditions, as well as the dark fluorescence parameters, One-way ANOVA using SPSS 25.0 for the light response fitting parameters, and then compared the differences in karst plateau valley photosynthetic capacity of non-wood forests tree species. 【Result】The net photosynthetic rate(Pn), transpiration rate(Tr), stomatal conductance(Gs), and electron transfer rate(ETR) light response curves of J. regia leaves were significantly different from those of E. japonica and Z. bungeanum leaves to light intensity(P<0.05,the same below), they all rose sharply at first, and then tended to be stable. The curve of E. japonica and Z. bungeanum rose significantly higher than J. regia, while E. japonica leaves still had a rising trend under high light intensity; the intercellular CO2 concentration(Ci), stomatal limit value(Ls) and water use efficiency(WUE) of the three had no significant difference to light intensity(P>0.05), and the overall increase/decrease range was Z. bungeanum>E. japonica>J. regia. The maximum net photosynthetic rate(Pnmax) of the three non-wood forests was 2.89-8.80 μmol/(m2·s), and the apparent quantum efficiency(AQY) was 0.055 to 0.067 μmol/(m2·s). The light saturation point(LSP) was 866.06-2283.86 μmol/(m2·s), and the light compensation point(LCP) was 13.29-49.90 μmol/(m2·s). The photosynthetic performance of Z. bungeanum was the best, while E. japonica had the highest photosynthetic potential. The initial fluorescence(Fo), maximum fluorescence(Fm), and PSII photochemical efficiency(Fv/Fm) of J. regia leaves were significantly lower than those of E. japonica and Z. bungeanum. 【Conclusion】The photosynthetic physiological characteristics of E. japonica and Z. bungeanum show obvious response to light intensity. Z. bungeanum has the strongest photosynthetic capacity, while E. japonica has the best ecological adap-tability. In the future planting, it can be considered to increase the soil nutrients of E. japonica to improve its photosynthe-tic capacity, thereby increasing plant productivity. J. regia is prone to photoinhibition, and it is recommended to plant them in areas with lower maximum light intensity. In summary,Z. bungeanum and E. japonica are more suitable economic tree species for rockey desertification control in karst plateau valley area.
Key words: karst rocky desertification area; non-wood forest; photosynthetic capacity; chlorophyll fluorescence;ecological adaptability
Foundation item: Guizhou Science and Technology Plan Major Project(〔2017〕5411); Guizhou World-class Discipline Construction Project(〔2019〕125)
0 引言
【研究意義】我國(guó)南方以貴州高原為中心的喀斯特地區(qū)是世界上面積最大且最集中連片的生態(tài)脆弱區(qū),該地區(qū)雖然雨熱條件好,但由于土壤流失嚴(yán)重,肥力極差(熊康寧和陳起偉,2010)。另外,該地區(qū)日照時(shí)間長(zhǎng),且輻射強(qiáng)烈,植物經(jīng)常遭受各種逆境,導(dǎo)致氣孔導(dǎo)度減小或關(guān)閉,阻礙空氣中的CO2進(jìn)入細(xì)胞,造成植物光合速率下降(Galle et al.,2010)。喀斯特地區(qū)的生態(tài)環(huán)境條件需要植被具備抗凍耐旱的功能(何躍軍和鐘章成,2010),考慮到人地關(guān)系和生存壓力,定位生態(tài)經(jīng)濟(jì)型植物為該地區(qū)的植被恢復(fù)方向(喻陽(yáng)華等,2017)。推廣生態(tài)經(jīng)濟(jì)型植物種植是喀斯特地區(qū)石漠化治理、發(fā)展經(jīng)濟(jì)以及改善環(huán)境、促進(jìn)人與自然和諧相處的有效途徑(熊康寧等,2016)。因此,探究喀斯特石漠化治理下生態(tài)經(jīng)濟(jì)林的光合能力,研究光合同化作用效率提升機(jī)制,對(duì)地區(qū)產(chǎn)業(yè)發(fā)展和經(jīng)濟(jì)林的選育馴化具有重要意義?!厩叭搜芯窟M(jìn)展】光照是植物進(jìn)行光合作用的基礎(chǔ),但光強(qiáng)過(guò)低或過(guò)高會(huì)明顯影響植物的光合效率(裴斌等,2013)。有學(xué)者通過(guò)氣體交換參數(shù)、葉綠素?zé)晒?、酶活性和氣孔特性等方法研究了光?qiáng)對(duì)植物光合特性的響應(yīng)機(jī)理(單提波等,2015;尚三娟等,2020;王明援等,2020)。Chai等(2018)研究發(fā)現(xiàn)光照不足影響植物碳的合成,而光照過(guò)強(qiáng)也可能破壞植物的光合機(jī)構(gòu),出現(xiàn)光抑制現(xiàn)象,從而影響其光合能力。光強(qiáng)還會(huì)影響植物的形態(tài)結(jié)構(gòu)(王滿蓮等,2015),在弱光環(huán)境下,植物葉面積增大,比葉重和葉厚度減小(毛詩(shī)雅等,2020)。此外,不同植物對(duì)環(huán)境光強(qiáng)的適應(yīng)能力有所差異,喜光植物會(huì)在環(huán)境光強(qiáng)增加時(shí)光合速率加快,反之,喜陰植物則會(huì)因此而遭受光脅迫(Sims and Pearcy,1992;Zhang and Wen,2009)。光響應(yīng)曲線反映了植物光合速率與光照強(qiáng)度的相關(guān)關(guān)系,通過(guò)其可擬合出植物的最大凈光合速率(Pnmax)、表觀量子效率(AQY)、光補(bǔ)償點(diǎn)(LCP)、光飽和點(diǎn)(LSP)及暗呼吸速率(Rd)等光合特征參數(shù),這些參數(shù)可反映植物在光合作用中的光強(qiáng)利用能力和耐蔭性(劉旻霞等,2020)。葉綠素?zé)晒馀c植物葉片的光合作用效率密切相關(guān)(Grajek et al.,2020),植物葉片的葉綠素?zé)晒鈪?shù)能反映植物PSⅡ?qū)饽艿奈?、傳遞、利用與分配(Stirbet and Govindjee,2011),也可反映植物葉片的光合效率及在逆境條件下的生理狀態(tài)(李群等,2019)。經(jīng)濟(jì)林木花椒(Zanthoxylum bungeanum)、枇杷(Eriobotrya japonica)和核桃(Juglans regia)兼具保水與經(jīng)濟(jì)特性,能在改善石漠化地區(qū)水土流失和生態(tài)環(huán)境惡化的同時(shí)發(fā)展地區(qū)經(jīng)濟(jì)(容麗和熊康寧,2007;周赟等,2013),因此,研究喀斯特石漠化經(jīng)濟(jì)林樹種光合作用對(duì)光強(qiáng)的響應(yīng)特征有助于闡明其在環(huán)境變化中的生理生態(tài)適應(yīng)性?!颈狙芯壳腥朦c(diǎn)】以往對(duì)喀斯特地區(qū)植物光合特征的探討多為干旱/復(fù)水脅迫等適應(yīng)性研究(吳正花等,2018;Zhou et al.,2019;Leng et al.,2020),或是討論植物光合日變化特征與環(huán)境相關(guān)性,研究對(duì)象集中于次生林植物或是單一植物(池永寬等,2015;譚代軍等,2019;季傳澤等,2020),而對(duì)同一環(huán)境下不同經(jīng)濟(jì)林光響應(yīng)曲線和葉綠素?zé)晒馓卣鞯南嚓P(guān)研究較少?!緮M解決的關(guān)鍵問(wèn)題】選擇代表我國(guó)南方喀斯特生境特征的花江喀斯特高原峽谷綜合治理示范區(qū)花椒、枇杷和核桃特色經(jīng)濟(jì)林為研究對(duì)象,通過(guò)闡明3種經(jīng)濟(jì)林樹種的光合作用和葉綠素?zé)晒鈱?duì)光強(qiáng)的響應(yīng)規(guī)律,分析不同類型經(jīng)濟(jì)林的生態(tài)適應(yīng)性特征,旨在為石漠化地區(qū)生態(tài)經(jīng)濟(jì)林選種和培育提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)區(qū)概況
試驗(yàn)區(qū)地處貴州省關(guān)嶺縣與貞豐縣交界的北盤江流域花江地區(qū),位于東經(jīng)105°38′31″~106°40′51″、北緯25°38′19″~25°41′32″,喀斯特地貌,屬典型南亞熱帶干熱河谷氣候,光熱資源充沛,年平均氣溫為18.4 ℃,年均降水量達(dá)1100 mm(盛茂銀等,2015)。該區(qū)域地形破碎,多懸崖峭壁,生境條件脆弱性突出。
1. 2 試驗(yàn)方法
1. 2. 1 試驗(yàn)設(shè)計(jì) 供試材料為試驗(yàn)區(qū)特色經(jīng)濟(jì)林樹種花椒(Z. bungeanum)、枇杷(E. japonica)和核桃(J. regia)。于2020年7月2日—7月3日進(jìn)行野外控制試驗(yàn),天氣晴,每種植物選擇生長(zhǎng)發(fā)育良好的植株各3株,每株選取上、中和下冠層的3片成熟向陽(yáng)葉片,分別測(cè)定其光合作用—光響應(yīng)曲線和暗下熒光參數(shù)。光合作用—光響應(yīng)曲線的測(cè)定除控制光強(qiáng)外其余環(huán)境指標(biāo)為均為統(tǒng)一值。
1. 2. 2 測(cè)定指標(biāo)及方法 (1)光合作用—光響應(yīng)曲線測(cè)定:采用Li-6800便攜式光合作用測(cè)定儀進(jìn)行測(cè)定,測(cè)定時(shí)間為上午9:00—11:30,測(cè)定時(shí)控制葉室溫度為25 ℃,通過(guò)CO2小鋼瓶控制CO2濃度為400 μmol/mol,相對(duì)濕度60%,在0~2000 μmol/(m2·s)的光強(qiáng)(PAR)范圍內(nèi)由高到低設(shè)置2000、1800、1600、1400、1200、1000、800、600、400、200、100、80、60、40、20和0 μmol/(m2·s)共16個(gè)梯度。首先,充分對(duì)植物葉片進(jìn)行光誘導(dǎo),每個(gè)光強(qiáng)梯度的適應(yīng)時(shí)間為3~5 min,主要測(cè)定的光合作用—光響應(yīng)曲線包括凈光合速率(Pn)、蒸騰速率(Tr)、胞間CO2濃度(Ci)、氣孔導(dǎo)度(Gs)、葉綠素?zé)晒猓ě禤SⅡ)和快速光響應(yīng)曲線(RLC);然后采用葉子飄雙曲線修正模型(葉子飄,2008)擬合所測(cè)定的凈光合速率—光響應(yīng)曲線(Pn-PAR)和RLC,得出植物Pn-PAR的LSP、LCP、Rd、AQY和Pnmax,以及RLC的初始斜率(θ)、最大電子傳遞速率(ETRmax)及對(duì)應(yīng)的飽和光強(qiáng)(PARsat);根據(jù)Pe?uelas等(1998)的方法計(jì)算水分利用效率(WUE)和氣孔限制值(Ls):
WUE=Pn/Tr
Ls=(Ca?Ci)/Ca
式中,Ca為空氣CO2濃度。
(2)葉綠素?zé)晒鉁y(cè)定:使用Li-6800便攜式光合作用測(cè)定儀的熒光葉室進(jìn)行,測(cè)定時(shí)間與光響應(yīng)曲線時(shí)間一致,每種植物各選取3片成熟向陽(yáng)葉片。利用錫箔紙對(duì)葉片進(jìn)行遮光處理,經(jīng)暗適應(yīng)30 min后,測(cè)定植物初始熒光(Fo)、最大熒光(Fm)和可變熒光(Fv)等暗下熒光參數(shù),計(jì)算PSⅡ有效光化學(xué)量子效率(Fv/Fm)和PSⅡ潛在光化學(xué)活性(Fv/Fo)。
1. 3 統(tǒng)計(jì)分析
采用SPSS 25.0計(jì)算數(shù)據(jù)的平均值±標(biāo)準(zhǔn)誤,并進(jìn)行單因素方差分析;各光合特征參數(shù)的光響應(yīng)曲線使用Origin 9.5進(jìn)行繪制。
2 結(jié)果與分析
2. 1 3種經(jīng)濟(jì)林樹種光合氣體交換參數(shù)光響應(yīng)結(jié)果
2. 1. 1 凈光合速率光響應(yīng)曲線 如圖1所示,3種經(jīng)濟(jì)林樹種葉片的Pn-PAR均隨著PAR的增大呈先持續(xù)升高后趨于平穩(wěn)的變化趨勢(shì)。當(dāng)PAR=2000 μmol/(m2·s)時(shí),葉片Pn表現(xiàn)為花椒>枇杷>核桃,分別為8.39、7.73和2.53 μmol/(m2·s)。在PAR<280 μmol/(m2·s)的光照條件下,枇杷葉片的Pn大于花椒葉片,但二者的Pn差距較小;當(dāng)200 μmol/(m2·s)≤PAR≤2000 μmol/(m2·s)時(shí),花椒葉片的Pn大于枇杷葉片,且隨著PAR的增加,二者Pn的差距逐漸增大,PAR>1000 μmol/(m2·s)之后差距縮小,其中,花椒葉片的Pn-PAR有輕微下降趨勢(shì),二者的Pn與核桃葉片的差距也逐漸增大,其Pn均值分別較核桃增加64.2%和64.7%?;ń贰㈣凌撕秃颂业娜~片在接近光飽和時(shí)的Pn分別為8.80、7.74和2.89 μmol/(m2·s),前2種經(jīng)濟(jì)林樹種葉片分別是核桃的3.04倍和2.68倍,且二者在較高PAR下仍能保持較高的Pn。
通過(guò)修正的雙曲線模型擬合可得出植物的光合參數(shù),模型的決定系數(shù)(R2)均在0.90以上,表明該模型可很好地?cái)M合花椒、枇杷與核桃的光響應(yīng)過(guò)程。如表1所示,葉片Pnmax表現(xiàn)為花椒>枇杷>核桃,花椒和枇杷葉片顯著高于核桃葉片(P<0.05,下同),核桃葉片Pnmax僅為2.89 μmol/(m2·s)。3種經(jīng)濟(jì)林樹種葉片AQY為0.055~0.067 μmol/(m2·s),各樹種葉片間無(wú)顯著差異(P>0.05,下同),枇杷和花椒葉片的AQY分別較核桃葉片增加21.82%和18.18%。3種經(jīng)濟(jì)林樹種葉片的LSP、LCP和Rd均存在顯著差異,其中,LSP以枇杷葉片最高,達(dá)2283.86 μmol/(m2·s),核桃葉片最低,僅866.06 μmol/(m2·s),枇杷葉片的LSP分別較花椒葉片和核桃葉片增加79.87%和163.71%;葉片LCP為花椒>核桃>枇杷,花椒葉片LCP最高,為49.90 μmol/(m2·s),枇杷葉片最低,為13.29 μmol/(m2·s),枇杷葉片LCP分別較花椒葉片和核桃葉片減少73.37%和66.59%;葉片Rd表現(xiàn)為花椒>核桃>枇杷,花椒葉片Rd最高,為2.70 μmol/(m2·s),枇杷葉片Rd最低,為0.82 μmol/(m2·s),枇杷葉片Rd分別較花椒葉片和核桃葉片減少69.63%和47.10%。
2. 1. 2 其他光合生理參數(shù)的光響應(yīng)曲線 從圖2可知,3種經(jīng)濟(jì)林樹種葉片的Ci、WUE和Ls的光響應(yīng)曲線相似,均表現(xiàn)為:隨著PAR的增大,Ci先大幅下降然后趨于平穩(wěn),三者間的差距也逐漸減小;WUE和Ls則先持續(xù)上升后趨于平穩(wěn),其中,核桃的WUE在高光強(qiáng)下有下降趨勢(shì);在200 μmol/(m2·s)≤PAR≤2000 μmol/(m2·s)光照條件下,隨著PAR的增大,3種經(jīng)濟(jì)林樹種葉片的WUE和Ls差距越來(lái)越小。
從圖2-A可看出,光強(qiáng)對(duì)3種經(jīng)濟(jì)林樹種葉片Ci的影響差異表現(xiàn)為花椒>枇杷>核桃,在PAR<200 μmol/(m2·s)光照條件下降幅度最大,在200 μmol/(m2·s)≤PAR≤2000 μmol/(m2·s)時(shí)下降緩慢,花椒和枇杷葉片Ci均值分別較核桃葉片減少14.0%和17.7%。從圖2-B和圖2-C可知,在PAR<200 μmol/(m2·s)光照條件下,WUE和Ls快速上升,在200 μmol/(m2·s)≤PAR≤2000 μmol/(m2·s)時(shí)上升緩慢,花椒和枇杷葉片Ls均值分別較核桃葉片增加24.2%和28.6%,枇杷和核桃葉片WUE均值分別較花椒葉片增加5.5%和3.7%。
從圖2-D和圖2-E得知,3種經(jīng)濟(jì)林樹種葉片的Tr與Gs光響應(yīng)曲線相似,但二者間的光響應(yīng)曲線走向明顯不同。隨著PAR的增大,枇杷葉片的Tr和Gs先大幅增加后緩慢上升,并有持續(xù)上升的趨勢(shì),花椒和核桃葉片的Tr和Gs先大幅增加后趨于平穩(wěn)。在200 μmol/(m2·s)≤PAR≤2000 μmol/(m2·s)時(shí),核桃和枇杷葉片與花椒的Tr和Gs差距明顯;當(dāng)PAR=2000 μmol/(m2·s)時(shí),3種經(jīng)濟(jì)林樹種葉片Tr為枇杷[3.24 μmol/(m2·s)]>花椒[2.23 μmol/(m2·s)]>核桃[1.04 μmol/(m2·s)],Gs為枇杷[0.094 μmol/(m2·s)]>花椒[0.065 μmol/(m2·s)]>核桃[0.038 μmol/(m2·s)],枇杷與花椒葉片的Gs和Tr在試驗(yàn)光強(qiáng)下均高于核桃,二者的Gs均值分別比核桃葉片高61.1%和63.8%,Tr均值分別比核桃葉片高69.8%和72.3%。
2. 2 3種經(jīng)濟(jì)林樹種葉綠素?zé)晒獾墓忭憫?yīng)結(jié)果
從葉綠素?zé)晒忭憫?yīng)(ФPSⅡ-PAR)曲線(圖3-A)可看出,3種經(jīng)濟(jì)林樹種的葉片ФPSII隨PAR的增加而下降,在PAR<180 μmol/(m2·s)時(shí)下降緩慢,在180 μmol/(m2·s)≤PAR≤1000 μmol/(m2·s)光照條件下,下降速率明顯加快,然后至最大光強(qiáng)時(shí)均降至最低;花椒葉片ФPSII最高,其次為枇杷,核桃最低,花椒均值分別較枇杷與核桃增加10.81%和17.14%。由RLC曲線(圖3-B)可見,3種經(jīng)濟(jì)林樹種的葉片ETR均隨PAR的增加而升高,達(dá)到PARsat時(shí)開始有下降趨勢(shì),變化趨勢(shì)基本一致;當(dāng)PAR<200 μmol/(m2·s)時(shí),ETR上升速度最快,三者間無(wú)明顯差距;而在200 μmol/(m2·s)≤PAR≤2000 μmol/(m2·s)光照條件下,三者間的差距逐漸增大,表現(xiàn)為花椒>枇杷>核桃,花椒葉片均值分別較枇杷與核桃增加48.04%和85.51%。
通過(guò)修正的雙曲線模型擬合,模型的決定系數(shù)均在0.90以上,表明該模型可很好地?cái)M合花椒、枇杷與核桃的葉綠素?zé)晒夤忭憫?yīng)過(guò)程。從表2可知,核桃的光化學(xué)反應(yīng)啟動(dòng)速率最快,葉片初始斜率θ值為核桃>枇杷>花椒,核桃與枇杷差異不顯著,但二者與花椒有顯著差異,核桃葉片的分別較枇杷和花椒增加9.09%和33.33%;葉片ETRmax為花椒>枇杷>核桃,各樹種間差異顯著;花椒葉片PARsat為1313.53 μmol/(m2·s),對(duì)應(yīng)的ETRmax為136.73 μmol/(m2·s),枇杷葉片的PARsat為1058.62 μmol/(m2·s),此時(shí)的ETR為83.07 μmol/(m2·s),核桃葉片則是當(dāng)PAR=756.80 μmol/(m2·s)時(shí),其ETR便達(dá)飽和狀態(tài),ETRmax僅為65.66 μmol/(m2·s);花椒葉片的ETRmax較枇杷和核桃葉片分別增加64.60%和108.24%,其PARsat較枇杷與核桃葉片分別增加24.08%和73.56%。
2. 3 3種經(jīng)濟(jì)林樹種暗下熒光參數(shù)比較
3種經(jīng)濟(jì)林樹種的暗下熒光參數(shù)如表3所示,由單因素方差分析結(jié)果可知,花椒與枇杷葉片的Fo、Fm和Fv差異不顯著,但二者與核桃均達(dá)顯著差異水平;二者的Fv/Fm和Fv/Fo與核桃也呈顯著性差異?;ń泛丸凌巳~片的Fo分別是核桃的3.91倍和4.03倍,F(xiàn)m分別是核桃的4.99倍和5.39倍,F(xiàn)v分別為核桃的5.30倍和5.79倍;葉片F(xiàn)v/Fo表現(xiàn)為枇杷>花椒>核桃?;ń泛丸凌巳~片F(xiàn)v/Fm分別是核桃的1.06倍和1.07倍,二者葉片的Fv/Fo分別是核桃的1.44倍和1.36倍。
3 討論
3. 1 經(jīng)濟(jì)林樹種葉片光合氣體交換參數(shù)對(duì)光強(qiáng)的響應(yīng)
光合作用光響應(yīng)曲線是評(píng)價(jià)植物光合特性的強(qiáng)有力工具(葉子飄,2008)。本研究表明,隨著PAR的增加,3種經(jīng)濟(jì)林樹種葉片的Pn、WUE和Ls呈大幅增加,出現(xiàn)拐點(diǎn)后略有降低,Gs和Tr呈先快速增加后減緩,枇杷在高光強(qiáng)下仍呈大幅增加趨勢(shì),Ci呈先快速降低后平緩的趨勢(shì),該結(jié)果與陳曉英等(2020)對(duì)不同植物葉片進(jìn)行光合測(cè)定的試驗(yàn)結(jié)果相似。本研究中,在弱光條件下,枇杷葉片的Pn最大,表明其弱光利用能力最強(qiáng);與核桃相比,枇杷和花椒葉片的Pn、Gs和Tr光響應(yīng)曲線上升幅度及Ci的下降幅度較大,表明枇杷和花椒在干熱河谷氣候下對(duì)PAR的響應(yīng)更敏感,這可能正是枇杷和花椒在干熱條件下具有較強(qiáng)光合性能的生理基礎(chǔ)。Ci和Ls是評(píng)價(jià)氣孔限制和非氣孔限制的依據(jù),當(dāng)Ls上升、Pn和Ci同時(shí)下降時(shí),Pn的降低為氣孔限制(Diego et al.,2009)。本研究結(jié)果表明,3種經(jīng)濟(jì)林樹種葉片Ci降低和Gs增加同時(shí)導(dǎo)致Ls增加,說(shuō)明其在高光強(qiáng)下光合速率降低的原因主要是氣孔限制因子。
3. 2 經(jīng)濟(jì)林樹種葉片光合參數(shù)特征的比較
通常情況下,植物具有較高的AQY和較低的LCP,表明該植物具有較強(qiáng)的耐陰性(Craine and Reich,2005);植物具有較低LCP和較高LSP表明其生態(tài)適應(yīng)性越強(qiáng)(黃秦軍等,2013)。本研究結(jié)果表明,枇杷葉片的AQY較高,說(shuō)明其光能利用率高于花椒和核桃,與蹇洪英和鄒壽青(2003)得出自然條件下植物的AQY一般介于0.03~0.07,且AQY越大、光能利用率越高的研究結(jié)果一致。另外,Rd最低保證了枇杷對(duì)光合產(chǎn)物的低消耗(Heimann and Reichstein,2008),同時(shí)形成了較高的光合效率;枇杷葉片的LSP最高,LCP最低,表明枇杷的生態(tài)適應(yīng)性最強(qiáng),具有較強(qiáng)的弱光利用能力和耐光抑制能力,此結(jié)果與孟鵬等(2016)對(duì)沙地赤松和樟子松的熒光學(xué)動(dòng)力學(xué)特征研究結(jié)果相似?;ń啡~片的Pnmax、LCP和Rd均最高,表明其高生產(chǎn)、高消耗,主要通過(guò)提高Pnmax來(lái)增強(qiáng)光能利用率,使得盡管在高溫高光強(qiáng)的干熱河谷地區(qū)也能具有較高的光能轉(zhuǎn)化效率,該結(jié)果與譚代軍等(2019)得出的石漠化干熱河谷PAR環(huán)境對(duì)花椒造成脅迫較小的研究結(jié)果基本一致。
3. 3 經(jīng)濟(jì)林樹種葉片葉綠素?zé)晒鈪?shù)特征的比較
植物的葉綠素?zé)晒夤忭憫?yīng)曲線可反映植物葉片對(duì)光強(qiáng)的適應(yīng)機(jī)理,當(dāng)PAR相同時(shí),ФPSII和ETR越高,植物碳同化過(guò)程中形成的電子傳遞載體就越高(錢永強(qiáng)等,2011)。本研究中,在相同PAR下,花椒葉片PSII電子傳遞活性較高,表明其光合作用的碳同化能力和光能利用率較強(qiáng)。核桃葉片光合啟動(dòng)效率最高,而ETRmax和PARsat最低,RLC曲線的上升程度也最低,說(shuō)明高溫強(qiáng)光環(huán)境降低了核桃葉片的PSII電子傳遞活性,抑制了植物葉片的光能利用,導(dǎo)致核桃光合效率下降,這與季傳澤等(2020)對(duì)喀斯特高原峽谷核桃的研究結(jié)果相一致。此外,正常情況下,無(wú)環(huán)境脅迫并經(jīng)過(guò)充分暗適應(yīng)的植物葉片F(xiàn)v/Fm通常為0.80~0.85(許大全等,1992)。本研究中核桃的Fv/Fm為0.777,表明其處于外界環(huán)境脅迫;有研究表明,植物受干旱脅迫時(shí),其Pn、Gs、Tr和Fv/Fm呈下降趨勢(shì),WUE先上升后降低(林琭等,2015),本研究中核桃葉片Tr和Pn均顯著低于花椒和枇杷,高光強(qiáng)條件下其WUE也迅速下降,表明核桃受干旱脅迫,持續(xù)高溫導(dǎo)致干旱脅迫加重,光合系統(tǒng)受損,使得高光強(qiáng)下其WUE下降;核桃葉片的Fo和Fm均顯著低于花椒和枇杷,表明核桃較枇杷和花椒更易受到高溫與高濕度等逆境的脅迫,與杭紅濤等(2018)對(duì)3種造林植物的研究結(jié)果相似。
通過(guò)本研究結(jié)果可知,枇杷生態(tài)適應(yīng)性比花椒更強(qiáng),但花椒卻表現(xiàn)出比枇杷有更高的Pnmax和ETR,其中原因是光合作用不僅受光強(qiáng)、溫度和濕度等環(huán)境因子的影響,還與土壤養(yǎng)分條件息息相關(guān),前人研究發(fā)現(xiàn)喀斯特高原峽谷花椒林的土壤養(yǎng)分顯著高于枇杷林和核桃林(張俞等,2019),由此可推導(dǎo)出較高的土壤養(yǎng)分是花椒比枇杷具有高Pnmax和ETR的直接原因。
4 結(jié)論
枇杷和花椒的光合生理特性對(duì)光強(qiáng)表現(xiàn)出明顯的響應(yīng),花椒光合能力最強(qiáng),枇杷生態(tài)適應(yīng)性最好,在未來(lái)的種植中可考慮增加枇杷的土壤養(yǎng)分,以增加枇杷的光合能力,進(jìn)而提高植物生產(chǎn)力;核桃易發(fā)生光抑制,建議在最大光強(qiáng)較低的地區(qū)種植。綜上所述,花椒和枇杷更適宜做喀斯特高原峽谷地區(qū)石漠化治理的經(jīng)濟(jì)樹種。
參考文獻(xiàn):
陳曉英,李翠,郭曉云,秦雙雙,張占江. 2020. 3種紫堇屬植物葉片光合特性研究[J]. 植物資源與環(huán)境學(xué)報(bào),29(1):1-7. [Chen X Y,Li C,Guo X Y,Qin S S,Zhang Z J. 2020. Study on leaf photosynthetic characteristics of three species in Corydalis DC.[J]. Journal of Plant Resources and Environment,29(1):1-7.] doi:10.3969/j.issn.1674-7895.2020.01.01.
池永寬,熊康寧,王元素,劉成名,檀迪,李聰聰. 2015. 西南石漠化地區(qū)兩種經(jīng)濟(jì)林木光合日動(dòng)態(tài)特征[J].經(jīng)濟(jì)林研究,33(1):45-49. [Chi Y K,Xiong K N,Wang Y S,Liu C M,Tan D,Li C C. 2015. Diurnal dynamic characteristics of photosynthesis of two non-wood forest tree species at rocky desertification areas of southwest China[J]. Nonwood Forest Research,33(1):45-49.] doi:10.14067/j.cnki.1003-8981.2015.01.007.
杭紅濤,吳沿友,邢德科,王瑞,張開艷. 2018. 貴州玉舍國(guó)家森林公園三種造林植物光合生理特征研究[J].廣西植物,38(1):36-47. [Hang H T,Wu Y Y,Xing D K,Wang R,Zhang K Y. 2018. Photosynthetic physiology characteris-tics of three afforestation tree species in Guizhou Yushe National Forest Park[J]. Guihaia,38(1):36-47.] doi:10.11931/guihaia.gxzw201708034.
何躍軍,鐘章成. 2010. 喀斯特地區(qū)植被恢復(fù)過(guò)程中適生植物的生理生態(tài)學(xué)研究進(jìn)展[J]. 熱帶亞熱帶植物學(xué)報(bào),18(5):586-592. [He Y J,Zhong Z C. 2010. Research advances in ecophysiology of vegetation restoration process in Karst areas[J]. Journal of Tropical and Subtropical Botany,18(5):586-592.] doi:10.3969/j.issn.1005-3395. 2010.05.019.
黃秦軍,黃國(guó)偉,丁昌俊,張新葉. 2013. 美洲黑楊雜種不同生長(zhǎng)勢(shì)無(wú)性系光合特征[J]. 林業(yè)科學(xué),49(3):56-62. [Huang Q J,Huang G W,Ding C J,Zhang X Y. 2013. Comparative analysis of photosynthetic characteristics of Populus deltoides clones with different growth vigor[J]. Scientia Silvae Sinicae,49(3):56-62.] doi:10.11707/j. 1001-7488.20130308.
季傳澤,熊康寧,喻陽(yáng)華,張俞,楊晨. 2020. 喀斯特高原石漠化區(qū)植物光合特性及其環(huán)境響應(yīng)[J]. 西南農(nóng)業(yè)學(xué)報(bào),33(4):747-753. [Ji C Z,Xiong K N,Yu Y H,Zhang Y,Yang C. 2020. Photosynthetic characteristics and environmental response of plants in rocky desertification area of Karst Plateaus[J]. Southwest China Journal of Agricultural Sciences,33(4):747-753.] doi:10.16213/j.cnki.scjas.2020. 4.010.
蹇洪英,鄒壽青. 2003. 地毯草的光合特性研究[J]. 廣西植物,23(2):181-184. [Jian H Y,Zou S Q. 2003. The photosynthetic characteristics in leaves of carpet grass—Axonopus compressus[J]. Guihaia,23(2):181-184.] doi:10.3969/j.issn.1000-3142.2003.02.018.
李群,趙成章,趙連春,王繼偉,文軍. 2019. 秦王川鹽沼濕地蘆葦葉片比葉面積與光合效率的關(guān)聯(lián)分析[J].生態(tài)學(xué)報(bào),39(19):7124-7133. [Li Q,Zhao C Z,Zhao L C,Wang J W,Wen J. 2019. The correlation analysis between specific leaf area and photosynthetic efficiency of Phragmites australis in salt marshes of Qinwangchuan[J]. Acta Ecologica Sinica,39(19):7124-7133.] doi:10. 5846/stxb201807271607.
林琭,湯昀,張紀(jì)濤,閆萬(wàn)麗,肖建紅,丁超,董川,籍增順. 2015. 不同水勢(shì)對(duì)黃瓜花后葉片氣體交換及葉綠素?zé)晒鈪?shù)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),26(7):2030-2040. [Lin L,Tang Y,Zhang J T,Yan W L,Xiao J H,Ding C,Dong C,Ji Z S. 2015. Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage[J]. Chinese Journal of Applied Ecology,26(7):2030-2040.] doi:10.13287/j.1001-9332.20150506.026.
劉旻霞,夏素娟,穆若蘭,南笑寧,李全弟,蔣曉軒. 2020. 黃土高原中部三種典型綠化植物光合特性的季節(jié)變化[J]. 生態(tài)學(xué)雜志,39(12):4098-4109. [Liu M X,Xia S J,Mu R L,Nan X N,Li Q D,Jiang X X. 2020. Seasonal variation of photosynthetic characteristics of three typical green plant species in central Loess Plateau[J]. Chinese Journal of Ecology,39(12):4098-4109.] doi:10.13292/j. 1000-4890.202012.013.
毛詩(shī)雅,武佳麗,高靜,何林平,楊雪琴,楊峰. 2020. 弱光對(duì)苗期大豆葉片形態(tài)結(jié)構(gòu)和光合熒光特性的影響[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報(bào),38(4):409-415. [Mao S Y,Wu J L,Gao J,He L P,Yang X Q,Yang F. 2020 . Effects of shading on morphological structure and photosynthetic fluorescence characteristics of seeding soybean leaves[J]. Journal of Sichuan Agricultural University,38(4):409-415.] doi:10.16036/j.issn.1000-2650.2020.04.005.
孟鵬,安宇寧,白雪峰. 2016. 沙地赤松光合及葉綠素a快相熒光動(dòng)力學(xué)特性[J]. 生態(tài)學(xué)報(bào),36(11):3469-3478. [Meng P,An Y N,Bai X F. 2016. Photosynthetic characteristics and chlorophyll a fluorescence induction parameters of Pinus densiflora on sandy soil[J]. Acta Ecologica Sinica,36(11):3469-3478.] doi:10.5846/stxb20150323 0552.
裴斌,張光燦,張淑勇,吳芹,徐志強(qiáng),徐萍. 2013. 土壤干旱脅迫對(duì)沙棘葉片光合作用和抗氧化酶活性的影響[J]. 生態(tài)學(xué)報(bào),33(5):1386-1396. [Pei B,Zhang G C,Zhang S Y,Wu Q,Xu Z Q,Xu P. 2013. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedings[J]. Acta Ecologica Sinica,33(5):1386-1396.] doi:10.5846/ stxb201209281358.
錢永強(qiáng),周曉星,韓蕾,孫振元,巨關(guān)升. 2011. 3種柳樹葉片PSⅡ葉綠素?zé)晒鈪?shù)對(duì)Cd2+脅迫的光響應(yīng)[J]. 北京林業(yè)大學(xué)學(xué)報(bào),33(6):8-14. [Qian Y Q,Zhou X X,Han L,Sun Z Y,Ju G S. 2011. Rapid light-response curves of PSⅡ chlorophyll fluorescence parameters in the leaves of Salix babylonica,Salix ‘J172 and Salix leucopithecia to Cd2+ stress[J]. Journal of Beijing Forestry University,33(6):8-14.] doi:10.13332/j.1000-1522.2011.06.024.
容麗,熊康寧. 2007. 花江喀斯特峽谷適生植物的抗旱特征Ⅰ:頂壇花椒根系與土壤環(huán)境[J]. 貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版),25(4):1-7. [Rong L,Xiong K N. 2007. Drought-resistance characters of karst plant of adaptability in Huajiang karst gorge Ⅰ:Root system of Zanthoxylum planispinum var. dintanensis and its soil environment[J]. Journal of Guizhou Normal University(Natural Scien-ces),25(4):1-7.] doi:10.3969/j.issn.1004-5570.2007.04. 001.
單提波,趙明輝,武靜蓮,徐正進(jìn). 2015. 不同氣孔密度水稻的光合特征及Rubisco酶活性研究[J]. 核農(nóng)學(xué)報(bào),29(6):1142-1148. [Shan T B,Zhao M H,Wu J L,Xu Z J. 2015. Study on photosynthetic characteristics and Rubisco activity of rice leaves with different stomatal densities[J]. Journal of Nuclear Agricultural Sciences,29(6):1142-1148.] doi:10.11869/j.issn.100-8551.2015.06.1142.
尚三娟,王義婧,王楠,楊吉蘭,徐勝,何興元,陳瑋. 2020. 光照強(qiáng)度對(duì)紫斑牡丹生理及生長(zhǎng)特性的影響[J].生態(tài)學(xué)雜志,39(9):2963-2973. [Shang S J,WangY J,Wang N,Yang J L,Xu S,He X Y,Chen W. 2020. Effects of light intensity on physiological and growth characteristics of Paeonia suffruticosa var. papaveracea[J]. Chinese Journal of Ecology,39(9):2963-2973.] doi:10.13292/j.1000-4890.202009.013.
盛茂銀,熊康寧,崔高仰,劉洋. 2015. 貴州喀斯特石漠化地區(qū)植物多樣性與土壤理化性質(zhì)[J]. 生態(tài)學(xué)報(bào),35(2):434-448. [Sheng M Y,Xiong K N,Cui G Y,Liu Y. 2015. Plant diversity and soil physical-chemical properties in karst rocky desertification ecosystem of Guizhou,China[J]. Acta Ecologica Sinica,35(2):434-448.] doi:10. 5846/stxb201303220488.
譚代軍,熊康寧,張俞,杭紅濤,全明英,季傳澤,馬學(xué)威,張仕豪. 2019. 喀斯特石漠化地區(qū)不同退化程度花椒光合日動(dòng)態(tài)及其與環(huán)境因子的關(guān)系[J]. 生態(tài)學(xué)雜志,38(7):2057-2064. [Tan D J,Xiong K N,Zhang Y,Hang H T,Quan M Y,Ji C Z,Ma X W,Zhang S H. 2019. Daily photosynthesis dynamics of different degraded Zanthoxylum bungeanum in karst rocky desertification area and its relationship with environmental factors[J]. Chinese Journal of Ecology,38(7):2057-2064.] doi:10.13292/j.1000-4890.201907.002.
王滿蓮,韋霄,唐輝,梁惠凌,鄒蓉. 2015. 光強(qiáng)對(duì)三種喀斯特植物幼苗生長(zhǎng)和光合特性的影響[J]. 生態(tài)學(xué)雜志,34(3):604-610. [Wang M L,Wei X,Tang H,Liang H L,Zou R. 2015. Effects of light intensity on growth and photosynthesis of three karst plant seedlings[J]. Chinese Journal of Ecology,34(3):604-610.] doi:10.13292/j. 1000-4890.2015.0083.
王明援,劉寧,李波,劉成功,丁昌俊,黃秦軍. 2020. 不同光強(qiáng)對(duì)6個(gè)歐美楊無(wú)性系苗期生長(zhǎng)及光合特性的影響[J]. 林業(yè)科學(xué)研究,33(1):123-130. [Wang M Y,Liu N,Li B,Liu C G,Ding C J,Huang Q J. 2020. Simulation on photosynthetic lightresponses of leaves of Quercus variabilis and Robinia pseudoacacia under different light conditions[J]. Forest Research,33(1):123-130.] doi:10.13275/j.cnki.lykxyj.2020.01.016.
吳正花,喻理飛,嚴(yán)令斌,周晨,蔡國(guó)俊,張建利. 2018. 三葉木通葉片解剖結(jié)構(gòu)和光合特征對(duì)干旱脅迫的響應(yīng)[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(6):1156-1163. [Wu Z H,Yu L F,Yan L B,Zhou C,Cai G J,Zhang J L. 2018. Responses of Akebia trifoliate leaf anatomical structure and photosynthetic characteristic to drought stress[J]. Journal of Southern Agriculture,49(6):1156-1163.] doi:10.3969/j.issn.2095-1191.2018.06.16.
熊康寧,陳起偉. 2010. 基于生態(tài)綜合治理的石漠化演變規(guī)律與趨勢(shì)討論[J]. 中國(guó)巖溶,29(3):267-273. [Xiong K N,Chen Q W. 2010. Discussion on karst rocky desert evolution trend based on ecologically comprehensive treatment[J]. Carsologica Sinica,29(3):267-273.] doi:10.3969/ j.issn.1001-4810.2010.03.008.
熊康寧,朱大運(yùn),彭韜,喻理飛,薛建輝,李坡. 2016. 喀斯特高原石漠化綜合治理生態(tài)產(chǎn)業(yè)技術(shù)與示范研究[J]. 生態(tài)學(xué)報(bào),36(22):7109-7113. [Xiong K N,Zhu D Y,Peng T,Yu L F,Xue J H,Li P. 2016. Study on ecological industry technology and demonstration for Karst rocky desertification control of the Karst Plateau-Gorge[J]. Acta Ecologica Sinica,36(22):7109-7113.] doi:10.5846/stxb 201610172104.
許大全,張玉忠,張榮銑. 1992. 植物光合作用的光抑制[J]. 植物生理學(xué)通訊,28(4):237-243. [Xu D Q,Zhang Y Z,Zhang R X. 1992. Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications,28(4):237-243.]
葉子飄. 2008. 光合作用對(duì)光響應(yīng)新模型及其應(yīng)用[J]. 生物數(shù)學(xué)學(xué)報(bào),23(4):710-716. [Ye Z P. 2008. A new model of light-response of photosynthesis and its application[J]. Journal of Biomathematics,23(4):710-716.] doi:10. 3969/j.issn.1001-9626.2008.04.018.
喻陽(yáng)華,余楊,楊蘇茂,杜明鳳. 2017. 中國(guó)喀斯特高原山地區(qū)抗凍耐旱型植被退化現(xiàn)狀及恢復(fù)對(duì)策[J]. 世界林業(yè)研究,30(1):72-75. [Yu Y H,Yu Y,Yang S M,Du M F. 2017. Degradation situation and restoration countermeasures of frost resistant and drought tolerant vegetation in Karst plateau mountain area,China[J]. World Forestry Research,30(1):72-75.] doi:10.13348/j.cnki.sjlyyj.2017. 0003.y.
張俞,熊康寧,喻陽(yáng)華,許敏,程雯,譚代軍. 2019. 中國(guó)南方喀斯特石漠化地區(qū)3種經(jīng)濟(jì)林土壤呼吸日動(dòng)態(tài)特征[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào),39(1):92-99. [Zhang Y,Xiong K N,Yu Y H,Xu M,Cheng W,Tan D J. 2019. Daily variations of soil respiration among three types of non-wood forest in karst rocky desertification areas,Southern China[J]. Journal of Central South University of Forestry & Technology,39(1):92-99.] doi:10.14067/j.cnki.1673-923x.2019.01.015.
周赟,高守榮,顧國(guó)斌. 2013. 畢節(jié)試驗(yàn)區(qū)核桃經(jīng)濟(jì)林產(chǎn)業(yè)發(fā)展的對(duì)策與建議[J]. 林業(yè)實(shí)用技術(shù),(9):85-87. [Zhou Y,Gao S R,Gu G B. 2013. Countermeasures and suggestions for the development of walnut economic forestry industry in the Bijie pilot area[J]. Forest Science and Technology.(9):85-87.] doi:10.13456/j.cnki.lykt.2013.09.014.
Chai S F,Tang J M,Mallik A,Shi Y C,Zou R,Li J T,Wei X. 2018. Eco-physiological basis of shade adaptation of Camellia nitidissima,a rare and endangered forest understory plant of Southeast Asia[J]. BMC Ecology,18(1):5. doi:10.1186/s12898-018-0159-y.
Craine J M,Reich P B. 2005. Leaf-level light compensation points in shade-tolerant woody seedlings[J]. The New Phytologist,166(3):710-713. doi:10.1111/j.1469-8137.2005. 01420.x.
Diego G,Gutiérrez E,Pérez P,Morcuende R,Verdejo A,Martinez-Carrasco R. 2009. Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers[J]. Physiologia Plantarum,137(1):86-100. doi:10.1111/j.1399-3054.2009.01256.x.
Galle A,F(xiàn)lorez-Sarasa I,Thameur A,de Paepe R,F(xiàn)lexas J,Ribas-Carbo M. 2010. Effects of drought stress and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and the mitochondrial complex I-deficient CMSII mutant[J]. Journal of Experimental Botany,61(3):765-775. doi:10.1093/jxb/erp344.
Grajek H,Rydzyński D,Piotrowicz-Cie?lak A,Herman A,Maciejczyk M,Wieczorek Z. 2020. Cadmium ion-chlorophyll interaction—Examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition[J]. Chemosphere,261:127434. doi:10.1016/j.chemosphere.2020.127434.
Heimann M,Reichstein M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature,451(7176):289-292. doi:10.1038/nature06591.
Leng X H,Xue L,Wang J,Li S,Yang Z L,Ren H D,Yao X H,Wu Z Y,Li J Y. 2020. Physiological responses of Handeliodendron bodinieri(Levl.) Rehd. to exogenous calcium supply under drought stress[J]. Forests,11(1):69. doi:10.3390/f11010069.
Pe?uelas J,F(xiàn)ilella I,Llusia J,Siscart D,Pinol J. 1998. Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercus ilex and Phillyrea latifolia[J]. Journal of Experimental Botany,49(319):229-238. doi:10.1093/jxb/49. 319.229.
Sims D A,Pearcy R W. 1992. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza(Araceae) to a transfer from low to high light[J]. American Journal of Botany,79(4):449-455. doi:10.2307/2445158.
Stirbet A,Govindjee. 2011. On the relation between the Kautsky effect(chlorophyll a fluorescence induction) and Photosystem II:Basics and applications of the OJIP fluorescence transient[J]. Journal of Photochemistry and Photobiology B:Biology,104(1-2):236-257. doi:10.1016/j.jphotobiol.2010.12.010.
Zhang L L,Wen D Z. 2009. Structural and physiological responses of two invasive weeds,Mikania micrantha and Chromolaena odorata,to contrasting light and soil water conditions[J]. Journal of Plant Research,122:69-79. doi:10.1007/s10265-008-0197-1.
Zhou Y,Zhang R,Wang S X,Wang F T,Qi Y. 2019. Compara-tive analysis on responses of vegetation productivity relative to different drought monitor patterns in Karst regions of southwestern China[J]. Applied Ecology and Environmental Research,17(1):85-105. doi:10.15666/aeer/1701_085105.
(責(zé)任編輯 鄧慧靈)