亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        鄂爾多斯盆地北部深埋煤層工作面涌水量預(yù)測(cè)方法

        2021-09-10 10:07:16梁向陽(yáng)
        煤田地質(zhì)與勘探 2021年4期
        關(guān)鍵詞:涌水量鄂爾多斯含水層

        楊 建,王 皓,梁向陽(yáng),黃 浩

        鄂爾多斯盆地北部深埋煤層工作面涌水量預(yù)測(cè)方法

        楊 建1,2,王 皓1,2,梁向陽(yáng)1,2,黃 浩1,2

        (1. 中煤科工集團(tuán)西安研究院有限公司,陜西 西安 710077;2. 陜西省煤礦水害防治技術(shù)重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710077)

        鄂爾多斯盆地北部侏羅紀(jì)深埋區(qū)中生代地層以河流相沉積為主,呈分階段的多旋回演化特點(diǎn),導(dǎo)致煤層頂板含隔水層交替分布;由于地表大部分為毛烏素沙漠,降水入滲補(bǔ)給系數(shù)大,第四系松散層儲(chǔ)水能力強(qiáng),充足的補(bǔ)給水源造成煤層頂板直接充水含水層富水性較強(qiáng),其中最主要的充水含水層為七里鎮(zhèn)砂巖,以七里鎮(zhèn)砂巖為關(guān)鍵層,將煤層至七里鎮(zhèn)砂巖概化為一個(gè)直接充水含水層。承壓水井大降深抽水時(shí),當(dāng)井中水位低于含水層頂板,井附近的含水層會(huì)出現(xiàn)無(wú)壓水流區(qū),形成承壓–無(wú)壓水井,采用分段法計(jì)算流向井的流量,包括無(wú)壓水區(qū)和承壓水區(qū)。實(shí)際工作面回采過(guò)程中,井中水位已降低至煤層底板;傳統(tǒng)的承壓–無(wú)壓水井公式假設(shè)條件為井徑較小(≤m級(jí)),而實(shí)際工作面回采過(guò)程中,隨著覆巖導(dǎo)水裂隙帶對(duì)七里鎮(zhèn)砂巖關(guān)鍵充水含水層的破壞,導(dǎo)致整個(gè)煤層頂板形成巨大的采空區(qū)疏水井(102~103m級(jí)),且該采空區(qū)疏水井半徑逐漸增大,傳統(tǒng)公式適用性不高?;凇兜叵滤畡?dòng)力學(xué)》中的承壓–無(wú)壓水井公式,結(jié)合鄂爾多斯盆地北部深埋煤炭開(kāi)采過(guò)程中采空區(qū)疏水井演化過(guò)程,建立適合于深埋區(qū)開(kāi)采擾動(dòng)下的采空區(qū)疏水井承壓–無(wú)壓水公式;以葫蘆素煤礦首采工作面為研究對(duì)象,利用地質(zhì)勘探和井下揭露獲得的相關(guān)水文地質(zhì)參數(shù),計(jì)算葫蘆素煤礦首采工作面回采過(guò)程中涌水量。結(jié)果表明:工作面回采初期,由于導(dǎo)水裂隙帶未充分發(fā)育,尚未溝通七里鎮(zhèn)砂巖,此階段實(shí)際涌水量偏?。恢泻笃趯?dǎo)水裂隙帶發(fā)育至七里鎮(zhèn)砂巖,涌水量計(jì)算值與實(shí)際值較為接近,證明深埋煤層工作面涌水量計(jì)算公式可較準(zhǔn)確地預(yù)測(cè)研究區(qū)工作面回采過(guò)程中的涌水量。本次建立的深埋工作面涌水量計(jì)算公式,廣泛適用于我國(guó)西部侏羅紀(jì)煤田區(qū),可為深埋煤田區(qū)煤炭資源安全開(kāi)采提供科學(xué)的水害防治依據(jù)。

        深埋工作面涌水量計(jì)算公式;巨型疏水井;砂泥巖互層結(jié)構(gòu);影響半徑;鄂爾多斯盆地北部

        鄂爾多斯盆地是印支運(yùn)動(dòng)后形成的中生代大型內(nèi)陸坳陷[1],在早中侏羅世形成了豐富的煤炭資源[2],淺埋煤田區(qū)在近30 a進(jìn)行了高強(qiáng)度開(kāi)采活動(dòng)[3],由于水文地質(zhì)條件相對(duì)簡(jiǎn)單、頂板富水性較弱,礦井涌水量普遍較小[4]。但隨著煤炭資源開(kāi)采向蒙陜接壤區(qū)的深埋煤田區(qū)延伸,頂板水害問(wèn)題日趨嚴(yán)重[5-6],其中最主要的問(wèn)題是煤炭開(kāi)采過(guò)程中礦井涌水量遠(yuǎn)大于地質(zhì)勘探時(shí)期和礦井防排水設(shè)計(jì)的預(yù)測(cè)值[7],導(dǎo)致礦井排水系統(tǒng)難以滿足井下排水需求,威脅礦井生產(chǎn)安全。礦井涌水量是指礦井開(kāi)采期間單位時(shí)間流入礦井的水量[8],是通過(guò)礦井采掘工程揭露/導(dǎo)通含水層而導(dǎo)致充水水源的水流入礦井[9],其中工作面涌水量來(lái)自工作面回采過(guò)程中導(dǎo)水裂隙帶范圍內(nèi)的多層含水層,是具有生產(chǎn)實(shí)際意義的礦井涌水量之一[9]。

        工作面涌水形成的實(shí)質(zhì)是回采過(guò)程中頂板覆巖破壞形成垮落帶和導(dǎo)水裂隙帶(簡(jiǎn)稱“兩帶”),在“兩帶”范圍內(nèi)發(fā)育的直接充水含水層水涌入采空區(qū)[10]。對(duì)工作面涌水量變化規(guī)律進(jìn)行預(yù)測(cè),比較常用的方法包括大井法、集水廊道法、動(dòng)靜儲(chǔ)量法[11-12]、比擬法等,近年來(lái)相關(guān)學(xué)者還從系統(tǒng)動(dòng)力學(xué)[10]、時(shí)間序列[13]等方面開(kāi)展了研究。但鄂爾多斯盆地北部中生代地層以河流相沉積為主[14-15],呈分階段的多旋回演化特點(diǎn)[16],煤層頂板含隔水層交替分布,富水性不均一[17],缺少適合該區(qū)域的科學(xué)合理的工作面涌水量計(jì)算公式。鑒于此,基于頂板含水層分布[18]、頂板含水層富水性[19]、采動(dòng)覆巖破壞規(guī)律等條件,建立科學(xué)合理的工作面涌水量預(yù)測(cè)方法,是準(zhǔn)確預(yù)測(cè)回采過(guò)程中工作面涌水量和提前合理制定防治水技術(shù)方案的前提,以期為深埋煤田區(qū)煤炭資源安全開(kāi)采提供科學(xué)的水害防治依據(jù)。

        1 研究區(qū)概況

        鄂爾多斯盆地北部侏羅紀(jì)煤炭深埋區(qū)位于蒙陜交界位置,屬于鄂爾多斯剝蝕高原向陜北黃土高原過(guò)渡地帶,包括新街、呼吉爾特、納林河、榆橫、榆神等礦區(qū)(圖1),毛烏素沙漠占據(jù)區(qū)內(nèi)大部分地區(qū),地勢(shì)總體由西北向東南降低,局部起伏較大,高程1 100~1 500 m,盆地北部的東勝–鹽池梁高程1 500 m左右[20];研究區(qū)內(nèi)南北地勢(shì)較高、中間相對(duì)低平。區(qū)內(nèi)地表水系主要有黃河水系和紅堿淖內(nèi)陸水系,多以羽狀和樹(shù)枝狀排列,其中黃河一級(jí)支流無(wú)定河流經(jīng)納林河和榆橫礦區(qū);紅堿淖內(nèi)陸水系由風(fēng)蝕洼地形成,湖水依賴季節(jié)性河流、湖面降水和地下水補(bǔ)給[21]。本地區(qū)多年平均降水量在400 mm左右,差異不大;蒸發(fā)量一般為降水量的4~6倍。研究區(qū)以三疊系延長(zhǎng)組為基底,由下向上分別發(fā)育侏羅系、白堊系和第四系,其中侏羅系延安組為主要含煤地層,向上與直羅組不整合接觸,安定組則是區(qū)域性較穩(wěn)定的相對(duì)隔水層,白堊系志丹群與第四系構(gòu)成水力聯(lián)系密切的地下含水系統(tǒng);區(qū)內(nèi)地勢(shì)平緩,地面多為第四系薩拉烏蘇組松散層和全新統(tǒng)風(fēng)積沙,滲透性好,為大氣降水入滲起到良好的導(dǎo)滲作用[22-23],很少形成溝谷和地表水體,因而區(qū)內(nèi)地表水系極不發(fā)育,形成富水性較強(qiáng)的第四系和白堊系含水層,并為侏羅系地層提供豐富的入滲補(bǔ)給水源。

        圖1 鄂爾多斯盆地北部侏羅紀(jì)煤炭深埋區(qū)位置及范圍

        2 頂板含水層分布特征

        研究區(qū)屬于鄂爾多斯盆地北部侏羅紀(jì)煤炭深埋區(qū),主采煤層(3-1煤或2煤)埋深普遍大于500 m;第四系和白堊系含水層屬于中等–強(qiáng)富水含水層,白堊系底部距離主采煤層頂板在300 m以上;在納林河二號(hào)和巴彥高勒煤礦開(kāi)展的導(dǎo)水裂隙帶實(shí)測(cè)結(jié)果分別為103.2 m(裂采比18.8)和126.0 m(裂采比22.0),考慮到研究區(qū)范圍內(nèi)主采煤層厚度小于7.0 m,因此,導(dǎo)水裂隙帶發(fā)育高度一般不超過(guò)150 m,可發(fā)育至直羅組一段(七里鎮(zhèn)砂巖段),不會(huì)對(duì)第四系和白堊系含水層產(chǎn)生直接影響;直羅組二段屬于曲流河和三角洲沉積,由河床和河漫灘亞相構(gòu)成,亞相分流河道砂體不發(fā)育,邊灘亞相中–細(xì)粒砂巖和漫灘亞相粉砂巖和砂質(zhì)泥巖組成典型的“二元結(jié)構(gòu)”,與直羅組一段相比,河流規(guī)模明顯減小,河漫灘沉積范圍進(jìn)一步加大;安定組時(shí)期淡水湖盆范圍較直羅組的明顯擴(kuò)大,研究區(qū)主要為濱湖相細(xì)粒砂巖和粉砂巖互層,其中細(xì)粒砂巖呈透鏡狀,含水性差,與直羅組二段都屬于砂泥巖互層結(jié)構(gòu),共同構(gòu)成相對(duì)隔水層,淺部含水層水主要以滲流和越流形式緩慢下滲。

        在導(dǎo)水裂隙帶范圍內(nèi)(包括延安組三段和直羅組一段),由于河流回春的沉積旋回作用,在直羅組一段底部沉積了中粗粒的七里鎮(zhèn)砂巖段(圖2和表1),并在地下水長(zhǎng)期入滲過(guò)程中形成富水性中等–較強(qiáng)的含水層。通過(guò)在不同礦井工作面頂板施工探查鉆孔發(fā)現(xiàn),由于直羅組與延安組呈不整合接觸,導(dǎo)致真武洞砂巖被剝蝕或與七里鎮(zhèn)砂巖構(gòu)成同一含水層,因此,本研究以七里鎮(zhèn)砂巖為關(guān)鍵層,將煤層至七里鎮(zhèn)砂巖概化為一個(gè)直接充水含水層。

        圖2 鄂爾多斯盆地北部侏羅紀(jì)煤炭深埋區(qū)地層柱狀圖

        表1 七里鎮(zhèn)砂巖含水層分布特征

        3 預(yù)測(cè)方法構(gòu)建及討論

        3.1 公式構(gòu)建

        承壓水井大降深抽水時(shí),當(dāng)井中水位低于含水層頂板,井附近含水層會(huì)出現(xiàn)無(wú)壓水流區(qū),形成承壓–無(wú)壓水井,采用分段法計(jì)算流向井的流量[24],包括無(wú)壓水區(qū)和承壓水區(qū)(圖3a)。實(shí)際工作面回采過(guò)程中,由采空區(qū)及其頂板“兩帶”構(gòu)成的巨型疏水井(簡(jiǎn)稱采空區(qū)疏水井),其井中水位已降低至煤層底板(圖3b),此時(shí)井中水位w=0,無(wú)壓水區(qū)邊界水頭為+0,則無(wú)壓水區(qū)涌水量計(jì)算公式為:

        式中:為動(dòng)態(tài)補(bǔ)給量;為滲透系數(shù);為含水層厚度;0為含水層底板至煤層底板距離;為無(wú)壓水區(qū)影響半徑;w為水井半徑。

        承壓水區(qū)涌水量計(jì)算公式為:

        式中:0為含水層初始水位;為承壓水區(qū)影響半徑。

        通過(guò)無(wú)壓水區(qū)影響半徑將式(1)和式(2)進(jìn)行耦合,得到開(kāi)采擾動(dòng)下承壓–無(wú)壓水涌水量計(jì)算公式:

        對(duì)于工作面形成的采空區(qū)有:

        式中:為工作面采空區(qū)的走向長(zhǎng)度;為工作面采空區(qū)的傾向長(zhǎng)度。

        圖3 煤層開(kāi)采過(guò)程中承壓–無(wú)壓水井變化特征

        3.2 參數(shù)確定

        以呼吉爾特礦區(qū)葫蘆素煤礦首采工作面為研究對(duì)象,煤層厚度1.83~3.25 m(采高2.85 m),煤層頂板埋深623.45~646.08 m,直羅組底板距煤層頂板平均約70.0 m,七里鎮(zhèn)砂巖含水層初始水位0=480 m;整個(gè)工作面推采長(zhǎng)度4 150 m,寬度320 m。鄂爾多斯盆地中生代為河流相沉積,具有顯著的非均質(zhì)性,準(zhǔn)確計(jì)算工作面回采過(guò)程中的涌水量,獲取真實(shí)客觀的水文地質(zhì)參數(shù)是關(guān)鍵,因此,本次充分收集了研究區(qū)各階段的抽水試驗(yàn)數(shù)據(jù),為實(shí)現(xiàn)與實(shí)際特征更相近的含水層概化提供支撐。

        1) 滲透系數(shù)()

        葫蘆素煤礦在煤田地質(zhì)勘探、水文地質(zhì)補(bǔ)勘、井檢孔和工作面頂板預(yù)疏放鉆孔施工階段,均開(kāi)展了大段抽水試驗(yàn)(2煤頂—直羅組一段),獲得的煤層頂板含水層滲透系數(shù)相差2個(gè)數(shù)量級(jí)(表2),主要是由于河流相沉積形成富水性極不均一的砂體,而對(duì)于整個(gè)礦井和工作面,頂板直接充水含水層又以均一含水層進(jìn)行概化,因此,取所有鉆孔抽水試驗(yàn)的滲透系數(shù)平均值作為本次涌水量計(jì)算的滲透系數(shù)值(即=0.054 9 m/d)。

        表2 工作面頂板地層滲透系數(shù)

        2) 含水層厚度()

        水文地質(zhì)補(bǔ)勘階段施工的H7、HK23、H17、HK44、H27鉆孔,以及頂板探放水階段施工的H8-3、H10-1、Y10-1、Y8-3取心孔,地層揭露表明,含水層厚度為13.4~51.1 m(平均30.6 m),因此,取含水層厚度=30.6 m。

        3) 承壓水區(qū)影響半徑()

        3.3 計(jì)算結(jié)果分析

        根據(jù)前文獲得的工作面尺寸和水文地質(zhì)參數(shù),利用深埋煤層工作面涌水量計(jì)算公式(3),開(kāi)展葫蘆素煤礦首采工作面涌水量預(yù)測(cè)計(jì)算,計(jì)算結(jié)果見(jiàn)表3。對(duì)比涌水量計(jì)算值和實(shí)際值(c)(圖4)可以看出,工作面回采0~400 m的初始階段,由于導(dǎo)水裂隙帶未充分發(fā)育,未波及溝通七里鎮(zhèn)砂巖,導(dǎo)致這個(gè)階段實(shí)際涌水量偏??;中后期(回采距離大于600 m)涌水量計(jì)算值與實(shí)際值較為接近,證明該深埋煤層工作面涌水量計(jì)算公式(3)可以較準(zhǔn)確地預(yù)測(cè)工作面回采過(guò)程中的涌水量。

        表3 工作面水文地質(zhì)參數(shù)及涌水量預(yù)測(cè)結(jié)果

        圖4 工作面回采過(guò)程中涌水量計(jì)算值和實(shí)測(cè)值

        4 結(jié)論

        a.基于《地下水動(dòng)力學(xué)》中承壓–無(wú)壓水井公式,結(jié)合鄂爾多斯盆地北部深埋煤炭開(kāi)采過(guò)程中采空區(qū)疏水井演化過(guò)程,建立了適合于深埋區(qū)開(kāi)采擾動(dòng)下的采空區(qū)疏水井承壓–無(wú)壓水公式。

        b.以鄂爾多斯盆地葫蘆素煤礦首采工作面為研究對(duì)象,利用地質(zhì)勘探和工作面疏放水等確定了滲透系數(shù)、含水層初始水位、含水層厚度、影響半徑等參數(shù),并開(kāi)展葫蘆素煤礦首采工作面回采過(guò)程中涌水量計(jì)算。

        c. 對(duì)比涌水量計(jì)算值和實(shí)際值,工作面回采0~400 m段的初始階段,由于導(dǎo)水裂隙帶未充分發(fā)育溝通七里鎮(zhèn)砂巖,導(dǎo)致此階段實(shí)際涌水量偏小;中后期(>600 m)導(dǎo)水裂隙帶發(fā)育至七里鎮(zhèn)砂巖,涌水量計(jì)算值與實(shí)際值較為接近,證明提出的深埋煤層工作面涌水量計(jì)算公式可以準(zhǔn)確預(yù)測(cè)研究區(qū)工作面回采過(guò)程中的涌水量。

        [1] 王雙明. 鄂爾多斯盆地構(gòu)造演化和構(gòu)造控煤作用[J]. 地質(zhì)通報(bào),2011,30(4):544–552.

        WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China,2011,30(4):544–552.

        [2] 張泓,白清昭,張笑薇,等. 鄂爾多斯聚煤盆地的形成及構(gòu)造環(huán)境[J]. 煤田地質(zhì)與勘探,1995,23(3):1–9.

        ZHANG Hong,BAI Qingzhao,ZHANG Xiaowei,et al. Formation of the Ordos Basin and its coal-forming tectonic environment[J]. Coal Geology & Exploration,1995,23(3):1–9.

        [3] 繆協(xié)興,王長(zhǎng)申,白海波. 神東礦區(qū)煤礦水害類型及水文地質(zhì)特征分析[J]. 采礦與安全工程學(xué)報(bào),2010,27(3):285–291.

        MIAO Xiexing,WANG Changshen,BAI Haibo. Hydrogeologic characteristics of mine water hazards in Shendong mining area[J]. Journal of Mining & Safety Engineering,2010,27(3):285–291.

        [4] 顧大釗. 晉陜蒙接壤區(qū)大型煤炭基地地下水保護(hù)利用與生態(tài)修復(fù)[M]. 北京:科學(xué)出版社,2015.

        GU Dazhao. Groundwater protection,utilization and ecological restoration of large coal base in the contiguous area of Shanxi,Shaanxi and Inner Mongolia[M]. Beijing:Science Press,2015.

        [5] 楊建,梁向陽(yáng),丁湘. 蒙陜接壤區(qū)深埋煤層開(kāi)發(fā)過(guò)程中礦井涌水量變化特征[J]. 煤田地質(zhì)與勘探,2017,45(4):97–101.

        YANG Jian,LIANG Xiangyang,DING Xiang. Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area[J]. Coal Geology & Exploration,2017,45(4):97–101.

        [6] 李東,劉生優(yōu),張光德,等. 鄂爾多斯盆地北部典型頂板水害特征及其防治技術(shù)[J]. 煤炭學(xué)報(bào),2017,42(12):3249–3254.

        LI Dong,LIU Shengyou,ZHANG Guangde,et al. Typical roof water disasters and its prevention & control technology in the north of Ordos Basin[J]. Journal of China Coal Society,2017,42(12):3249–3254.

        [7] 劉洋,張幼振. 淺埋煤層工作面涌水量預(yù)測(cè)方法研究[J]. 采礦與安全工程學(xué)報(bào),2010,27(1):116–120.

        LIU Yang,ZHANG Youzhen. Forecast method for water inflow from working face in shallowly buried coal seam[J]. Journal of Mining & Safety Engineering,2010,27(1):116–120.

        [8] 國(guó)家安全生產(chǎn)監(jiān)督管理總局. 煤礦安全規(guī)程[M]. 北京:煤炭工業(yè)出版社,2011.

        State Administration of Work Safety. Safety regulations in coal mine[M]. Beijing:China Coal Industry Publishing House,2011.

        [9] 虎維岳,閆麗. 對(duì)礦井涌水量預(yù)測(cè)問(wèn)題的分析與思考[J]. 煤炭科學(xué)技術(shù),2016,44(1):13–18.

        HU Weiyue,YAN Li. Analysis and consideration on prediction problems of mine water inflow volume[J]. Coal Science and Technology,2016,44(1):13–18.

        [10] 周振方,靳德武,虎維岳,等. 煤礦工作面推采采空區(qū)涌水雙指數(shù)動(dòng)態(tài)衰減動(dòng)力學(xué)研究[J]. 煤炭學(xué)報(bào),2018,43(9):2587–2594.

        ZHOU Zhenfang,JIN Dewu,HU Weiyue,et al. Double-exponential variation law of water-inflow from roof aquifer in goaf of working face with mining process[J]. Journal of China Coal Society,2018,43(9):2587–2594.

        [11] 劉洋,王振榮,牛建立. 工作面涌水量預(yù)測(cè)方法的確定[J]. 礦業(yè)安全與環(huán)保,2010,37(5):29–30.

        LIU Yang,WANG Zhenrong,NIU Jianli. Determination of prediction method of water inflow in working face[J]. Mining Safety & Environmental Protection,2010,37(5):29–30.

        [12] 李永濤,楊建. 基于頂板水預(yù)疏放的首采工作面涌水規(guī)律[J]. 煤田地質(zhì)與勘探,2019,47(4):104–109.

        LI Yongtao,YANG Jian. Water inflow law of the first working face based on water pre-draining from roof[J]. Coal Geology & Exploration,2019,47(4):104–109.

        [13] 施龍青,王雅茹,邱梅,等. 時(shí)間序列模型在工作面涌水量預(yù)測(cè)中的應(yīng)用[J]. 煤田地質(zhì)與勘探,2020,48(3):108–115.

        SHI Longqing,WANG Yaru,QIU Mei,et al. Application of time series model in water inflow prediction of working face[J]. Coal Geology & Exploration,2020,48(3):108–115.

        [14] 梁積偉. 鄂爾多斯盆地侏羅系沉積體系和層序地層學(xué)研究[D]. 西安:西北大學(xué),2007.

        LIANG Jiwei. Research on sedimentary system and squence stratigraphy of the Jurassic in Ordos Basin[D]. Xi’an:Northwest University,2007.

        [15] 趙俊峰. 鄂爾多斯盆地直羅–安定期原盆恢復(fù)[D]. 西安:西北大學(xué),2007.

        ZHAO Junfeng. Restoration of the primary Ordos Basin in Zhiluo-Anding Period[D]. Xi’an:Northwest University,2007.

        [16] 李向平,陳剛,章輝若,等. 鄂爾多斯盆地中生代構(gòu)造事件及其沉積響應(yīng)特點(diǎn)[J]. 西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,21(3):1–4.

        LI Xiangping,CHEN Gang,ZHANG Huiruo,et al. Mesozoic tectonic events in Ordos Basin and their sedimentary responses[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2006,21(3):1–4.

        [17] 梁向陽(yáng),楊建,曹志國(guó). 呼吉爾特礦區(qū)礦井涌水特征及其沉積控制[J]. 煤田地質(zhì)與勘探,2020,48(1):138–144.

        LIANG Xiangyang,YANG Jian,CAO Zhiguo. Characteristics and sedimental control of mine water outflow in Hujirt mining area[J]. Coal Geology & Exploration,2020,48(1):138–144.

        [18] 楊建,劉洋,劉基. 基于沉積控水的鄂爾多斯盆地侏羅紀(jì)煤田防治水關(guān)鍵層研究[J]. 煤礦安全,2018,49(4):34–37.

        YANG Jian,LIU Yang,LIU Ji. Study on key layer of water prevention and control in Ordos Basin Jurassic Coalfield based on sedimentary water control theory[J]. Safety in Coal Mines,2018,49(4):34–37.

        [19] 武強(qiáng),徐華,趙穎旺,等. 基于“三圖法”煤層頂板突水動(dòng)態(tài)可視化預(yù)測(cè)[J]. 煤炭學(xué)報(bào),2016,41(12):2968–2974.

        WU Qiang,XU Hua,ZHAO Yingwang,et al. Dynamic visualization and prediction for water bursting on coal roof based on“three maps method”[J]. Journal of China Coal Society,2016,41(12):2968–2974.

        [20] 侯光才. 鄂爾多斯白堊系盆地地下水系統(tǒng)及其水循環(huán)模式研究[D]. 長(zhǎng)春:吉林大學(xué),2008.

        HOU Guangcai. Groundwater system and water circulation pattern in Ordos Cretaceous groundwater basin[D]. Changchun:Jilin University,2008.

        [21] 唐克旺,王浩,劉暢. 陜北紅堿淖湖泊變化和生態(tài)需水初步研究[J]. 自然資源學(xué)報(bào),2003,18(3):304–309.

        TANG Kewang,WANG Hao,LIU Chang. Preliminary study of Hongjiannao Lake’s variation and ecological water demand[J]. Journal of Natural Resources,2003,18(3):304–309.

        [22] 楊建,劉基,靳德武,等. 有機(jī)–無(wú)機(jī)聯(lián)合礦井突水水源判別方法[J]. 煤炭學(xué)報(bào),2018,43(10):2886–2894.

        YANG Jian,LIU Ji,JIN Dewu,et al. Method of determining mine water inrush source based on combination of organic-inorganic water chemistry[J]. Journal of China Coal Society,2018,43(10):2886–2894.

        [23] 賀勤,劉正奇. 毛烏素沙漠–世界沙漠暴雨中心[J]. 內(nèi)蒙古氣象,1996(3):5–15.

        HE Qin,LIU Zhengqi. Mu Us Desert:The world desert rainstorm center[J]. Meteorology Journal of Inner Mongolia,1996(3):5–15.

        [24] 薛禹群,吳吉春. 地下水動(dòng)力學(xué)[M]. 北京:地質(zhì)出版社,2010.

        XUE Yuqun,WU Jichun. Groundwater dynamics[M]. Beijing:Geological Publishing House,2010.

        Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China

        YANG Jian1,2, WANG Hao1,2, LIANG Xiangyang1,2, HUANG Hao1,2

        (1. Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China; 2. Shaanxi Key Laboratory of Preventing and Controlling for Coal Mine Water Hazard, Xi’an 710077, China)

        The Mesozoic strata are mainly fluvial deposits in the Jurassic deep buried area of northern Ordos Basin, which are characterized by multi-cycle evolution in stages, resulting in alternate distribution of the aquifer-bearing seams on the coal seam roof. As the surface is mostly covered by Mu Us Desert, the rainfall infiltration recharge coefficient is large, and the water storage capacity of Quaternary loosen stratum is strong. The sufficient water-filling recharge source causes the water-rich aquifers on the roof of coal seams, among which the main water-filled aquifer is Qilizhen sandstone aquifer. In this study, Qilizhen sandstone aquifer is taken as the key layer, and generalized as a direct water-filled aquifer. When the water level in a confined well is lower than the roof of the aquifer, there would be no pressure flow zone in the aquifer near the well, forming a confined-phreatic well. Segmentation method is used to calculate the flow to well, including non-pressurized and confined water areas. However, in mining process of the working face, the water level in the well has been reduced to the floor of the coal seam. The traditional formula of confined- phreatic wells is based on the assumption that the diameter of wells is small(<1 m). In mining process of the working face, with the destruction of the key water-filled aquifer(Qilizhen sandstone aquifer) by the water-conducting fracture zone of overburden, a huge drainage well is formed on the roof of the whole coal seam(102-103m). As the radius of the well increases with the goaf, the traditional formula is inapplicable. Based on the confined-phreatic well formula in, combined with the evolution process of the drain wells in the goaf during deep coal mining in northern Ordos Basin, a confined-phreatic well formula suitable for drain wells under mining disturbance in deep buried areas is established. Taking the first mining face of Hulusu Coal Mine as the research object, this paper uses the relevant hydrogeological parameters obtained from geological exploration and underground exposure to calculate the water inflow. The calculation results show that in the initial stage of working face mining, the actual water inflow is relatively small as the water flowing fracture zone has not communicated with Qilizhen sandstone aquifer due to the insufficient development of the zone. In the middle and later stage, the water flowing fracture zone develops to Qilizhen sandstone aquifer, and the calculated water inflow is close to the actual value, which proves that the formula for calculating the water inflow at the working face of deep-buried coal can accurately predict the water inflow in the mining process of the working face in the study area. The formula established in this study is applicable to the roof water hazard areas of Jurassic Coalfields in Western China, and provides scientific basis for water hazard prevention and control for safe mining of coal resources in deep-buried coalfields.

        formula for calculating water inflow in deep buried working face; giant drainage well; interbed structure of sandstone and mudstone; radius of influence; northern Ordos Basin

        TD742+.1

        A

        1001-1986(2021)04-0185-07

        2020-12-11;

        2021-04-30

        國(guó)家自然科學(xué)基金項(xiàng)目(41302214);中煤科工集團(tuán)西安研究院有限公司科技創(chuàng)新基金面上項(xiàng)目(2018XAYMS03)

        楊建,1979年生,男,江蘇鹽城人,博士/博士后,研究員,從事煤礦防治水研究. E-mail:yangjian@cctegxian.com

        楊建,王皓,梁向陽(yáng),等. 鄂爾多斯盆地北部深埋煤層工作面涌水量預(yù)測(cè)方法[J]. 煤田地質(zhì)與勘探,2021,49(4):185–191. doi: 10.3969/j.issn.1001-1986.2021.04.022

        YANG Jian,WANG Hao,LIANG Xiangyang,et al. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin, China[J]. Coal Geology & Exploration,2021,49(4):185–191. doi: 10.3969/j. issn.1001-1986.2021.04.022

        (責(zé)任編輯 周建軍)

        猜你喜歡
        涌水量鄂爾多斯含水層
        全球多個(gè)含水層里的水正快速流失
        鄂爾多斯走進(jìn)通用技術(shù)中紡院
        樁基托換在鄂爾多斯大道橋擴(kuò)建工程中的應(yīng)用
        小浪底引黃工程干線1#隧洞涌水量預(yù)測(cè)
        銳意改革 打造健康鄂爾多斯
        美國(guó)西部奧加拉拉含水層水位下降原因初探
        全球地下含水層下降驚人:要被抽干了
        巖溶含水層水流模型研究進(jìn)展
        黃石互通淺埋隧道涌水量預(yù)測(cè)分析
        模糊數(shù)學(xué)在預(yù)測(cè)大孤山鐵礦深部涌水量中的應(yīng)用
        久久亚洲AV无码精品色午夜| 午夜熟女插插xx免费视频| 亚洲日韩av一区二区三区中文| 精品国产av 无码一区二区三区| 91精品啪在线观看国产色| 女同另类一区二区三区| 亚洲一区二区二区视频| 狠狠噜天天噜日日噜视频麻豆| 亚洲成人欧美| 俺来也三区四区高清视频在线观看| 国产主播一区二区三区蜜桃| 免费a级毛片18以上观看精品| 日韩a∨精品日韩在线观看 | 欧洲熟妇色xxxxx欧美老妇伦| 国产欧美日韩午夜在线观看| 亚洲中文字幕不卡一区二区三区| 国产精品高潮呻吟av久久黄| 插b内射18免费视频| 96精品在线| 亚洲av性色精品国产| 国产欧美在线观看不卡| 狠狠色噜噜狠狠狠狠色综合久| 91孕妇精品一区二区三区| 亚洲桃色蜜桃av影院| 97久久久久人妻精品区一| 97人妻熟女成人免费视频| 蜜桃av无码免费看永久| 91精品国产一区国产二区久久 | 吃奶还摸下面动态图gif | 国产在线视频一区二区三| 三个男吃我奶头一边一个视频| 亚洲综合精品成人| 91中文人妻丝袜乱一区三区| 国产交换精品一区二区三区| 啦啦啦www在线观看免费视频| 日韩区在线| 国产精品二区三区在线观看| 九九在线中文字幕无码| 国产一区二区不卡老阿姨| 日本亚洲一级中文字幕| 新中文字幕一区二区三区|