趙洪利 鄭涅
摘要:性能數(shù)據(jù)是發(fā)動機健康狀態(tài)的重要體現(xiàn),分析性能數(shù)據(jù)可以預(yù)測發(fā)動機剩余使用壽命,為維修決策提供依據(jù)。發(fā)動機的健康狀態(tài)與多個監(jiān)測數(shù)據(jù)密切相關(guān)?;谟?xùn)練發(fā)動機數(shù)據(jù)和測試發(fā)動機數(shù)據(jù),采用主成分分析方法融合多元數(shù)據(jù)構(gòu)建了發(fā)動機健康指數(shù)。退化模型構(gòu)建采用維納過程方法,利用EM算法結(jié)合訓(xùn)練發(fā)動機數(shù)據(jù)迭代優(yōu)化離線參數(shù)?;谪惾~斯方法結(jié)合測試發(fā)動機數(shù)據(jù),在線更新退化模型參數(shù),實時計算測試發(fā)動機剩余使用壽命概率密度分布及期望。兩種方法對比結(jié)果顯示,基于單一性能指標構(gòu)建的性能模型,對測試發(fā)動機最后10循環(huán)的預(yù)測均方根誤差平均值為12.95,基于融合數(shù)據(jù)構(gòu)建的性能模型的預(yù)測均方根誤差平均值為5.34,證明數(shù)據(jù)融合發(fā)動機后期預(yù)測效果更好。
關(guān)鍵詞:綜合健康指數(shù);維納模型;離線參數(shù);在線參數(shù);剩余使用壽命
中圖分類號:V239文獻標識碼:ADOI:10.19452/j.issn1007-5453.2021.05.004
航空發(fā)動機可靠性水平直接影響民航飛機安全運營,適時維護修理不僅可以提高飛機安全水平,還可以降低航空公司運營成本,增加行業(yè)競爭力,故航空發(fā)動機可靠性研究至關(guān)重要。發(fā)動機運行過程中會生成大量性能數(shù)據(jù),這些數(shù)據(jù)被實時監(jiān)測并上傳至綜合數(shù)據(jù)庫。運用可靠性建模方法對這些過程數(shù)據(jù)進行分析處理,可以預(yù)測航空發(fā)動機退化軌跡,進而預(yù)測發(fā)動機剩余使用壽命,為航空公司制定視情維修決策提供依據(jù)[1-4]。
剩余使用壽命(RUL)預(yù)測是預(yù)測與健康管理(PHM)技術(shù)的重要組成部分[5-6],當前RUL預(yù)測主要是基于數(shù)據(jù)驅(qū)動的方法,其中包括概率分布、統(tǒng)計理論模型、機器學(xué)習(xí)等。劉帥君[7]利用結(jié)合相似性和卡爾曼濾波的方法,對CMAPSS數(shù)據(jù)集進行了RUL預(yù)測驗證;任子強等[8]對多個性能數(shù)據(jù)進行融合處理,并通過帶線性漂移系數(shù)的維納過程預(yù)測發(fā)動機RUL;Wang等[9]提出了一種基于健康指數(shù)(HI)進行相似性度量的RUL預(yù)測方法,并對預(yù)測過程進行了介紹和總結(jié)。
性能數(shù)據(jù)的選取直接影響退化建模和壽命預(yù)測精度,綜合對以上各種方法的學(xué)習(xí)研究,提出一種基于融合數(shù)據(jù)和維納建模的發(fā)動機余壽預(yù)測方法,最后以CMAPSS數(shù)據(jù)集進行試驗驗證。
1數(shù)據(jù)預(yù)處理
由于發(fā)動機工作狀態(tài)復(fù)雜,傳感器測量存在誤差,監(jiān)測數(shù)據(jù)帶有噪聲波動,影響數(shù)據(jù)質(zhì)量,故需要對數(shù)據(jù)進行濾波、歸一化處理。同時因為單一性能指標包含的性能信息非常有限,故將多元數(shù)據(jù)融合為綜合健康指數(shù)(CHI)表征發(fā)動機健康狀態(tài)。
1.1數(shù)據(jù)濾波
卡爾曼濾波是一種結(jié)合已知數(shù)據(jù)對當前數(shù)據(jù)去噪聲處理的方法,其主要原理是利用前一時刻狀態(tài)估計值和當前時刻狀態(tài)觀測值計算當前時刻狀態(tài)估計值。卡爾曼濾波主要包含時間更新方程和狀態(tài)更新方程兩部分,其中時間更新方程又稱為數(shù)據(jù)預(yù)估,是利用前一時刻狀態(tài)估計量對當前狀態(tài)進行先驗估計;而狀態(tài)更新方程又稱為數(shù)據(jù)校正,是利用當前時刻狀態(tài)測量值和狀態(tài)先驗估計值對當前狀態(tài)進行后驗估計,從而計算出當前狀態(tài)估計值[10-11]。
卡爾曼濾波方程需要確定狀態(tài)變換矩陣和觀測模型矩陣等參數(shù),本文試驗的濾波參數(shù)是通過將原始數(shù)據(jù)代入卡爾曼濾波并通過EM算法迭代優(yōu)化后確定。通過該方法對原始性能數(shù)據(jù)進行濾波處理,消除外界環(huán)境對數(shù)據(jù)的隨機影響,為后續(xù)歸一化和融合提供數(shù)據(jù)基礎(chǔ)。
1.2數(shù)據(jù)歸一化
由于數(shù)據(jù)噪聲波動較大,為了規(guī)范化數(shù)據(jù)趨勢,采用卡爾曼濾波方法對各性能數(shù)據(jù)進行濾波,以第1臺訓(xùn)練發(fā)動機排氣溫度(EGT)數(shù)據(jù)為例,圖3是濾波后EGT增量隨著運行時間的變化趨勢,其中紅色離散點為原始EGT增量值,藍色曲線為濾波后EGT增量值連接成的曲線。為了進一步標準化數(shù)據(jù),提高建模效率和預(yù)測精度,將濾波后增量數(shù)據(jù)進行歸一化處理,結(jié)果如圖4所示。
按照以上濾波和歸一化過程,完成對11個性能數(shù)據(jù)預(yù)處理工作,然后再基于PCA分析方法將預(yù)處理后的數(shù)據(jù)融合為綜合健康指數(shù)CHI。以第一臺訓(xùn)練發(fā)動機為例,融合后的CHI如圖5所示,通過PCA方法分析得到11個性能數(shù)據(jù)在融合過程中的權(quán)重值,見表2。
3.2離線參數(shù)估計
為了驗證維納退化建模預(yù)測情況,在CMAPSS的FD001數(shù)據(jù)集中,選取訓(xùn)練集100臺發(fā)動機數(shù)據(jù)進行離線參數(shù)估計,并選取測試集5臺發(fā)動機進行在線預(yù)測。
由于EGT可以反映發(fā)動機工作時最惡劣站位的溫度高低,所以其對發(fā)動機性能狀態(tài)有較好的表征,為了對比單一性能數(shù)據(jù)和融合數(shù)據(jù)對建模精度的影響,將100臺訓(xùn)練發(fā)動機的EGT數(shù)據(jù)和融合CHI數(shù)據(jù)分別代入EM算法中計算,得到兩種方法下的三個參數(shù)離線估計值見表3。
3.3在線參數(shù)更新
為了對測試發(fā)動機進行在線預(yù)測,根據(jù)得到的離線估計參數(shù),分別結(jié)合獲取到的測試發(fā)動機EGT數(shù)據(jù)和融合CHI數(shù)據(jù),基于貝葉斯更新原理對模型參數(shù)進行實時更新,并將更新后的參數(shù)代入剩余使用壽命概率密度函數(shù)以及期望公式中計算,得到5臺測試發(fā)動機在各個運行時間點的剩余壽命概率密度函數(shù)分布及其期望。以第5臺測試發(fā)動機為例,基于融合CHI數(shù)據(jù)建模的預(yù)測結(jié)果如圖6所示,基于EGT數(shù)據(jù)建模的預(yù)測結(jié)果如圖7所示。針對最后10個運行時間點的RUL預(yù)測,基于融合CHI數(shù)據(jù)建模得到的概率密度分布如圖8所示,基于EGT數(shù)據(jù)建模得到的概率密度分布如圖9所示,兩種方法對5臺測試發(fā)動機的預(yù)測均方根誤差計算結(jié)果(RMSE)見表4。
在圖6和圖7中,紫色實線表示測試發(fā)動機RUL實時預(yù)測期望值,這是通過概率密度分布積分得到,用以表示RUL實時預(yù)測值;藍色實線表示測試發(fā)動機RUL真實值,由于性能數(shù)據(jù)是按照固定循環(huán)采樣,剩余壽命變化呈現(xiàn)了線性單調(diào)的特征。在圖8和圖9中,z = 0平面上的圓點連線為運行時間點的RUL真實值,三角形連線為運行時間點的RUL預(yù)測值,空間中各條曲線分別為各運行時間點對應(yīng)的概率密度分布變化。
通過表3可以發(fā)現(xiàn),在最后10、20和30個時間點的預(yù)測過程中,基于CHI數(shù)據(jù)建模方法的預(yù)測RMSE均小于基于EGT數(shù)據(jù)建模方法的預(yù)測RMSE,證明基于CHI數(shù)據(jù)的維納建模方法在后期預(yù)測中精度更高。
4結(jié)論
發(fā)動機健康狀態(tài)與多個性能數(shù)據(jù)相關(guān),基于PCA分析方法實現(xiàn)了對多元數(shù)據(jù)的融合使用,克服了建模過程中面臨的數(shù)據(jù)篩選和使用的問題。隨著不斷獲取測試發(fā)動機在線數(shù)據(jù),測試發(fā)動機RUL預(yù)測誤差逐漸減小,證明該方法對發(fā)動機運行后期RUL預(yù)測更好。
通過對比發(fā)現(xiàn),基于融合數(shù)據(jù)建模方法的后期RUL預(yù)測誤差小于基于單一性能數(shù)據(jù)建模方法的預(yù)測誤差,證明融合CHI對發(fā)動機性能狀態(tài)的表征更具代表性,可以更好地應(yīng)用于發(fā)動機退化建模和剩余使用壽命預(yù)測。
參考文獻
[1]王紅,楊占才,靳小波,等.航空機電系統(tǒng)先進診斷與預(yù)測技術(shù)研究[J].航空科學(xué)技術(shù), 2020,31(7): 40-47. Wang Hong, Yang Zhancai, Jin Xiaobo, et al. Research on advanced diagnosis and prognosis technology of aeronautical electromechanicalsystem[J].AeronauticalScience& Technology, 2020,31(7): 40-47. (in Chinese)
[2]Buiskikh K P,Kiselevskaya S G,Kravchuk L V,et al. Kinetics and mechanisms of degradation of the surface layers of gas-turbine engine structural components under cyclic thermal loading during initiation and propagation of thermal fatigue cracks[J]. Strength of Materials,2016,48(6):784-790.
[3]Guo Runxia,Liu Zhenghua,Wei Ye. Remaining useful life prediction for the air turbine starter based on empirical mode decomposition and relevance vector machine[J]. Transactions of the Institute of Measurement & Control,2020(1):2578-2588.
[4]Feng Xue,Piero B,Anil V,et al. An instance-based method for remaining useful life estimation for aircraft engines[J]. Journal of FailureAnalysis & Prevention,2008,8(2):199-206.
[5]馬倫,康建設(shè),趙強.基于HMM的設(shè)備剩余壽命預(yù)測框架及其實現(xiàn)[J].計算機仿真, 2010,27(5): 88-91. Ma Lun, Kang Jianshe, Zhao Qiang. Implementation of equipment residual life prediction framework based on hidden markov model [J]. Computer Simulation, 2010,27(5): 88-91.(in Chinese)
[6]黃藍,王景霖,林澤力,等.綜合系統(tǒng)健康管理關(guān)鍵技術(shù)與研究路徑[J].航空科學(xué)技術(shù), 2020,31(7): 12-17. Huang Lan, Wang Jinglin, Lin Zeli, et al. Key technologies and research paths of integrated system health management [J]. Aeronautical Science & Technology, 2020, 31(7): 12-17. (in Chinese)
[7]劉帥君.基于性能退化數(shù)據(jù)的航空發(fā)動機剩余壽命預(yù)測[D].西安:電子科技大學(xué), 2015. Liu Shuaijun. Remaining useful life prediction of aero-engine based on performance degradation data [D]. Xian:University of Electronic Science and Technology of China, 2015. (in Chinese)
[8]任子強,司小勝,胡昌華,等.融合多傳感器數(shù)據(jù)的發(fā)動機剩余壽命預(yù)測方法[J].航空學(xué)報, 2019,40(12):134-145. Ren Ziqiang, Si Xiaosheng, Hu Changhua, et al. Remaining useful life prediction method for engine combining multisensors data [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):134-145. (in Chinese)
[9]Bo Wang,Li Zhang,He Xuliang. Study on the prediction of remaining useful life of large equipment based on the similarity metric of health index[C]// International Conference on Mechanic Automation & Control Engineering,2010,2255-2258.
[10]陳逸成,何華鋒,鄧會選,等.基于Kalman濾波和Wiener過程的系統(tǒng)性能退化數(shù)據(jù)建模方法[J].電光與控制, 2015(7): 107-110. Chen Yicheng, He Huafeng, Deng Huixuan, et al. A system degradation modeling method based on Kalman filter and Wiener process [J]. Electronics Optics & Control, 2015(7):107-110. (in Chinese)
[11]彭丁聰.卡爾曼濾波的基本原理及應(yīng)用[J].軟件導(dǎo)刊, 2009,8(11): 32-34. Peng Dingcong. Basic principle and application of Kalman filter [J]. Software Guide, 2009,8(11): 32-34. (in Chinese)
[12]鐘書輝,段麗華,王煒,等.主成分分析和支持向量機在無刷直流電機故障診斷中的應(yīng)用研究[J].航空科學(xué)技術(shù), 2019,30(2): 47-52. Zhong Shuhui, Duan Lihua, Wang Wei, et al. Application research of BLDCMs fault diagnosis method based on PCA and SVM [J]. Aeronautical Science & Technology, 2019,30(2): 47-52. (in Chinese)
[13]Ghorbani S,Salahshoor K. Estimating remaining useful life of turbofan engine using data-level fusion and feature-level fusion[J]. Journal of Failure Analysis and Prevention,2020,20(1):323-332.
[14]齊琦.基于Wiener過程的退化數(shù)據(jù)建模與研究[D].西安:西安電子科技大學(xué), 2019. Qi Qi. Modeling and research of degradation data based on Wiener process [D]. Xian:Xidian University, 2019. (in Chinese)
[15]任淑紅.民航發(fā)動機性能可靠性評估與在翼壽命預(yù)測方法研究[D].南京:南京航空航天大學(xué), 2010. Ren Shuhong. Research on methods of performance reliability assessments and life on wing prediction for civil aeroengine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese)
[16]張先航,李曙林,常飛,等.基于Wiener過程的航空燃油泵壽命預(yù)測[J].航空科學(xué)技術(shù), 2017,28(11): 47-53. Zhang Xianhang, Li Shulin, Chang Fei, et al. Life prediction of aviation fuel pump based on Wiener process [J]. Aeronautical Science & Technology, 2017,28(11): 47-53. (in Chinese)
[17]莊東辰,茆詩松.退化數(shù)據(jù)統(tǒng)計分析[M].北京:中國統(tǒng)計出版社, 2013. Zhuang Dongchen, Mao Shisong. Statistical analysis of degradation data[M]. Beijing:Statistics Press of China, 2013.(in Chinese)
[18]趙洪利,張猛.基于隨機維納過程的航空發(fā)動機性能衰退研究[J].推進技術(shù),2013(2):1-7. ZhaoHongli,ZhangMeng.Researchonperformance degradation of aeroengines based on stochastic Wiener process[J]. Journal of Propulsion Technology, 2013(2):1-7. (in Chinese)
[19]彭才華.衛(wèi)星姿態(tài)控制系統(tǒng)可靠性建模與評估方法研究[D].西安:西安理工大學(xué), 2017. Peng Caihua. Research on reliability modeling and evaluation of satellite attitude control system [D]. Xian:Xian University of Technology, 2017. (in Chinese)
[20]楊志波,董明.動態(tài)貝葉斯網(wǎng)絡(luò)在設(shè)備剩余壽命預(yù)測中的應(yīng)用研究[J].計算機集成制造系統(tǒng), 2007(9): 1811-1815. Yang Zhibo, Dong Ming. Dynamic Bayesian networks for predicting remaining useful life of equipment [J]. Computer Integrated Manufacturing Systems, 2007(9): 1811-1815. (in Chinese)
[21]Heimes F O. Recurrent neural networks for remaining useful life estimation[C]//2008 International Conference on Prognostics and Health Management,2008.
(責(zé)任編輯陳東曉)
作者簡介
趙洪利(1964-)男,碩士,副教授。主要研究方向:發(fā)動機健康管理、發(fā)動機機隊管理。
Tel:13920330278
E-mail:henleytrent@163.com
鄭涅(1993-)男,碩士研究生。主要研究方向:發(fā)動機健康評估和余壽預(yù)測。
Tel:15662605606
E-mail:nzheng.12@foxmail.com
Engine RUL Prediction Based on the Combination of Fusing Data and Wiener Modeling
Zhao Hongli,Zheng Nie*
Civil Aviation University of China,Tianjin 300300,China
Abstract: The performance data is an important indicator of engines health status, and the analysis of the performance data can be used to predict the engines remaining useful life (RUL), and which will provide basis for making engine maintenance decisions. The health of an engine is closely related to the monitored data. Based on the data of training and testing engines, the principal component analysis (PCA) was used to fuse multivariate data into a comprehensive health index (CHI). Wiener process was used to construct the performance degradation model, and the off-line parameters are optimized iteratively by EM algorithm with the training engines data. Based on Bayesian method, the training engines data are used to upgrade the parameters of the degradation model, and the probability density distribution and expected RUL of the testing engines are calculated at the real time. The comparison shows that the average of root mean square error (RMSE) for the last 10 cycles of the testing engines are 12.95 by using the model with single data and 5.34 by using the model with fusion data respectively, which proves that the modeling method with fusion data is more accurate.
Key Words: composite health index; Wiener model; off-line parameters; on-line parameters; RUL