亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Positivity of Scattering Operatorsfor Poincar′e-Einstein Manifolds

        2021-08-31 00:38:06FangWang
        Journal of Mathematical Study 2021年2期

        Fang Wang

        School of Mathematical Sciences,Shanghai Jiao Tong University,800Dongchuan Rd,Shanghai200240,China.

        Abstract.In thispaper,wemainly study thescattering operatorsfor a Poincar′e-Einstein manifold(Xn+1,g+),which def ine the fractional GJMSoperators P2γof order 2γfor 0<γ

        Key words:Scattering operators,fractional GJMS,positivity,Poinca′e-Einstein.

        1 Introduction

        We call(Xn+1,g+)a Poincar′e-Einstein manifold with conformal inf inity(M,[g]),ifg+is a smooth Riemannian metric in the interiorXwhich satisf ies

        Herewerequirethatx2g+can beCk,αextended to theboundary for somek≥2,0<α<1.By the boundary regularity theorem given in[4],without loss of generality,we will assumek=∞fornodd andk≥n?1 forneven in thispaper.A straightforward calculation shows that all the sectional curvatures of(Xn+1,g+)converge to?1 when approaching to the boundary.A standard example is the hyperbolic space Hn+1in the ball model:

        Thespectrum and resolvent for the Laplacian-Beltramioperator of(Xn+1,g+)is studied by Mazzeo-Melrose[13],Mazzeo[14]and Guillarmou[7].Actually the authors dealt with more general asymptotically hyperbolic manifolds.They showed that Spec(△+)=σpp(△+)∪σac(△+),whereσpp(△+)is theL2-eigenvalue set andσac(△+)is the absolute spectrum,and

        We def ine the scattering operatorS(s)by

        S(s):C∞(M)?→C∞(M),S(s)f=G|M.

        HereP2kis the GJMSoperator of order 2kon(M,g)withg=x2g+|TM.In particular,P2is the conformal Laplacian andP4is the Paneitz operator on(M,g).See[9][10]for more details.

        For simplicity,we def inethe renormalised scattering operators on(M,g)by

        ThenP2γat regular pointsareconformally covariantγpowersof the Laplacian and hence also called thefractional GJMSoperators.Similarly,the fractional Q-curvatures are def ined by

        And thefractional Yamabe constants are def ined by

        Whenγ=1,у2(M,[g])is the classical Yamabe constant.

        From the def inition ofP2γ,whenγis not an integer,P2γwould also depend on the interior metric(Xn+1,g+),not only on(M,[g]).A special case is(Sn,[gc]),the conformal inf inity of hyperbolic space Hn+1,wheregc=dθ2is thecanonical spherical metric.In this case,rigidity theorems given in[18][5]and[12]tell us that a Poincar′e-Einstein manifold(Xn+1,g+)with conformal inf inity(Sn,[gc])has to be the hyperbolic space Hn+1.So the fractional GJMSoperatorsP2γareuniquely determined,which aregiven in thefollowing:

        Then the fractional Q-curvature can be calculated immediately:

        In this paper,we are mainly interested in the positivity of renormalised scattering operatorsP2γ.Forγ∈(0,1),it was studied by Guillarmou-Qing in[8].

        Theorem 1.1(Guillarmou-Qing).Suppose(Xn+1,g+)(n≥3)isa Poincar′e-Einstein manifold with conformal inf inity(M,[g]).Fix a smooth representative g for the conformal inf inity and assumethescalar curvature Rg ispositiveon(M,g).Then forγ∈(0,1),

        (a)Q2γ>0on M;

        (b)Thef irst eigenvalueof P2γispositive;

        (c)The Green function of P2γispositive;

        (d)Thef irst eigenspaceof P2γisspanned by apositivefunction.

        Based on thepositivity result and theidentityS(n?s)S(s)=Id,they also showed that

        Forγ∈(1,2),we prove the following positivity result forP2γ.

        Theorem 1.3.Supposethe Poincar′e-Einstein manifold(Xn+1,g+)(n≥5)isahyperbolic manifold with conformal inf inity(M,[g]).Fix a smooth representative g for the conformal inf inity.Assumethescalar curvature Rg is apositiveconstant and Q4≥0on(M,g).Then forγ∈(1,2),

        (a)Q2γ>0on M;

        (b)Thef irst eigenvalueof P2γispositive;

        (c)The Green function of P2γis positive;

        for any smooth 1-formωon(M,g).We also denote

        △g+u?s(n?s)u=0,xs?nu|M=f.

        andG=S(s)f+O(x2).Here

        T2(n?s)=L2(n?s),

        T4(n?s)=L2(n?s+2)L2(n?s)?2(2s?n?2)L4(n?s).

        By straightforward calculation,

        3 The positivity of P2γforγ∈(1,2)

        Weprove Theorem 1.3 in this section.The positivity of fractional GJMSoperatorsP2γforγ∈(1,2)was studied carefully by Case-Chang in Section 7 of[3].Combining their results with the spectrum theorem in[11],we f irst know that

        Proposition 3.1(Lee,Case-Chang).Let(Xn+1,g+)(n≥4)be a Poinar′e-Einstein manifold with conformal inf inity(M,[g]).Fix a representative g for theconformal inf inity.Assumethe scalar curvature Rg>0and Q2γ>0for someγ∈(1,2).Then

        (a)Thereisno L2-eigenvaluefor△+,i.e.spec(△+)=[n2/4,∞);

        (b)Thef irst eigenvalueof P2γsatisf iesλ1(P2γ)≥minM Q2γ>0;

        (c)P2γsatisf iesthestrong maximum principle,i.e.,if P2γf≥0for some f∈C∞(M),then f>0or f≡0;

        (d)The Green’sfunction of P2γispositive.

        Therefore,to prove Theorem 1.3,weonly need to prove itspart(a)and part(d).Here we work out a higher order comparison theorem similar as Guillarmou-Qing did in[8]to prove part(a).

        Thenuis positive onXand near theboundaryuhas an asymptotical expansion:

        where

        IfJ>0 andQ4≥0 for(M,g),then it is easy to see that

        u2<0,u4<0,onM.

        Second,we def ine a test functionψby

        Hereλ>max{s+2,n}will be f ixed later and

        IfJ>0,then by the maximum principle,w>0 andv>0.Henceψis well def ined inX.

        Lemma 3.1.Assume J>0,Q4≥0on M andλ>max{s+2,n}.Near theboundary,ψdef ined in(3.2)has an asymptotical expansion

        which sastisf ies

        ψ2=u2,ψ4>u4,on M.

        Proof.Herev,whave asymptotical expansions as follows

        By straightforward calculation,

        This implies that

        Soψ2=u2and

        Sinceλ>s+2,λ>n>sandJ>0,Q4≥0,we haveψ4?u4>0.

        Lemma 3.2.Assume J>0and Q4≥0on M andλ>max{s+2,n}.Then

        Proof.A straightforward calculation gives

        where

        WhenJ>0,Q4≥0 andλ>max{s+2,n},it follows immediately thatK<0.

        Next,takeλ=n+2 in the def inition ofψto simplify the calculations.In this case,v?2=O(x4).Denote

        where

        IfJ>0 andQ4≥0 onM,then Lemma 3.2 shows that

        I|M<0.

        We also denote

        According to the asymptotical expansion(or uniformly degenerate property)of△+and the regularity ofInear boundary,it is obvious that

        II|M=0.

        Lemma 3.3.For Idef ined in(3.3),wehave

        Here the”:”denotesthe covariant derivative with respect tog+.Hence

        Direct computation shows that

        Combining above,w e conclude the lemma.

        Lemma 3.5.Assumethesameas Theorem1.3.Takeλ=n+2in(3.2).Thenψsatisf ies

        △+ψ?s(n?s)ψ<0,in X.

        Proof.SinceJis a positive constant,w0is a positive constant.Forλ=n+2,wsatisf ies△+w=0 in(3.2),which implies thatw≡w0all overX.Hence?w=0,?2w=0.By Lemma 3.3,

        where

        Vijk=v:ijk?vi[g+]jk?vj[g+]ik?2vk[g+]ij.

        Notice thatII|M=0.Therefore,by the maximum principle

        II=△+I≤0, inX.

        which together withI|M<0 by Lemma 3.2 implies that

        I<0, inX.

        We f inish the proof.

        Remark 3.1.The idea of constructing the test functionψwas originally from Lee[11].However,here we make the choiceλ=n+2 only for simplicity.We expect to have some intuitive explanation for it by future study,as well as some geometric interpretation of the tensorVijk.

        Now we are ready to apply the comparison argument foruandψ.

        Proposition 3.2.Suppose that the Poinar′e-Einstein manifold(Xn+1,g+)(n≥5)is hyperbolic with conformal inf inity(M,[g]).Fix asmooth representativeg for theconformal inf inity.Assume thescalar curvature Rg isapositiveconstant and Q4≥0on M.Then for allγ∈(1,2),Q2γ>0.Proof.Similar as Guillarmou-Qing’s proof in[8],we compare the two functionsuandψ,which are def ined in(3.1)and(3.2)withλ=n+2.Firstu/ψsatisf ies the equation:

        Notice thatu/ψ>0,which has positive minimum.Applying Lemma 3.5 and the maximum principle,we see thatu/ψcan not attain an interior positive minimum.Henceu/ψ≥1,i.e.u≥ψall overX.Near theboundary,this means

        1+x2u2+x2γu2γ+x4u4+O(x5)≥1+x2ψ2+x4ψ4+O(x5).

        Sinceψ2=u2andψ4>u4by Lemma 3.1,we haveu2γ>0.HenceQ2γ>0 onM.

        Acknowlegement

        Theauthor wantsto thank Professor Sun-Yung Alice Chang and Professor Ruobing Zhang for helpful discussions.This research is supported in part by National Natural Science Foundation of China Grant No.11871331 and Shanghai Pujiang Program Grant No.14PJ1405400.

        99久久久精品免费香蕉| 2021亚洲国产精品无码| 国产亚洲亚洲精品视频| 精品日韩av专区一区二区| av手机免费在线观看高潮| 亚洲av乱码一区二区三区按摩| 亚洲av伊人久久综合密臀性色 | 加勒比av在线一区二区| 国产人妻高清国产拍精品| 人妻无码aⅴ不卡中文字幕| 亚洲欧美日韩中文字幕网址| 久久网站在线免费观看| 国产区女主播在线观看| 国产精品三级av及在线观看| 久久久久亚洲av无码专区桃色| 五月天国产精品| 亚洲中文字幕精品久久久久久直播| 一级一片内射在线播放| 国产一区二区视频免费在| 亚洲女初尝黑人巨高清| 久久精品中文字幕一区| 亚洲成a人片在线观看中文!!!| 一级a免费高清免在线| 99久久国产精品免费热| 国产成人无码a在线观看不卡| 一本一道av无码中文字幕﹣百度| 日韩欧美专区| 国产无套粉嫩白浆内精| 亚洲av无码偷拍在线观看| 少妇特黄a一区二区三区| 国产午夜无码视频免费网站| 亚洲精品中文字幕乱码二区 | 99热久久只有这里是精品| 99久久99久久久精品蜜桃| 国产婷婷色综合av蜜臀av| 激情内射亚洲一区二区三区爱妻| 米奇亚洲国产精品思久久| 变态另类手机版av天堂看网| 日本人与黑人做爰视频网站| 日韩精品国产自在久久现线拍| 91精品国产综合久久青草|