亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        江淮稻–麥兩熟種植制度對(duì)氣候變暖的適應(yīng)

        2021-08-31 06:47:36陳長(zhǎng)青李偉瑋朱相成李剛?cè)A丁艷鋒
        作物學(xué)報(bào) 2021年11期
        關(guān)鍵詞:水稻產(chǎn)量

        陳長(zhǎng)青 李偉瑋 朱相成 劉 菁 李剛?cè)A 許 軻 江 瑜 丁艷鋒,*

        江淮稻–麥兩熟種植制度對(duì)氣候變暖的適應(yīng)

        陳長(zhǎng)青1李偉瑋1朱相成2劉 菁1李剛?cè)A1許 軻3江 瑜1丁艷鋒1,*

        1南京農(nóng)業(yè)大學(xué) / 江蘇省現(xiàn)代作物生產(chǎn)協(xié)同創(chuàng)新中心, 江蘇南京 210095;2宜春學(xué)院生命科學(xué)與資源環(huán)境學(xué)院, 江西宜春 336000;3揚(yáng)州大學(xué) / 農(nóng)業(yè)農(nóng)村部長(zhǎng)江流域稻作技術(shù)創(chuàng)新中心 / 江蘇省作物遺傳生理國(guó)家重點(diǎn)實(shí)驗(yàn)室培育點(diǎn), 江蘇揚(yáng)州 225009

        氣候變暖日益加劇, 近100年來全球地表平均氣溫已經(jīng)上升近1.0°C。稻–麥兩熟是蘇、皖江淮地區(qū)的主流種植制度, 但江淮稻–麥兩熟種植制度對(duì)氣候變暖的適應(yīng)還不清楚。為此, 我們利用34個(gè)氣象站點(diǎn)和45個(gè)物候站點(diǎn)多年歷史數(shù)據(jù)分析了江淮稻–麥兩熟區(qū)氣溫升高特征和作物物候變化規(guī)律。研究表明, 江淮地區(qū)增溫幅度區(qū)域上南高北低, 熟季間麥季高稻季低, 月份間3月份最高。水稻季, 江南地區(qū)播種期推遲3.4 d 10a–1、淮南抽穗期提早2 d 10a–1、淮北收獲期推遲6.2 d 10a–1。小麥季, 江南播種期推遲6.4 d 10a–1、全區(qū)域抽穗期和收獲期有提早的趨勢(shì)。稻–麥茬口期淮北縮短4.6 d 10a–1、江南延長(zhǎng)6.9 d 10a–1。水稻、小麥各生育階段平均溫度沒有顯著變化、花后有效積溫大多呈增加趨勢(shì)。水稻季積溫生產(chǎn)效率變化不大, 小麥季積溫生產(chǎn)效率提高了0.008~0.346 kg hm–2°C–110a–1。氣溫升高降低了江南和淮南地區(qū)小麥產(chǎn)量和淮南地區(qū)水稻產(chǎn)量, 但增加了淮北地區(qū)小麥產(chǎn)量。研究結(jié)果表明江淮稻–麥兩熟種植制度正逐步適應(yīng)了氣候變暖, 通過合理改變播期可以減緩氣候變暖對(duì)作物產(chǎn)量的負(fù)面影響; 可為氣候變化適應(yīng)性栽培和耕作技術(shù)創(chuàng)新提供參考。

        稻–麥兩熟; 增溫特征; 物候特征; 積溫生產(chǎn)效率

        政府間氣候變化專門委員會(huì)(Intergovemmetal Panel on Climate Change, IPCC)指出, 到2017全球地表平均氣溫較工業(yè)化前水平已經(jīng)上升近1.0°C, 如果按現(xiàn)在的增溫速率, 到2040年, 全球地表平均氣溫將升高1.5°C[1]。《中國(guó)氣候變化藍(lán)皮書2020》[2]指出我國(guó)是全球氣候變化敏感、影響顯著的區(qū)域, 1951—2019年, 我國(guó)年平均氣溫升高0.24°C 10a–1, 增溫速率顯著高于同期全球平均水平。溫度是作物生長(zhǎng)最關(guān)鍵的影響因子, 顯著影響作物生長(zhǎng)進(jìn)程、產(chǎn)量和我國(guó)糧食安全[3-6]。研究氣候變暖對(duì)我國(guó)作物產(chǎn)量的潛在的影響能為中長(zhǎng)期國(guó)家糧食安全戰(zhàn)略規(guī)劃提供科學(xué)依據(jù)。

        稻–麥兩熟是我國(guó)南方主流種植制度之一, 面積約600萬公頃, 總產(chǎn)量占全國(guó)稻麥總產(chǎn)量的22%, 為保障我國(guó)糧食安全發(fā)揮了關(guān)鍵作用[7]。江淮是我國(guó)稻麥兩熟面積最大, 產(chǎn)量最高的區(qū)域[8-9]。現(xiàn)有試驗(yàn)研究和模型研究都表明增溫縮短稻麥生育期[10-11],一般降低江淮稻–麥兩熟產(chǎn)量[12-15]。但這些研究并未涉及氣候變暖適應(yīng)性稻作技術(shù)。江淮稻–麥兩熟種植制度能否適應(yīng)氣候變暖還不清楚。為此, 我們利用34個(gè)氣象站點(diǎn)和45個(gè)物候站點(diǎn)數(shù)據(jù), 研究江淮稻–麥兩熟區(qū)氣溫升高特征和作物物候變化, 探討江淮稻–麥兩熟種植制度對(duì)氣候變暖的適應(yīng), 以期為氣候變化適應(yīng)性栽培和耕作技術(shù)創(chuàng)新提供科學(xué)依據(jù)。

        1 材料與方法

        1.1 研究區(qū)域

        本文的研究區(qū)域是江蘇和安徽省長(zhǎng)江以北地區(qū)即江淮地區(qū)主體區(qū)域, 地理位置為114o54′— 121o57′E, 29o24′—35o20′N, 涉及面積18.9萬平方千米。江淮地區(qū)是長(zhǎng)江中下游平原一部分, 南部有少量丘陵, 大多地方海拔在60 m以下。該地區(qū)屬東亞季風(fēng)區(qū), 又屬亞熱帶和暖溫帶的過度區(qū), 季風(fēng)氣候特征顯著, 雨量豐沛, 雨熱同季, 光能充足, 熱量富裕, 其中, 以淮河-長(zhǎng)江為界線, 將江淮地區(qū)劃分為不同的區(qū)域, 各個(gè)區(qū)域雨熱資源如表1所示。

        1.2 數(shù)據(jù)來源

        氣象數(shù)據(jù)(1980—2019)來自江淮地區(qū)具有連續(xù)氣象資料的34個(gè)準(zhǔn)地面氣象觀測(cè)站(圖1-A), 從國(guó)家氣象局獲取。氣象數(shù)據(jù)主要包括日平均氣溫、最高氣溫、最低氣溫。水稻和小麥物候(播種日期、抽穗日期和收獲日期)數(shù)據(jù)(1990—2013)從江淮地區(qū)與氣象觀測(cè)站就近的45個(gè)物候觀察點(diǎn)獲取(圖1-B)。水稻和小麥產(chǎn)量(1980—2018)從安徽省統(tǒng)計(jì)年鑒和江蘇省農(nóng)村統(tǒng)計(jì)年鑒獲取。

        1.3 研究方法

        小麥和水稻生長(zhǎng)期是指從播種到收獲的天數(shù), 營(yíng)養(yǎng)生長(zhǎng)期(vegetative growth period, VGP)是指從播種到抽穗的天數(shù), 生殖生長(zhǎng)期(reproductive growth period, RGP)是指從抽穗到收獲的天數(shù)。稻–麥茬口期是指水稻收獲到小麥播種的時(shí)期。3個(gè)區(qū)域的數(shù)據(jù)由位于各個(gè)區(qū)域的物候觀測(cè)點(diǎn)的數(shù)據(jù)進(jìn)行加權(quán)平均得來。物候站點(diǎn)的氣象數(shù)據(jù)采用鄰近氣象站點(diǎn)數(shù)據(jù), 小麥和水稻生長(zhǎng)季的氣候數(shù)據(jù)通過各個(gè)區(qū)域內(nèi)的觀測(cè)點(diǎn)每年的播種、抽穗和收獲時(shí)間點(diǎn), 采用各年逐日值進(jìn)行加權(quán)平均, 求得每年小麥和水稻全生長(zhǎng)季、營(yíng)養(yǎng)生長(zhǎng)期和生殖生長(zhǎng)期的平均溫度、最高溫度、最低溫度, 有效積溫(小麥≥0°C, 水稻≥10°C)和降雨量由各年逐日值相加得來[16]。積溫生產(chǎn)效率為作物單位產(chǎn)量除以有效積溫。由于物候站點(diǎn)的數(shù)據(jù)只更新到2013年, 因此, 我們只比較了1990s (1990—1999)和2000s (2000—2009)的水稻和小麥積溫生產(chǎn)效率。氣候變化趨勢(shì)和小麥各生育進(jìn)程趨勢(shì)以及作物產(chǎn)量趨勢(shì)變化均采用線性回歸模擬。本文對(duì)江淮地區(qū)1980—2018年的實(shí)際產(chǎn)量數(shù)據(jù)用非線性回歸模型進(jìn)行分析, 研究去除趨勢(shì)產(chǎn)量與氣候因素間的關(guān)系, 確定氣候因子對(duì)產(chǎn)量的影響[12,17-18]。具體模型如下:

        表1 江淮地區(qū)分區(qū)及氣候特征(1980–2018)

        圖1 江淮地區(qū)氣象站點(diǎn)(A)和物候站(B)點(diǎn)空間分布

        地圖來源: 全國(guó)地理信息資源目錄服務(wù)系統(tǒng)(https://www.webmap.cn/)。

        The above maps are from the National Geographic Information Resource Directory Service System (https://www.webmap.cn/).

        2 結(jié)果與分析

        2.1 江淮地區(qū)溫度變化特征

        從1980到2018年, 江淮地區(qū)7月份地表平均氣溫最高, 1月份最低(圖2)。淮南地區(qū)地表平均氣溫升高明顯, 達(dá)0.43°C 10a–1。從月份上看, 3月份地表氣溫升高幅度最高達(dá)0.85°C 10a–1, 2月份和4月份增溫幅度次之, 其他月份氣溫升高幅度在0.30~0.41°C 10a–1之間。從熟季間看, 小麥季增溫幅度大于水稻季(表2); 水稻季平均溫度、最高溫度和最低溫度增溫幅度分別為0.37、0.34和0.41°C 10a–1, 小麥季平均溫度、最高溫度和最低溫度增溫幅度分別0.48、0.44和0.50°C 10a–1。區(qū)域間, 增溫幅度南高北低; 水稻季淮北、淮南和江南平均溫度分別升高0.33、0.37和0.51°C 10a–1, 小麥季淮北、淮南和江南平均溫度分別增加0.45、0.47和0.61°C 10a–1。

        圖2 江淮地區(qū)每月溫度及其變化

        2.2 物候變化特性

        近30年來, 江淮地區(qū)小麥和水稻物候發(fā)生了明顯變化(表3)?;幢钡貐^(qū)水稻播種期和抽穗期有推遲的趨勢(shì), 收獲期明顯推遲, 達(dá)6.2 d 10a–1; 花前天數(shù)沒有明顯變化, 花后天數(shù)和全生育期天數(shù)分別延長(zhǎng)4.6 d 10a–1和4.8 d 10a–1?;茨纤静シN期、抽穗期和收獲期分別提前1.1、2.0和2.4 d 10a–1,花前天數(shù), 花后天數(shù)和全生育期天數(shù)都有縮短的趨勢(shì), 但不顯著。江南水稻播種期推遲3.5 d 10a–1, 但抽穗期和收獲期沒有明顯變化?;ㄇ疤鞌?shù)和全生育期天數(shù)分別縮短3.4 d 10a–1和3.0 d 10a–1, 花后天數(shù)沒有明顯變化?;幢钡貐^(qū)小麥播種期有推遲的趨勢(shì), 抽穗期有提前的趨勢(shì), 但收獲期變化不明顯, 花前天數(shù)有縮短的趨勢(shì), 但花后天數(shù)都有延長(zhǎng)的趨勢(shì)?;茨系貐^(qū)小麥播種期無明顯變化, 但開花期和收獲期有提早的趨勢(shì), 花前天數(shù)有縮短的趨勢(shì), 但花后天數(shù)有延長(zhǎng)的趨勢(shì)。江南地區(qū)小麥播種期明顯推遲, 達(dá)6.5 d 10a–1; 開花期和收獲期有提早趨勢(shì), 花前天數(shù)明顯縮短, 花后天數(shù)無明顯變化。稻–麥茬口天數(shù)淮北地區(qū)顯著縮短達(dá)4.6 d 10a–1, 江南地區(qū)顯著延長(zhǎng)達(dá)6.9 d 10a–1, 淮南有延長(zhǎng)趨勢(shì)。

        2.3 作物生育期積溫和產(chǎn)量變化特性

        水稻季淮北、淮南和江南花前、花后和全生育期平均溫度, 都有升高的趨勢(shì); 全區(qū)域花前、花后和全生育期平均溫度, 分別升高0.54、0.07和0.34°C 10a–1。小麥季各區(qū)域花前和花后平均溫度沒有明顯的變化。水稻季淮北、淮南和江南花前、花后和全生育期≥10°C的有效積溫, 都有升高的趨勢(shì)。小麥花前≥0°C有效積溫, 各區(qū)域有降低的趨勢(shì), 淮北和淮南花后和全生育期積溫有增加的趨勢(shì), 但江南有降低的趨勢(shì)。淮北、淮南和江南水稻產(chǎn)量和小麥產(chǎn)量, 都呈逐年上升趨勢(shì)。水稻季積溫生產(chǎn)效率變化不大, 而小麥積溫生產(chǎn)效率呈明顯上升趨勢(shì), 淮北、淮南和江南小麥積溫生產(chǎn)效率分別提高0.317、0.346和0.008 kg–1hm–2°C–110a–1。

        表2 江淮地區(qū)小麥季和水稻季增溫趨勢(shì)(1980–2018)

        **:< 0.01.

        表3 江淮地區(qū)小麥和水稻物候變化趨勢(shì)(1990–2013)

        *:< 0.05;**:< 0.01. VGP: 營(yíng)養(yǎng)生長(zhǎng)期; RGP: 生殖生長(zhǎng)期; WGP: 全生育期。

        VGP: vegetative growth period; RGP: reproductive growth period; WGP: whole growth period.

        2.4 溫度對(duì)小麥和水稻產(chǎn)量的影響

        不同地區(qū)的小麥和水稻的產(chǎn)量, 在30年間均呈現(xiàn)不同幅度的增長(zhǎng)趨勢(shì)(表5)。其中, 淮北地區(qū)的小麥產(chǎn)量變化趨勢(shì)最大, 淮南次之, 江南地區(qū)最小?;幢钡貐^(qū)和淮南地區(qū)的產(chǎn)量變化趨勢(shì)分別是江南地區(qū)的6.04倍和5.54倍, 而水稻的產(chǎn)量變化趨勢(shì)為淮南地區(qū)>江南地區(qū)>淮北地區(qū); 不同區(qū)域間小麥和水稻的積溫生產(chǎn)效率和產(chǎn)量變化有相同的趨勢(shì), 小麥的積溫生產(chǎn)效率趨勢(shì)和產(chǎn)量變化趨勢(shì)均要大于水稻的。溫度的升高降低了江南和淮南地區(qū)小麥產(chǎn)量, 但增加了淮北地區(qū)小麥產(chǎn)量。增溫引起淮南地區(qū)水稻減產(chǎn), 但對(duì)江南和淮北地區(qū)水稻產(chǎn)量影響不顯著。從整個(gè)區(qū)域來看, 溫度升高有降低水稻產(chǎn)量的趨勢(shì), 但對(duì)小麥產(chǎn)量影響不大(圖4)。

        表4 小麥和水稻各生育階段平均溫度和積溫變化(1990–2013)

        VGP: 營(yíng)養(yǎng)生長(zhǎng)期; RGP: 生殖生長(zhǎng)期; WGP: 全生育期。

        VGP: vegetative growth period; RGP: reproductive growth period; WGP: whole growth period.

        圖3 小麥和水稻積溫生產(chǎn)效率

        表5 小麥和水稻產(chǎn)量變化趨勢(shì)及積溫生產(chǎn)效率趨勢(shì)(1993–2009)

        *:< 0.05;**:< 0.01.

        圖4 溫度對(duì)水稻和小麥產(chǎn)量的影響

        A: 最高溫度; B: 最低溫度; C: 平均溫度。

        A: maximum temperature; B: minimum temperature; C: average temperature.

        3 討論

        大量的研究表明氣候變暖顯著影響作物的產(chǎn)量。Zhao等[3]研究表明在不考慮大氣CO2升高、有效適應(yīng)變暖和遺傳改良的條件下, 溫度升高1°C, 降低全球小麥產(chǎn)量6%、水稻產(chǎn)量3.2%、玉米產(chǎn)量7.4%和大豆產(chǎn)量3.1%。我們前期的研究[19]也表明氣溫升高1.5°C, 我國(guó)水稻單產(chǎn)降低5%左右。許多學(xué)者也利用模擬增溫試驗(yàn)在江淮地區(qū)研究了增溫對(duì)水稻和小麥產(chǎn)量的影響。Dong等[20]指出全天增溫對(duì)水稻產(chǎn)量影響不明顯, 但白天增溫和夜間增溫降低水稻產(chǎn)量6%左右。Cai等[21]在常熟研究發(fā)現(xiàn)增溫降低水稻30%左右。張?chǎng)蔚萚22]發(fā)現(xiàn)夜間增溫對(duì)水稻產(chǎn)量的影響取決于水稻品種。Tian等[23]利用多年試驗(yàn)表明全天增溫、白天增溫和夜間增溫都能增加小麥產(chǎn)量。Hu等[24]指出冬季和春季增溫促進(jìn)了根系生長(zhǎng)和土壤氮有效性進(jìn)而增加小麥產(chǎn)量。但是這些試驗(yàn)研究并未考慮氣候變暖適應(yīng)策略。本研究發(fā)現(xiàn)盡管近30年來江淮地區(qū)氣溫升高明顯, 但是由于新品種、種植制度調(diào)整和栽培耕作技術(shù)的革新, 水稻、小麥產(chǎn)量呈明顯上升態(tài)勢(shì)?;ê蠓e溫的上升和氣溫的逐年上升, 對(duì)水稻和小麥產(chǎn)量沒有明顯影響。這些說明該地區(qū)作物生產(chǎn)方式正逐漸適應(yīng)了氣候變暖的趨勢(shì), 也說明在氣候變暖的情況下, 可以通過遺傳改良、栽培耕作技術(shù)創(chuàng)新等方式進(jìn)一步提高作物產(chǎn)量[25-26]。

        一方面, 氣候變暖一般顯著加快作物生長(zhǎng)進(jìn)程, 縮短作物生育期。Tian等[23]研究表明增溫促使小麥開花、成熟提早10 d左右。Zheng等[27]利用10個(gè)小麥品種發(fā)現(xiàn)增溫縮短了花前生長(zhǎng)時(shí)間, 但是延長(zhǎng)了花后小麥生長(zhǎng)時(shí)間。Cai等[21]發(fā)現(xiàn)增溫縮短了水稻花前生育期3 d左右、小麥花前生育期10 d左右, 但對(duì)水稻、小麥花后生育期沒有顯著影響。而張?chǎng)蔚萚22]利用不同年代品種發(fā)現(xiàn), 夜間增溫對(duì)水稻生育期的影響因品種而異, 有的品種縮短, 有的品種不變。本研究表明, 在江淮地區(qū)氣溫逐漸升高的背景下, 水稻、小麥花前生育期大多呈縮短趨勢(shì); 在江南地區(qū)水稻、小麥花前生育期縮短達(dá)到極顯著水平。但是除淮北水稻外, 江淮地區(qū)水稻、小麥花后生育期并沒有明顯變化?;幢彼净ê笊谘娱L(zhǎng)可能與選擇晚熟品種有關(guān)。這些結(jié)果說明氣候變暖可以影響作物生育期[4,28], 但我們可以通過品種選育和栽培耕作措施來調(diào)節(jié)氣候變暖對(duì)作物生育期的影響[25]。

        另一方面, 氣候變暖也增加了熱量資源, 延長(zhǎng)了適宜作物生長(zhǎng)的時(shí)間[29-31], 為適應(yīng)氣候變暖創(chuàng)造了有利條件。因此, 科學(xué)家們認(rèn)為通過改變播期和選擇適宜生育期的品種等適應(yīng)性栽培措施, 可以重新配置作物溫光資源以應(yīng)對(duì)氣候變暖[25-26,28]。本研究發(fā)現(xiàn)增溫對(duì)淮北地區(qū)和江南地區(qū)水稻產(chǎn)量沒有顯著影響, 這和淮北地區(qū)和江南地區(qū)水稻播期推遲有關(guān)。水稻播期導(dǎo)致抽穗期推遲, 可以降低花期和灌漿期溫度, 緩解花期和灌漿期高溫對(duì)水稻產(chǎn)量的負(fù)面影響[19,25]。而在淮南地區(qū), 播期提早導(dǎo)致抽穗期顯著提前, 可能會(huì)導(dǎo)致花期和灌漿期溫度更高, 從而降低水稻產(chǎn)量。本研究發(fā)現(xiàn)增溫增加淮北地區(qū)小麥產(chǎn)量, 這可能和該地區(qū)播期推遲和灌漿期延長(zhǎng)有關(guān)。但是在江南地區(qū), 盡管小麥播期也推遲了, 但增溫依舊降低了小麥產(chǎn)量; 這可能與江南地區(qū)小麥灌漿期溫度升高最高有關(guān)(表4)。此外, 淮北地區(qū)水稻收獲期推遲和生育期明顯延長(zhǎng), 說明該地區(qū)可以采用長(zhǎng)生育期品種充分利用氣候變暖增加的熱量資源。江南地區(qū)小麥播種期明顯推遲, 利用了氣候變暖下冬季溫度升高的特性, 增加了稻麥茬口期, 有利于提高小麥播種質(zhì)量, 減少冬季旺長(zhǎng)。

        本研究表明, 江淮地區(qū)尤其是淮北地區(qū)和江南地區(qū)兩熟種植制度正逐漸適應(yīng)了氣候變暖, 通過合理改變播期可以減緩氣候變暖對(duì)水稻產(chǎn)量的負(fù)面影響。但是, 合理改變播期對(duì)減緩氣候變化的具體措施還需進(jìn)一步的試驗(yàn)研究。此外, 氣候變暖還會(huì)導(dǎo)致極端天氣(如高溫、低溫和暴雨等)更加頻繁[28,32]。有研究表明, 極端天氣對(duì)作物產(chǎn)量的影響遠(yuǎn)大于平均氣溫升高的影響[33]。因此, 之后的研究需要重視極端天氣對(duì)江淮稻麥生長(zhǎng)的影響。

        4 結(jié)論

        江淮地區(qū)氣溫升高明顯, 增溫幅度區(qū)域間南高北低, 熟季間麥季高稻季低, 月份間3月份最高。水稻季, 江南播種期推遲3.4 d 10a–1, 江淮抽穗期提早2 d 10a–1, 淮北收獲期推遲6.2 d 10a–1。小麥季, 江南播種期推遲6.4 d 10a–1、全區(qū)域抽穗期和收獲期有提早的趨勢(shì)。水稻、小麥各生育階段平均溫度沒有顯著變化, 花后有效積溫大多呈增加趨勢(shì)。氣溫升高降低了江南和淮南地區(qū)小麥產(chǎn)量和淮南地區(qū)水稻產(chǎn)量, 增加了淮北地區(qū)小麥產(chǎn)量, 但是對(duì)江南和淮北水稻產(chǎn)量影響不大。本研究表明江淮稻–麥兩熟種植制度正逐步適應(yīng)了氣候變暖, 通過合理改變播期可以減緩氣候變暖對(duì)水稻產(chǎn)量的負(fù)面影響, 可為氣候變化適應(yīng)性的稻作技術(shù)創(chuàng)新提供參考。

        [1] IPCC. Climate Change 2013: The Physical Science Basis. Working Group Ⅰ Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.

        [2] 中國(guó)氣象局. 中國(guó)氣候變化藍(lán)皮書. 北京: 中國(guó)氣象局, 2020.

        China Meteorological Administration. China Blue Book on Climate Change. Beijing: China Meteorological Administration, 2020 (in Chinese).

        [3] Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S S, Pe?uelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates., 2017, 114: 9326–9331.

        [4] Liu L L, Wallach D, Li J, Liu B, Zhang L X, Tang L, Zhang Y, Qiu X L, Cao W X, Zhu Y. Uncertainty in wheat phenology simulation induced by cultivar parameterization under climate warming., 2018, 94: 46–53.

        [5] 張祖建, 張洪熙, 楊建昌, 宋云生, 趙步洪, 季紅娟, 朱慶森. 江蘇近50年粳稻安全齊穗期的變化. 作物學(xué)報(bào), 2011, 37: 146–151.

        Zhang Z J, Zhang H X, Yang J C, Song Y S, Zhao B H, Ji H J, Zhu Q S. Changes of safe dates for full heading in Japonica rice over past 50 years in Jiangsu province., 2011, 37: 146?151 (in Chinese with English abstract).

        [6] 石全紅, 劉建剛, 王兆華, 陶婷婷, 陳阜, 褚慶全. 南方稻區(qū)水稻產(chǎn)量差的變化及其氣候影響因素. 作物學(xué)報(bào), 2012, 38: 896–903.

        Shi Q H, Liu J G, Wang Z H, Tao T T, Chen F, Chu Q Q. Change of rice yield gaps and influential climatic factors in southern China., 2012, 38: 896–903 (in Chinese with English abstract).

        [7] Dawe D, Frolking S, Li C S. Trends in rice–wheat area in China., 2004, 87: 89–95.

        [8] 胡志全, 吳永常, 劉景輝, 褚慶全. 中國(guó)二熟耕作區(qū)糧食生產(chǎn)現(xiàn)狀、潛力與對(duì)策. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2002, 10(3): 109–111.

        Hu Z Q, Wu C Y, Liu J H, Chu Q Q. Situation, potential and strategies of grain production in double cropping region of China., 2002, 10(3): 109–111 (in Chinese with English abstract).

        [9] 杜祥備, 孔令聰, 習(xí)敏, 吳文革, 陳金華, 岳偉. 江淮區(qū)域稻麥兩熟制周年資源分配、利用特征. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2019, 27: 1078–1087.

        Du X B, Kong L C, Xi M, Wu W G, Chen J H, Yue W. Characteristics of resource allocation and utilization of rice-wheat double cropping system in the Jianghuai area., 2019, 27: 1078–1087 (in Chinese with English abstract).

        [10] 陳書濤, 王讓會(huì), 許遐禎, 項(xiàng)瑛, 陳海山. 氣溫及降水變化對(duì)江蘇省典型農(nóng)業(yè)區(qū)冬小麥、水稻生育期的影響. 中國(guó)農(nóng)業(yè)氣象, 2011, 32: 235–239.

        Chen S T, Wang R H, Xu X Z, Xiang Y, Chen H S. Impacts of variations in air temperature and precipitation on the growth stages of winter wheat and rice in typical agricultural zones of Jiangsu province., 2011, 32: 235–239 (in Chinese with English abstract).

        [11] 黃愛軍, 陳長(zhǎng)青, 類成霞, 張衛(wèi)建, 卞新民. 江淮地區(qū)農(nóng)業(yè)氣候資源演變特征及作物生產(chǎn)應(yīng)對(duì)措施. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2011, 34(5): 7–12.

        Huang A J, Chen C Q, Lei C X, Zhang W J, Bian X M. Change characteristics of agricultural climatic resources and adaptation measures for crop production in Jianghuai region., 2011, 34(5): 7–12 (in Chinese with English abstract).

        [12] 耿婷, 付偉, 陳長(zhǎng)青. 近20年來江蘇省冬小麥生育進(jìn)程和產(chǎn)量對(duì)氣候變暖的響應(yīng). 麥類作物學(xué)報(bào), 2012, 32: 1183–1191.

        Geng T, Fu W, Chen C Q. Response of growth development process and yield of winter wheat to climate warming in Jiangsu province during last 20 years., 2012, 32: 1183–1191 (in Chinese with English abstract).

        [13] 潘敖大, 曹穎, 陳海山, 孫善磊. 近25年氣候變化對(duì)江蘇省糧食產(chǎn)量的影響. 大氣科學(xué)學(xué)報(bào), 2013, 36: 217–228.

        Pan A D, Cao Y, Chen H S, Sun S L. Impacts of climate change on food-crops production in Jiangsu province from 1986 to 2010., 2013, 36: 217–228 (in Chinese with English abstract).

        [14] Cheng H, Ren W W, Ding L L, Liu Z F, Fang C M. Responses of a rice–wheat rotation agroecosystem to experimental warming., 2013, 28: 959–967.

        [15] Yang Z Y, Zhang Z L, Zhang T, Fahad S, Cui K H, Nie L X, Peng S B, Huang J L. The effect of season-long temperature increases on rice cultivars grown in the central and southern regions of China., 2017, 8: 1908.

        [16] 王春春, 陳長(zhǎng)青, 黃山, 鄧艾興, 張衛(wèi)建, 卞新民. 東北氣候和土壤資源演變特征研究. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2010, 33(2): 19–24.

        Wang C C, Chen C Q, Huang S, Deng A X, Zhang W J, Bian X M. Change characteristics of climatic and soil resources in Northeast China., 2010, 33(2): 19–24 (in Chinese with English abstract).

        [17] Lobell D B, Schlenker W, Justin C R. Climate trends and global crop production since 1980., 2011, 333: 616–620.

        [18] 陳群, 耿婷, 侯雯嘉, 陳長(zhǎng)青. 近 20 年東北氣候變暖對(duì)春玉米生長(zhǎng)發(fā)育及產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47: 1904–1916.

        Chen Q, Geng T, Hou J W, Chen C Q. Impacts of climate warming on growth and yield of spring maize in recent 20 years in northeast China., 2014, 47: 1904–1916 (in Chinese with English abstract).

        [19] Chen C Q, van Groenigen K J, Yang H Y, Hungatee B A, Yang B, Tian Y L, Chen J, Dong W J, Huang S, Deng A X, Jiang L, Zhang W J. Global warming and shifts in cropping systems together reduce China's rice production., 2020, 24: 100359.

        [20] Dong W, Chen J, Zhang B, Tian Y L, Zhang W J. Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China., 2011, 123: 259–265.

        [21] Cai C, Yin X Y, He S Q, Jiang W Y, Si C F, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, Pan G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2and temperature in FACE experiments., 2016, 22: 856–874.

        [22] 張?chǎng)? 陳金, 江瑜, 鄧艾興, 宋振偉, 鄭成巖, 張衛(wèi)建. 夜間增溫對(duì)江蘇不同年代水稻主栽品種生育期和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25: 1349–1356.

        Zhang X, Chen J, Jiang Y, Deng A X, Song Z W, Zheng C Y, Zhang W J. Impacts of nighttime warming on rice growth stage and grain yield of leading varieties released in different periods in Jiangsu province, China., 2014, 25: 1349–1356 (in Chinese with English abstract).

        [23] Tian Y L, Zheng C Y, Chen J, Chen C Q, Deng A X, Song Z W, Zhang B M, Zhang W J. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China., 2014, 9: e951084.

        [24] Hu C X, Tian Z W, Gu S L, Fan Y H, Abid M, Chen K, Jiang D, Cao W X, Dai T B. Winter and spring night-warming improve root extension and soil nitrogen supply to increase nitrogen uptake and utilization of winter wheat (L.)., 2018, 96: 96–107.

        [25] Hu X Y, Huang Y, Sun W J, Yu L F. Shifts in cultivar and planting date have regulated rice growth duration under climate warming in China since the early 1980s., 2017, 247: 34–41.

        [26] Reynolds M P, Quilligan E, Aggarwal P K, Bansal K C, Cavalieri A J, Chapman S C, Chapotin S M, Datta A K, Duveiller E, Gill K S, Jagadish K S V, Joshi A K, Koehler A K, Kosina P, Krishnan S, Lafitte R, Mahala R S, Muthurajan R, Paterson A H, Prasanna B M, Rakshit S, Rosegrant M W, Sharma I, Singh R P, Sivasankar S, Vadez V, Valluru R, Vara Prasad P V, Yadav O P. An integrated approach to maintaining cereal productivity under climate change., 2016, 8: 9–18.

        [27] Zheng C Y, Chen J, Song Z W, Deng A X, Jiang L N, Zhang B M, Zhang W J. Differences in warming impacts on wheat producti-vity among varieties released in different eras in North China., 2015, 153: 1353–1364.

        [28] 張衛(wèi)建, 陳長(zhǎng)青, 江瑜, 張俊, 錢浩宇. 氣候變暖對(duì)我國(guó)水稻生產(chǎn)的綜合影響及其應(yīng)對(duì)策略. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2020, 39: 805–811.

        Zhang W J, Chen C Q, Jiang Y, Zhang J, Qian H Y. Comprehensive influence of climate warming on rice production and countermeasure for food security in China., 2020, 39: 805–811 (in Chinese with English abstract).

        [29] Xiong W, Holman I P, You L Z, Yang J, Wu W B. Impacts of observed growing season warming trends since 1980 on crop yields in China., 2014, 14: 7–16.

        [30] Zhang T, Huang Y, Yang X. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice., 2013, 19: 563–570.

        [31] 凌霄霞, 張作林, 翟景秋, 葉樹春, 黃見良. 氣候變化對(duì)中國(guó)水稻生產(chǎn)的影響研究進(jìn)展. 作物學(xué)報(bào), 2019, 45: 323–334.

        Ling X X, Zhang Z L, Zhai J Q, Ye S C, Huang J L. A review for impacts of climate change on rice production in China., 2019, 45: 323–334 (in Chinese with English abstract).

        [32] Diffenbaugh N S. Verification of extreme event attribution: Using out-of-sample observations to assess changes in probabilities of unprecedented events., 2020, 6: eaay2368.

        [33] Espe M B, Hill J E, Hijmans R J, McKenzie K, Mutters R, Espino L A, Leinfelder-Miles M, van Kessel C, Linquist B A. Point stresses during reproductive stage rather than warming seasonal temperature determine yield in temperate rice., 2017, 23: 4386–4395.

        Adaption of rice–wheat cropping system to climate warming in Jianghuai area

        CHEN Chang-Qing1, LI Wei-Wei1, ZHU Xiang-Cheng2, LIU Jing1, LI Gang-Hua1, XU Ke3, JIANG Yu1, and DING Yan-Feng1,*

        1Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China;2College of life Science and Resources and Environment, Yichun University, Yichun 336000, Jiangxi, China;3Innovation Center of Rice Cultivation Techno-logy in the Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, Jiangsu, China

        As the climate warming is increasing, the global average surface temperature has risen by nearly 1°C in the past 100 years. Rice-wheat cropping system is the mainstream cropping system in the lower reaches of the Yangtze River and Huaihe River in Jiangsu and Anhui provinces, but its adaptation to climate warming is still unclear. We analyzed the characteristics of temperature rise and crop phenological changes in the rice–wheat double cropping area of Jiangsu using the historical data from 34 meteorological stations and 45 phenological stations over the years. The results revealed that the range of temperature increase in Jianghuai area was higher in the south than in the north, higher in wheat season and lower in rice ripe season, and the highest in March. In the rice season, the sowing date in Jiangnan was delayed by 3.4 d 10a–1, the heading date in Huainan was advanced by 2 d 10a–1, and the harvest date in Huaibei was delayed by 6.2 d 10a–1. In the wheat season, the sowing date in Jiangnan was delayed by 6.4 d 10a–1, and the heading and harvest time tended to be earlier in the whole region. The rice–wheat stubble stage was shortened by 4.6 d 10a–1in Huaibei and 6.9 d 10a–1in Jiangnan. The average temperature of rice and wheat during growth period had no significant change, but the effective accumulated temperature post anthesis was increasing. There was no significant change of the production efficiency of accumulated temperature in rice season, while the production efficiency of accumulated temperature in wheat season increased by 0.008–0.346 kg hm–2°C–110a–1. Warming decreased wheat yields in the north of Yangtze River and Huainan area, but increased wheat yield in Huaibei area. In summary, these results indicated that the rice-wheat cropping system in Jianghuai was gradually adapting to the climate warming, and the negative effects of climate warming on crop yield could be alleviated by reasonably changing sowing date. Our findings can provide reference for climate change adaptation cultivation and cultivation technology innovation.

        rice–wheat rotation system; temperature rise characteristic; phenological change; production efficiency of accumulated temperature

        10.3724/SP.J.1006.2021.02078

        本研究由國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0300100)和江蘇省省級(jí)現(xiàn)代農(nóng)業(yè)發(fā)展計(jì)劃項(xiàng)目(2019-SJ-039-07)資助。

        This study was supported by the National Key Research and Development Program of China (2017YFD0300100) and the Provincial-level Modern Agricultural Development Program in Jiangsu (2019-SJ-039-07).

        丁艷鋒, E-mail: dingyf@njau.edu.cn

        E-mail: cn828@njau.edu.cn

        2020-11-17;

        2021-04-26;

        2021-05-17.

        URL: https://kns.cnki.net/kcms/detail/11.1809.S.20210516.1229.002.html

        猜你喜歡
        水稻產(chǎn)量
        什么是海水稻
        2022年11月份我國(guó)鋅產(chǎn)量同比增長(zhǎng)2.9% 鉛產(chǎn)量同比增長(zhǎng)5.6%
        有了這種合成酶 水稻可以耐鹽了
        水稻種植60天就能收獲啦
        軍事文摘(2021年22期)2021-11-26 00:43:51
        提高玉米產(chǎn)量 膜下滴灌有效
        油菜可以像水稻一樣實(shí)現(xiàn)機(jī)插
        世界致密油產(chǎn)量發(fā)展趨勢(shì)
        海水稻產(chǎn)量測(cè)評(píng)平均產(chǎn)量逐年遞增
        一季水稻
        文苑(2020年6期)2020-06-22 08:41:52
        水稻花
        文苑(2019年22期)2019-12-07 05:29:00
        国产一区二区三区在线爱咪咪| 亚洲av无码国产精品麻豆天美 | 国产精品入口牛牛影视| 秀人网嫩模李梓熙大尺度| av在线高清观看亚洲| 少妇人妻综合久久中文字幕| 中文字幕影片免费在线观看| 亚洲精品美女久久久久99| 国产一区二区三免费视频| 性色av手机在线观看| 97中文字幕精品一区二区三区| 337p日本欧洲亚洲大胆精品| 伊人色综合视频一区二区三区| 日本在线免费精品视频| 一级黄色一区二区三区| 午夜无码一区二区三区在线观看| 熟妇人妻av中文字幕老熟妇| 婷婷四房播播| 中文字幕日本女优在线观看| 偷拍色图一区二区三区| 99久久国产综合精品女图图等你 | 国产91吞精一区二区三区| 日韩在线视精品在亚洲| av网址大全在线播放| 日本一区二区在线高清观看| 亚洲国色天香卡2卡3卡4| 欧美日韩亚洲成色二本道三区 | 一本久道综合在线无码人妻 | 女人下面毛多水多视频| 午夜家庭影院| 精品一区二区中文字幕| 亚洲精品粉嫩美女一区| 艳妇臀荡乳欲伦交换在线播放| 久久道精品一区二区三区| 91久久精品一区二区| 中文字幕日韩精品有码视频| 欧美日韩一卡2卡三卡4卡 乱码欧美孕交 | 国产精品亚洲婷婷99久久精品 | 日韩精品视频免费福利在线观看| 青青草亚洲视频社区在线播放观看 | 国产精品无码一区二区三区免费|