亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Twin Domination Number of Cartesian Product of Directed Cycles

        2021-08-23 06:24:26MaHongxiaZhaoJuanFengYanqiu

        Ma HongxiaZhao Juan Feng Yanqiu

        (College of Preparatory,Xinjiang Normal University,Urumqi 830017,China)

        Abstract Let γ*(D)denote the twin domination number of digraph D and let Cm□Cn denote the Cartesian product of the directed cycle Cm and Cn,for m,n≥2.In this paper,we give a lower bound for γ*(Cm□Cn)and we determine the exact values of γ*(Cm□Cn)when m,n≡0(mod 3)and when m≡2(mod 3).

        Key words Digraph Twin domination number Cartesian product Directed cycle

        1 Introduction

        LetD=(V,A)be a finite digraph without loops and multiple arcs,whereV=V(D)is the vertex set andA=A(D)is the arc set.For a vertexdenote the set of out-neighbors and in-neighbors ofv,respectively.The out-degree and in-degree ofvare defined byA digraphDis calledr-regular iffor any verticesvinV(D).Given two verticesuandvinV(D),we say thatuout-dominatesv(orvin-dominatesu)ifu=vorA vertexvout-dominates all vertices inA setS?V(D)is called an out-dominating(in-dominating)set ofDifSout-dominates(in-dominates)V(D).The out-domination number ofD,denoted byγ+(D),is the minimum cardinality of an out-dominating set ofD.The in-domination number is defined analogusly.Some results of twin domination in digraphs has been obtained in[1–3].A setis a twin dominating set ofDif for any vertexv∈V?S,there existu,w∈S(possiblyu=w)such that arcsuv,vw∈A(D).The twin domination number ofD,denoted byγ*(D),is the minimum cardinality of a twin dominating set ofD.Clearly,γ+(D)≤γ*(D).

        LetD1=(V1,A1)andD2=(V2,A2)be two digraphs which have disjoint vertex setsV1={x1,x2,...,xn1}andV2={y1,y2,...,yn2}and disjoint arc setsA1andA2,respectively.The Cartesian productD=D1□D2has vertex setV=V1×V2and(xi,yj)(xi′,yj′)∈A(D)if and only if one of the following holds:

        (a)xi=xi′andyjyj′∈A2?

        (b)yj=yj′andxixi′∈A1.

        For any fixed vertexyi∈V2,the subdigraphofDhas vertex seand arc setIt is clear thatD1yi~=D1.Similarly,for any fixed vertexxi∈V1,the subdigraphD2xiofDhas vertex setand arc setIt is clear thatTwin domination in digraph is a fundamental and interesting concept.[4–8]presented some related works of out-domination number of the Cartesian product and strong product of directed cycles and directed paths.However,to date no research about the twin domination number has been done for the Cartesian product of directed cycles.

        In this paper,we study the twin domination number ofCm□Cn,obtain the lower bound ofγ*(Cm□Cn),and give the following exact values

        2 Main results

        We emphasize that the vertices of a directed cycleCmare always denoted by the integers{0,1,...,m?1}considering modulom.There is an arcxyfromxtoyinCmif and only ify=x+1(modm).For any vertex(i,j)∈V(Cm□Cn),

        the first digit and second digit are considered modulomandn,respectively.

        LetCm□Cndenote the Cartesian product ofCmandCn.Observe that the vertices ofare out-dominated by vertices ofand in-dominated by vertices of1}.Especially,the vertices ofare out-dominated by vertices ofand in-dominated by vertices of

        Lemma 2.1Letm,n≥2,and

        (i)Ifm≡0(mod 3),thenγ*(Cm□Cn)≥nk1?

        (ii)Ifm≡1(mod 3),then

        (iii)Ifm≡2(mod 3),thenγ*(Cm□Cn)≥nk1+n.

        ProofLetSbe a twin domination set ofCm□CnandObserve that each of the vertices ofnot only in-dominates two vertices inbut also out-dominates one vertex inthe vertices ofare only out-dominated by vertices of

        Now we turn to investigate the twin domination number ofCm□Cn.

        Firstly,we consider the casem≡0(mod 3)andn≡0,2(mod 3).

        Define a set as follow(see Figure 1):

        Figure 1 The set S1

        S1={(3j,i):i≡0(mod 3);(3j+1,i):i≡1(mod 3);(3j+2,i):i≡2(mod 3);wherej∈{0,1,...,k1?1}}.

        Theorem 2.1Letm,n≥2 andthen

        ProofIfn≡0(mod 3),then we can assume thatn=3k2.Based on Lemma 2.1,we can obtain thatγ*(Cm□Cn)≥3k1k2.Clearly,S1is a twin dominating set ofCm□Cn,and|S1|=3k1k2.

        Ifn=3k2+2,then we deduce thatγ*(Cn□Cm)≥3k1k2+3k1from Lemma 2.1.Obviously,S1∪{(3j+2,0)|j∈{0,1,...,k1?1}}is a twin dominating set ofCm□Cnand|S1∪{(3j+2,0)|j∈{0,1,...,k1?1}}|=k1(3k2+2)+k1=3k1k2+3k1.

        Secondly,we consider the casem≡2(mod 3).

        Theorem 2.2Letm=3k1+2,

        (i)Ifn=3k2+2 andk2≥k1,thenγ*(Cm□Cn)=3k1k2+2k1+3k2+2?(Ifk2≤k1,we can obtain an analogous conclusion).

        (ii)Ifn=3k2+1 and 2k2≥k1,thenγ*(Cm□Cn)=3k1k2+k1+3k2+1.

        ProofFirstly,we assumen=3k2+2.Then by Lemma 2.1,we haveγ*(Cm□Cn)≥3k1k2+2k1+3k2+2.Without loss of generality,we assume thatn≥m,in other words,k2≥k1.Define the following subsets ofV(Cm□Cn):

        LetS2=Xi∪Y.We first show thatS2is an out-dominating set ofCm□Cn.

        For eachi,1≤i≤m?4,note that the vertices ofare out-dominated by vertices inXiandXi?1.Clearly,all the vertices ofare out-dominated by the vertices inXm?4andY,wheni>m?3,the vertices ofare out-dominated by the vertices inY.Particularly,the vertices ofare out-dominated by vertices inX0andY.It follows thatS2is an out-dominating set ofCm□Cn.

        In the following,we show thatS2is also an in-dominating set ofCm□Cn.For eachi,0≤i≤m?5,we see that all vertices ofare in-dominated by vertices inXiandXi+1.Particularly,the vertices ofare in-dominated by vertices inX0andY.ThereforeS2is an in-dominating set ofCm□Cn.

        From above,we conclude thatS2is a twin dominating set ofCm□Cnwith cardinality 3k1k2+2k1+3k2+2.

        As an example,Figure 2 shows a twin dominating sets ofC11□C14.

        Figure 2 A twin dominating set of C11□C14

        Secondly,we assumen=3k2+1.

        It is evident from Lemma 2.1 thatγ*(Cm□Cn)≥3k1k2+k1+3k2+1.Assume that,that is 2k2≥k1.

        Ifk1is even,thenmis even.Define some sets as follows:

        Y={(3j+1,i)|j∈{0,1,...,k1},i≡1(mod 3)}∪{(0,i),(3j+2,i)|j∈{0,1,...,k1?1},i≡2(mod 3)}∪{(1,i),(3j,i)|j∈{1,2,...,k1},i≡0(mod 3)},where

        It is clear that all the vertices inX0∪Xicould out-dominate the vertices fromMoreover,the vertices ofare out-dominated by the vertices inandY.Whenthe vertices inYcould dominate all the vertices ofI n particular,the vertices ofare out-dominated by the vertices inX0andY.SoS3is an out-dominating set ofCm□Cn.Similarly,we can show thatS3is also an in-dominating set ofCm□Cn.ThereforeS3is a twin dominating set ofCm□Cn,and|S3|=n(k1+1)=3k1k2+k1+3k2+1.

        As an example,Figure 3 shows a twin dominating sets ofC8□C13.

        Ifk1is odd,then define some sets as follows:

        Y′={(3j+1,i)|j∈{0,1,...,k1},i≡1(mod 3)}∪{(0,i),(3j+2,i)|j∈{0,1,...,k1?1},i≡2(mod 3)}∪{(1,i),(3j,i)|j∈{1,2,...,k1},i≡0(mod 3)},where

        Similarly,whenwe have thatX0∪Xi′is a twin dominating set ofCm□Cn,and whenis a twin dominating set ofCm□Cn.This completes the proof of the Theorem.

        As an example,Figure 4 shows a twin dominating sets ofC11□C13.

        Figure 3 A twin dominating set of C8□C13

        Figure 4 A twin dominating set of C11□C13

        日本xxxx色视频在线播放| 在线免费午夜视频一区二区| 看一区二区日本视频免费| 在线观看一级黄片天堂| 久久香蕉国产线看观看精品yw| 国产精品亚洲成在人线| 91精品啪在线看国产网站| 丝袜美腿亚洲综合久久| 精品国产yw在线观看| 怡红院a∨人人爰人人爽| 综合无码综合网站| 精品人妻一区二区视频| 欧洲美熟女乱av亚洲一区 | 亚洲色图三级在线观看| 风韵多水的老熟妇| 免费毛片在线视频| 日本高清免费播放一区二区| 国产精品女老熟女一区二区久久夜 | 国产国拍精品av在线观看按摩 | 国产精品亚洲A∨天堂| 日本激情久久精品人妻热| 黄片大全视频在线播放| 国产成人av性色在线影院色戒| 亚洲精品aⅴ无码精品丝袜足| 91精品国产综合久久国产| 无码人妻精品一区二区三区东京热 | 久久久久亚洲精品无码系列| 国产成人精品日本亚洲11| 国产午夜激无码AV毛片不卡| 99久久婷婷国产精品综合| 三年的高清电影免费看| 日韩视频第二页| 女同中文字幕在线观看| 大肉大捧一进一出好爽视频动漫| 永久免费的av在线电影网无码| 天堂av无码大芭蕉伊人av孕妇黑人| 青青青免费在线视频亚洲视频 | 国产呦系列呦交| 中文字幕有码在线视频| 国产91成人精品高潮综合久久| 挺进朋友人妻雪白的身体韩国电影 |