亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        世界隕石坑研究

        2021-07-28 10:37:32丁毅侯征吳云霞
        地質(zhì)論評(píng) 2021年4期

        丁毅,侯征, 吳云霞

        河北地質(zhì)大學(xué), 石家莊,050031

        內(nèi)容提要: 本文綜述了全球隕石坑研究的研究歷史和最新成果、基本的概念、隕石坑的識(shí)別要點(diǎn)、世界著名的隕石坑、隕石撞擊地球可能引起的巖漿活動(dòng)、隕石撞擊與生命演化等內(nèi)容。確定一個(gè)隕石坑,要從有一定弧度的地貌開(kāi)始,鑒別低平圓形地質(zhì)體是隕石還是其他原因造成的,綜合確定巖石的巖石學(xué)特征、巖石中是否有撞擊變質(zhì)礦物、殘余隕石、重力異常。隕石撞擊太陽(yáng)系的所有行星。由于地球表面遭受嚴(yán)重的風(fēng)化和侵蝕,地質(zhì)學(xué)家很難發(fā)現(xiàn)隕石坑。截至2021年3月31日,全球隕石坑數(shù)據(jù)庫(kù)中有190個(gè)經(jīng)確認(rèn)的隕石坑,但中國(guó)只有一個(gè),中國(guó)地質(zhì)學(xué)家在發(fā)現(xiàn)隕石坑方面應(yīng)當(dāng)積極努力。對(duì)一個(gè)隕石坑認(rèn)識(shí)可能不很成熟,但往往能改變對(duì)一個(gè)地區(qū)的地質(zhì)成因理論的認(rèn)識(shí),形成完整的隕石坑證據(jù)鏈可能需要幾代科學(xué)家的不斷努力。

        隕石撞擊地球是太陽(yáng)系運(yùn)行過(guò)程中一個(gè)基本的現(xiàn)象, 一直是宇宙中一個(gè)極其重要的行星過(guò)程(Reimold et al., 2018)。進(jìn)入太陽(yáng)系的絕大部分隕石都被質(zhì)量大的太陽(yáng)和木星吸走了,人們通過(guò)天文望遠(yuǎn)鏡知道月球在4.0 Ga間被隕石砸的面目全非,在火星上也發(fā)現(xiàn)了75000個(gè)隕石坑(Stepinski et al., 2012),太陽(yáng)系中最大的隕石坑(卡洛里,直徑達(dá)1550 km)發(fā)現(xiàn)在水星的表面(Watters et al., 2009)。 地球的體量比火星、水星和月球都大,被隕石砸的概率當(dāng)然要比它們大得多。目前每年有大約10000到80000顆隕石襲擊地球(Monthly Notices of the Royal Astronomical Society)。然而到目前為止,加拿大新不倫瑞克大學(xué)的行星與空間科學(xué)中心[ PASSC (Planetary and Space Science Centre (University of New Brunswick; Canada) ] 所維護(hù)的全球隕石坑數(shù)據(jù)庫(kù)(Earth Impact Database, 2021)僅認(rèn)證了190個(gè)隕石坑。它們主要集中在歐洲、北美、澳州、南非。 中國(guó)已報(bào)道的隕石撞擊構(gòu)造不少,如王若柏等(2004)、云金表等(2019),但尚需進(jìn)一步論證。全球隕石坑數(shù)據(jù)庫(kù)收錄的中國(guó)隕石坑僅有岫巖隕石坑一個(gè) (Chen Ming et al.,2011)。

        地球大氣圈的保護(hù)、板塊運(yùn)動(dòng)、巖漿溢流、沉積物的掩埋、風(fēng)化剝蝕、海洋淹沒(méi)等使得地質(zhì)科學(xué)家在地球陸地上發(fā)現(xiàn)隕石坑要比在火星或月球上發(fā)現(xiàn)隕石坑困難得多。1976年中國(guó)吉林市北郊發(fā)現(xiàn)的3000多塊隕石中,最大的一塊隕石重約1.77 t,砸出了一個(gè)2 m長(zhǎng)6.5 m深的隕石坑(meteorite crater),隕石坑又被稱之為沖擊坑 (impact crater)。

        研究地球上的隕石坑到現(xiàn)在已超過(guò)百年(Baratoux and Barringer, 1910),積累了許多判別隕石坑的標(biāo)志,推動(dòng)了隕石坑的發(fā)現(xiàn)和隕石學(xué)的發(fā)展,這使得人類更加了解隕石的沖擊對(duì)地球生命演化的影響(Burgess et al., 2017;Lowery et al., 2018; Schaller and Fung, 2018;Wang Guangxu et al., 2019);豐富了沖擊變質(zhì)巖石學(xué)、巖石化學(xué)、礦物學(xué)、結(jié)晶學(xué)和年代學(xué) (Clyde et al., 2016; Cohen et al., 2017; Erickson et al., 2017; Folco et al., 2018; Jourdan et al., 2019);豐富了巖漿起源和成巖成礦理論,即隕石沖擊地殼作為外因是否能引發(fā)巖漿侵入作用和熱液成礦作用 (Burgess et al., 2017; Pickersgill et al., 2019)。

        1 隕石坑的地貌形態(tài)特點(diǎn)

        1.1 隕石坑地貌的特點(diǎn)

        全世界所發(fā)現(xiàn)的大多數(shù)隕石坑都是從圓形地質(zhì)體或隆起的弧形山體開(kāi)始的,隕石坑屬于低平圓形地質(zhì)體的一種。低平圓形地質(zhì)體還有可能是瑪珥式火山口、地表尚未完全塌陷的石灰?guī)r溶洞、以及背斜巖層剝蝕出來(lái)的不同風(fēng)化程度所造成的圓形體等等。它們共同的特點(diǎn)是衛(wèi)星影像呈圓形、似圓形、或橢圓形,地表觀察它們的口沿不高,但是地質(zhì)體內(nèi)外在巖石成分、口沿內(nèi)外的形狀都各自有特點(diǎn)。隕石坑的基本特征是負(fù)地形的圓形體,沒(méi)有經(jīng)過(guò)風(fēng)化的月球上的隕石坑(圖1a)保存如初的狀態(tài),使得我們有機(jī)會(huì)認(rèn)識(shí)隕石坑的地貌特征。直徑小于2.5 km的隕石坑被稱之為簡(jiǎn)單隕石坑(圖1e),口沿單一,口沿邊部的內(nèi)壁陡峭; 直徑大于2.5 km (有的文獻(xiàn)中把2.5~4 km這個(gè)區(qū)間作為簡(jiǎn)單和復(fù)雜隕石坑的分界區(qū)段)的隕石坑又被稱之為復(fù)雜隕石坑(圖1a—c,f—h),復(fù)雜隕石坑有多層口沿和混亂的巖石層 (multi-ringed structures, Ferriere and Osinski, 2012)。有一些隕石坑由于形成年代早,它們的口沿或已經(jīng)被侵蝕掉了或因其是負(fù)地形有可能被新的沉積物掩埋了,有的位于地球上沙漠地帶的隕石坑正在遭受風(fēng)蝕的破壞(圖1c)。

        圖1 (a)月球上的最大隕石坑,900 km直徑,為復(fù)雜隕石坑,具有明顯的雙環(huán)特征,然而中間顯示相對(duì)平整,外圈隆起的高度不對(duì)稱 (圖片中箭頭所指的較高,圖片來(lái)自NASA)。 (b)南非的Vredefort隕石坑是地球上目前發(fā)現(xiàn)的最大的(直徑約250 km)和年代最老的隕石坑 (200~300 km (Erickson et al., 2013), 圖片來(lái)自 geology.com),箭頭所示的撞擊坑的隆起在高度和復(fù)雜性上與另一側(cè)的隆起不對(duì)稱; (c)非洲乍得的Aorounga隕石坑正在遭受橫向風(fēng)沙的風(fēng)化(Visible, 2021),但是仍然可識(shí)別出中心,由“中心峰圈”和“中心峰”組成,直徑約為12.6 km。 (d)岫巖隕石坑,位于鞍山市岫巖滿族自治縣蘇子溝鎮(zhèn)羅圈溝里村,為簡(jiǎn)單隕石坑,直徑1.8 km(據(jù)Google Earth)。 (e) 美國(guó)的Barringer隕石坑,1.2 km直徑,為簡(jiǎn)單隕石坑;(f) 加拿大的Sudbury隕石坑。 (g) 加拿大的Manicouagan 隕石坑,直徑100 km(圖片來(lái)自www.passc.net)。 (h)加拿大的Clearwater Lakes姊妹隕石坑(圖片來(lái)自www.sott.net)Fig. 1 (a)The largest crater on the Moon, 900 km in diameter, is a complex crater with obvious double rings, but the center shows relatively flat, and the uplift in the outer ring pointed by the white arrow in the picture is highly asymmetric to the other side (the picture is from NASA). (b) Vredefort crater in South Africa is the largest(250 km in diameter)and oldest meteorite crater found in the Earth (the picture is from geology.com). The rim uplift along the impact crater indicated by the arrow is asymmetric in height and complexity to the one in the opposite direction. (c) the Aorounga crater, with 12.6 km in diameter, in Chad, Africa, is being weathered by transverse sandstorm. (d) Xiuyan crater, located in Luoquangouli village, Suzigou Town, Xiuyan Manchu Autonomous County, Anshan City, is a simple crater with a diameter of 1800 m (from Google Earth). (E) Barringer crater, 1.2 km in diameter, is a simple crater. (f) Sudbury crater, Canada. (g) Manicouagan crater, Canada, 100 km in diameter (image from www.passc.net). (h) Clearwater lakes sister craters in Canada, from www.sott.net

        1.2 隕石坑與瑪珥式火山口的區(qū)別

        在地貌上,隕石坑與負(fù)地形的瑪珥式火山口相似,區(qū)別在于后者坑底平整和坑內(nèi)的坡度較為平緩 (丁毅等, 2019);而隕石坑的底部是不平整的,坑內(nèi)的坡度較為陡峭。簡(jiǎn)單隕石坑底部與復(fù)雜隕石坑相同,也呈現(xiàn)略為凸起的特點(diǎn) (圖1e);復(fù)雜隕石坑的底部有中央隆起 (central uplift),又稱為中心峰 (central peak, 圖1c), 坑底巖石在受到巨大隕石轟擊后,由于應(yīng)力釋放而產(chǎn)生一定程度的回彈,故在一些復(fù)雜隕石坑的底部常出現(xiàn)中央隆起(Morgan et al., 2016)。當(dāng)中心峰風(fēng)化以后還保留“峰圈”(peak ring)(圖1h)。然而,我們也注意到超大型(直徑大于200 km)隕石坑存在中心平整和口沿隆起的高度不對(duì)稱的特點(diǎn)(圖1a、b、f)。

        2 隕石坑鑒別標(biāo)志

        2.1 巖石、巖石化學(xué)、巖石顏色、碎裂角礫巖層

        隕石砸在地球上的地點(diǎn)是不可預(yù)測(cè)的,即砸在什么巖石上都有可能。當(dāng)被砸?guī)r石是石灰?guī)r時(shí),由于沖擊熱變質(zhì),會(huì)產(chǎn)生大理巖; 砸在其他巖石上,高溫高壓的結(jié)果,可產(chǎn)生沖擊變質(zhì)的熔巖。有一種玻璃質(zhì)的似曜巖(tektites)(圖2c、d),隕石砸在地面產(chǎn)生熔融的碎屑飛濺、散落、呈扇形分布(圖2b綠色區(qū))。這些似曜巖與火山黑曜巖不同之處在于成分復(fù)雜,黑色、綠色、無(wú)色都有 (Cavosie, 2018; St?ffler et al., 2002)。隕石撞擊地表巖石會(huì)帶來(lái)宇宙元素, 被沖擊的巖石化學(xué)會(huì)有一定的改變,可能含有比較多的宇宙元素(鎳、鉑、銥、鈷等)(Mougel et al., 2017; Folco et al., 2018; Crosta et al., 2019; Mougel et al., 2019)。

        圖2 (a)石英中存在沖擊變形結(jié)構(gòu);(b)玻璃質(zhì)的似曜巖散落區(qū)(綠色),被認(rèn)為是Ries和Steinheim (紅色)兩個(gè)隕石坑 造成的;(c)、(d) Tektites (玻璃質(zhì)的似曜巖);(e)、(f) 震裂錐;(g)鐵隕石;(h)隕石坑中沖擊角礫巖Fig. 2 (a) impact deformation texture in quartz; (b) glassy obsidian like scattering area (green), which is considered to be caused by two craters, Ries and Steinheim (red); (c), (d) Tektites; (e) , (f) seismic cone; (g) iron meteorite; (h) impact breccia in crater

        如果隕石坑底的組成巖石不是火山口相的火山集塊巖、火山角礫巖或火山熔巖,就排除了地貌上的環(huán)狀體的火山成因。 沖撞變質(zhì)成因的熔巖與火山熔巖是有著明顯區(qū)別的。如果原先巖石就是火山凝灰?guī)r等火山碎屑巖,需要進(jìn)行巖石薄片分析并進(jìn)行坑內(nèi)外火山巖的對(duì)比(是否存在高溫高壓礦物和石英晶體是否存在沖擊變質(zhì)結(jié)構(gòu))。新鮮的隕石坑表面有一層薄薄的棕—黑色殼(fusion crust),是由隕石砸在地表巖石時(shí)熾熱烘烤造成的,發(fā)現(xiàn)這種情況的坑很少,其原因是后期風(fēng)化很快就掩埋這些特征了。Bjornerud(1998)描述并定量分析了美國(guó)Indiana州Kentland隕石坑中三種不同類型的角礫巖。Wilshire 等 (1971) 描述了Sierra Madera隕石坑中的沖擊角礫巖,隕石坑內(nèi)外有許多不同類型的角礫,有破碎角礫,可能為破碎角礫或集塊 (shocked, 沖擊粉碎的,沒(méi)有被其他融化物質(zhì)所膠結(jié)) ,完全被沖擊融化的 (impact melt)和破碎的角礫被更小的融化物質(zhì)所膠結(jié) (impact breccia) 。它們又被統(tǒng)稱為沖擊破碎巖(圖2h)(impactites,St?ffler and Grieve, 2007)。Tagamite是一種沖擊熔融巖石,看起來(lái)有點(diǎn)類似于陸地玄武巖,它是以西伯利亞波皮蓋隕石坑內(nèi)的Tagami山脊命名的(Afanasiev et al., 2019)。

        2.2 沖擊變質(zhì)礦物和礦物結(jié)構(gòu)

        隕石中心撞擊巖石時(shí)壓力可能會(huì)達(dá)到幾百GPa(St?ffler and Grieve, 2007),會(huì)產(chǎn)生高溫高壓沖擊變質(zhì)礦物 [柯石英、超石英(Stishovite)、重硅石、斜硅石(Chao et al.,1960)、金剛石(Afanasiev et al., 2019)]。Cohen 等 (1961) 和Fahey (1964) 研究了Coconino隕石坑和石英中存在的沖擊變形結(jié)構(gòu) (Planar Fractures (PFs) and Planar Deformation Features (PDFs)) (圖2 a) 。礦物的熱分解、熔融以及出現(xiàn)流動(dòng)構(gòu)造,特別是在同一巖石中結(jié)晶體與玻璃體并存,如石英、長(zhǎng)石已轉(zhuǎn)變?yōu)椴A?,而深色礦物仍保留晶質(zhì)相。在隕石沖擊情況下,難熔礦物亦發(fā)生分解,如隕石坑內(nèi)存在鈦鐵礦、金剛石、鐵板鈦礦和斜鋯石等,它們有可能已熔成液滴狀 (Ferriere et al., 2009; Reimold et al., 2014)。Kenkmann(2002)研究這些礦物的生成和礦物特有的結(jié)構(gòu),認(rèn)為它們可能是在15~60 s中完成的。

        2.3 殘留隕石

        大多數(shù)隕石是石質(zhì)隕石(stony meteorites),分為球粒隕石(chondrites)和無(wú)球粒隕石(achondrites),球粒隕石根據(jù)化學(xué)—巖石學(xué)分類被分為:E、H、L、LL、C 五個(gè)化學(xué)群類。只有約6%的隕石是鐵隕石(iron meteorites)(圖2g)或巖石和金屬的混合物,即石鐵隕石 (stony-iron meteorites) (Krot et al., 2007)。人類發(fā)現(xiàn)隕石越來(lái)越多,隕石的分類(Weisberg et al., 2006)也變得非常復(fù)雜。隕石沖過(guò)地球大氣圈,摩擦后,雖然燃燒耗盡, 但是仍然會(huì)有隕石落到隕石坑附近,尤其在簡(jiǎn)單隕石坑(澳大利亞的Wolfe Creek隕石坑和美國(guó)的Barringer隕石坑)附近都能找到隕石的殘留物,而在大型隕石坑內(nèi)卻很少發(fā)現(xiàn),這可能是隕石與地面沖撞時(shí)易于爆炸和隕石熾熱蒸發(fā)有關(guān)。在內(nèi)蒙古狼山弧形隆起西北方向發(fā)現(xiàn)有25 km2的隕石散落區(qū)。在南極的冰蓋上,在無(wú)土背景下,隕石顏色與冰蓋的白色強(qiáng)烈對(duì)比較易發(fā)現(xiàn)隕石,在南極的格羅夫山,我國(guó)南極考察隊(duì)發(fā)現(xiàn)了隕石散落區(qū),7次南極隕石考察共收集南極隕石12265塊。1976年3月8日,我國(guó)吉林省吉林市近郊發(fā)生了大規(guī)模的隕石雨,隕落區(qū)直徑70多千米,面積在400~500 km2之間,共收集到隕石100多塊,總重2616 kg,其中“吉林1號(hào)”隕石重1770 kg,屬H球粒隕石。中國(guó)新疆地區(qū)也發(fā)現(xiàn)體積較大的大隕石。

        2.4 震裂錐 (Shatter Cones)

        為高溫高壓沖擊變質(zhì)所產(chǎn)生的一種特殊的巖石形體,從小于1 cm到15 cm或更大,呈錐體形狀,表面有很多溝槽,頂端為鈍尖,指向隕石與巖石碎塊摩擦沖擊的方向(圖2e、f)。在復(fù)雜隕石坑內(nèi),原巖是石灰?guī)r、白云巖、石英巖、片麻巖或頁(yè)巖時(shí),可以見(jiàn)到震裂錐,震裂錐被認(rèn)為是隕石坑的可靠證據(jù) (Dietz, 1947, 1960; Chennaoui et al., 2016; Osinski and Ferrière, 2016)。

        2.5 重力負(fù)異常和巖漿活動(dòng)

        隕石坑內(nèi)重力負(fù)異常是由于坑底巖石遭到粉碎性撞擊后,巖石疏松或變?yōu)樗閴K造成的,火山的火口內(nèi)則為重力正常場(chǎng)。另外碎塊分布多、坑的內(nèi)部和周邊存在雜亂無(wú)章的小斷裂也都是隕石坑識(shí)別的輔助標(biāo)志 (Regan and Hinze, 1975)。一個(gè)巨大隕石轟擊有可能觸發(fā)或控制深部巖漿活動(dòng)和熱液活動(dòng),世界最大的Ni—Cu—Pt—Pd—Au礦床所在地,加拿大的Sudbury隕石坑(圖1f)已被證實(shí)為一個(gè)隕石先沖擊而后誘發(fā)巖漿礦產(chǎn)形成的一個(gè)復(fù)合構(gòu)造,巖漿成礦的重疊在大約1.85 Ga年形成的隕石坑內(nèi)(Burgess et al., 2017; Richards et al., 2015)。

        3 世界一些著名的隕石坑

        具有地貌形態(tài)是必須的,其他諸如:殘留隕石、沖擊變質(zhì)礦物、礦物的內(nèi)部結(jié)構(gòu)、震裂錐、重力異常等證據(jù)很重要,如果有隕石坑的地貌地形(中大型的有中心峰)、石英、長(zhǎng)石或其他礦物的PDFs/PFs,再加上一些其他證據(jù)就已經(jīng)很完善了??率?、超級(jí)石英、或沖擊金剛石的發(fā)現(xiàn)當(dāng)然是確鑿的證據(jù),但是發(fā)現(xiàn)的概率較少。

        世界上所發(fā)現(xiàn)的大型隕石坑為數(shù)不多,最大的是南非的Vredefort隕石坑(圖1b) (Grieve et al.,2008),其次是加拿大的Sudbury(圖1f) (Lenauer and Riller, 2012)和排在第三位的墨西哥境內(nèi)的尤卡坦半島Chicxulub隕石坑。Chicxulub隕石坑又被稱為“恐龍隕石坑”,直徑有198 km, 是65 Ma前一顆直徑為10~13 km的小行星撞擊地球而成,被認(rèn)為是導(dǎo)致恐龍滅絕的原因 (Alvarez et al., 1980; Claeys et al., 2002; Lowery et al., 2018), 并確定了K/T分界線(Alvarez et al., 1980; Renne et al., 2018)。其中的高Ir元素含量層(Alvarez et al., 1980)被認(rèn)為是證據(jù)之一。 隕石沖擊也被認(rèn)為是當(dāng)時(shí)全球變冷的主要原因(Brugger et al., 2017)。該隕石坑為重力負(fù)異常(Gulick et al., 2013)、存在地震反射波(Connors et al., 1996)和地震折射波異常(Gulick et al., 2013),中心峰附近的巖漿熱液活動(dòng)有可能是隕石沖擊造成的(Kring et al., 2017)。

        加拿大境內(nèi)的隕石坑:Tunnunik隕石坑,位于北極圈地區(qū),25 km直徑的圓形坑,中心峰地區(qū)存在震裂錐,從受沖擊影響的巖石的年齡來(lái)判斷是450 Ma前形成的(Dewing et al., 2013;Lepaulard et al., 2019)。加拿大的Sudbury隕石坑(圖1f)形成于元古代,地形上仍然可見(jiàn)弧形構(gòu)造,250 km直徑,有震裂錐的存在,石英、長(zhǎng)石、鋯石中都有PDF,坑內(nèi)巖石廣泛存在碎屑化 (Lenauer and Riller, 2012)。 Clearwater Lakes隕石坑(圖1h),這是一對(duì)孿生隕石坑,形成在290 Ma以前,可能是由分裂成兩塊的小行星同時(shí)撞擊地球而成。東南的小的隕石坑直徑22 km,西北的隕石坑直徑32 km, 后者具有中心峰的環(huán)狀地貌,簡(jiǎn)稱“峰圈”(圖2h),它們?cè)趭W陶紀(jì)形成,坑內(nèi)外巖石多種元素 (Os、 Ir、 Ru、 Rh and Pd) 都高于地殼平均值(Schmidt,1997),富含鉑族元素(PGE)、 Ni、 Au(Tangle and Hecht,2006), 石英具有PDFs(Cluston et al., 2018);阿爾伯塔省西北部的Steen River隕石坑,直徑為25 km,地形不明顯,但是顯示磁異常和地震波異常,鉆探取芯發(fā)現(xiàn)巖石含有沖擊變質(zhì)礦物——鎂鐵尖晶石(Magnesioferrite, MgFe2O4), 長(zhǎng)石和石英中有PDFs (MacLagan et al., 2018; Walton et al., 2018);加拿大的Manicouagan隕石坑(圖2g),隕石坑有明顯的被冰面覆蓋的環(huán)狀湖。這個(gè)隕石坑的直徑有100 km,形成在210 Ma前,存在震裂錐,斜長(zhǎng)石、石英、鉀長(zhǎng)石中都有PDFs(Clutson et al., 2018)。此外,在加拿大境內(nèi)還認(rèn)定了Charlevoix (Schmieder et al., 2019), Nicholson Lake (McGregor et al., 2018), Lac La Moninerie (McGregor et al., 2018) 等隕石坑。

        南非境內(nèi)的隕石坑:Vredefort是具有中心峰的隕石坑,由花崗巖組成的中心峰直徑大約70 km, 被稱之為 “Vredefort Dome”,10 km直徑大小的小行星在2.0 Ga年前沖擊地球,形成約180~300 km直徑, 40 km深的圓形坑,另外還有礦物的PDFs和震裂錐證據(jù),這是世界上被認(rèn)證的最老和最大的隕石坑(Buchanan and Reimold, 2002; Grieve et al., 2008; Erickson et al., 2013)。

        美國(guó)境內(nèi)的隕石坑:Alamo隕石坑為位于內(nèi)華達(dá)州的中南部、382 Ma左右前形成,44~65 km直徑,存在角礫層、地形和PDFs證據(jù)(Pinto and Warme, 2007; Evans et al., 2012; Keith et al., 2013; Poole and Sandberg, 2015);Barringer隕石坑,1.2 km直徑,170 m深,形成在50 ka之前,在世界上認(rèn)證最早、保存最好、研究最成熟的一個(gè)隕石坑(Baratoux and Barringer, 1910; Barringer, 1964)。該隕石坑非常有名的原因是地形明顯(圖2a)、發(fā)現(xiàn)得早、被成功地轉(zhuǎn)為賺錢的地質(zhì)公園 (Kring, 2017)。其他證據(jù)還有角礫層、柯石英和超級(jí)石英(Chao et al., 1960, 1962)、鐵鎳隕石碎塊 (Artemieva, 2006);Decorah隕石坑,位于Iowa州,5.6 km直徑,200 m深。主要證據(jù)有圓形凹陷地形,坑的內(nèi)外分布有碎塊,巖芯中存在大量的石英PDFs, 形成年代在中奧陶世(French et al., 2018)。阿拉斯加Avak隕石坑,直徑約12 km,存在角礫層、圓形地貌、震裂錐和PDFs證據(jù)。

        德國(guó)境內(nèi)的Steinheim隕石坑,直徑3.8 km。主要證據(jù)是:圓形坑體、中心隆起、雜亂無(wú)章的巖石碎塊、無(wú)規(guī)律分布的斷裂 (St?ffler et al., 2002); Ries隕石坑,直徑24 km。這兩個(gè)隕石坑之間散布著tektites[前面介紹了,是一種黑色、綠色、無(wú)色的似曜巖,又被稱為moldavite (捷克隕石)],研究者認(rèn)為兩個(gè)隕石坑和它們之間的moldavite分布場(chǎng)(strewn field)都是在15 Ma前形成的(St?ffler et al., 2002)。

        澳大利亞Wolfe Creek隕石坑(圖2n),位于澳大利亞西北部沙漠地區(qū),直徑880 m,形成年代小于300 ka,是一個(gè)比較年輕的隕石坑??拥撞肯啾瓤油獾孛嫠骄€的高度為25 m, 地貌特別之處是這個(gè)簡(jiǎn)單隕石坑中心有一個(gè)與坑口沿同心的圈。隕石坑具有磁場(chǎng)異常和重力負(fù)異常(O’Neill and Heine, 2005),隕石坑內(nèi)可見(jiàn)震裂錐、鐵隕石氧化后的殘余物質(zhì)、高溫下砂粒熔化形成的玻璃物 (Barrows et al., 2019)。

        4 展望

        全球發(fā)現(xiàn)的隕石坑都集中在歐美發(fā)達(dá)國(guó)家(Chabou,2019; Flamini et al., 2019)。北京以北的冀蒙交界的內(nèi)蒙多倫地區(qū),有一個(gè)超大規(guī)模的圓形地貌,這個(gè)坑具有同心環(huán)狀的 “波脊丘” ,直徑為170 km的外環(huán)和直徑為70 km的內(nèi)環(huán);太湖是否為隕石坑仍然在研究中。到本文發(fā)稿時(shí)間為止,錄入世界數(shù)據(jù)庫(kù)的在中國(guó)境內(nèi)發(fā)現(xiàn)的只有岫巖隕石坑(Chen Ming et al., 2011; Earth Impact Database, 2021)。

        Mazrouei 等 (2019) 團(tuán)隊(duì)嚴(yán)格檢驗(yàn)世界隕石數(shù)據(jù)庫(kù)中每個(gè)隕石坑形成的年代數(shù)據(jù),試圖從統(tǒng)計(jì)中找出隕石群體襲擊地球的年代段,如果他們的工作有突破性進(jìn)展,將做出對(duì)隕石學(xué)和天體學(xué)有意義的貢獻(xiàn)。Pickersgill 等 (2019) 共計(jì)364位多學(xué)科的科學(xué)家團(tuán)隊(duì),大規(guī)模開(kāi)展美國(guó)和墨西哥邊境上的Chicxulub隕石坑的全面研究。目前他們已經(jīng)發(fā)現(xiàn)造成Chicxulub隕石坑的隕石的沖擊還觸發(fā)了巖漿熱液活動(dòng)。這可能與加拿大的Sudbury隕石—火成巖復(fù)合構(gòu)造相似。

        Stewart(2011)估算地球上約有多于714座(大于2.5 km直徑的約有228座)的隕石坑有待發(fā)現(xiàn)。隕石砸在地球的位置應(yīng)當(dāng)是到處都有可能,而70%落入海中,是無(wú)法找到的(Hergarten and Kenkmann, 2015)。最近在國(guó)土面積小于中國(guó)云南省(39萬(wàn) km2)的芬蘭(33萬(wàn) km2)也發(fā)現(xiàn)了隕石坑(Plado et al., 2018), 這對(duì)中國(guó)地質(zhì)學(xué)家是個(gè)激勵(lì)。需要指出的是最初認(rèn)識(shí)隕石坑并不需要完整的證據(jù)鏈,從上面一些世界隕石坑的發(fā)現(xiàn)來(lái)看,從最初懷疑到完善證據(jù)是幾十年中一代又一代地質(zhì)人逐步實(shí)現(xiàn)的。中國(guó)境內(nèi)隕石坑的發(fā)現(xiàn)方興未艾,期待中國(guó)地質(zhì)學(xué)工作者為全人類隕石坑研究做出中國(guó)貢獻(xiàn)。

        生活水平的提高也促進(jìn)了許多地學(xué)愛(ài)好者收集殘留隕石,推動(dòng)了地質(zhì)學(xué)對(duì)隕石坑的研究。發(fā)現(xiàn)隕石、匯集包括發(fā)現(xiàn)地和種類、建立全球數(shù)據(jù)庫(kù)、讓全世界科學(xué)家分享數(shù)據(jù)是全球地質(zhì)科學(xué)家的責(zé)任,這些數(shù)據(jù)的收集整理和研究無(wú)疑促進(jìn)了更多隕石坑的發(fā)現(xiàn)。

        致謝: 與吳思本先生進(jìn)行了有益的討論, 審稿專家提出了寶貴的修改意見(jiàn), 特致謝意。

        參 考 文 獻(xiàn)/References

        (The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)

        丁毅,吳云霞,李繼成,郝志平,戴濤杰, 2019. 內(nèi)蒙卓資縣瑪珥火山口群的發(fā)現(xiàn)和意義. 地質(zhì)論評(píng),65(6):1431~1434.

        王若柏,何肇雄,萬(wàn)文妮,高培芝,李愛(ài)榮.2004.一種特殊的地貌現(xiàn)象——碟形洼地群及其成因的探索. 地質(zhì)論評(píng),50(4):391~396.

        云金表,寧飛,宋海明.2019.新疆南部皮山北環(huán)形構(gòu)造——古隕石撞擊的記錄. 地質(zhì)論評(píng),65(1):16~25.

        Afanasiev V, Pokhilenko N, Eliseev A, Gromilov S, Ugapieva S, Senyut V. 2019. Impact diamonds: Types, properties and uses. In: 14th International Congress for Applied Mineralogy (ICAM2019): 179~182.

        Alvarez L W, Alvarez W, Asaro F, Michel H V. 1980. Extraterrestrial cause for the Cretaceous—Tertiary extinction. Science, 208 (4448): 1095~1108;

        Doi: 10.1126/science.208.4448.1095

        Artemieva N A. 2006. Size and velocity of Canyon Diablo meteorite —— models comparison (abstract). Meteoritics and Planetary Science, 41: A17.

        Baratoux D and Barringer D M. 1910. Meteor Crater (formerly called Coon Mountain or Coon Butte) in northern central Arizona. Paper presented at the National Academy of Sciences, Princeton University, Nov. 16, 1909:1~24.

        Barringer B. 1964. Daniel Moreau Barringer (1860~1929) and his crater (the beginning of the Crater Branch of Meteorites). Meteoritics, 2: 183~199.

        Barrows T T, Magee J, Miller G, Fifield L K. 2019. The age of Wolfe Creek meteorite crater (Kandimalal), Western Australia. Meteoritics and Planetary Science, 54:2686~2697.

        Bjornerud M G. 1998. Superimposed deformation in seconds: Breccias from the impact structure at Kentland, Indiana (USA). Tectonophysics, 290(3~4): 259~269.

        Brugger J, Feulner G, Petri S. 2017. Baby, it’s cold outside: climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophysical Research Letters, 44:419~427.

        Buchanan P C and Reimold W U. 2002. Planar deformation features and impact glass in inclusions from the Veredefort Granophyre, South Africa. Meteoritics and Planetary Science, 37: 807~822.

        Burgess S D, Muirhead J D, Bowring S A. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications, 8:164.

        Cavosie A J. 2018. The enduring mystery of Australasian tektites. Elements, 14:212~213.

        Chabou M C. 2019. Meteorite impact structures in the Arab World: An Overview. In: Bendaoud A et al. eds. The Geology of the Arab World——An Overview. Switzerland: Springer: 455~506.

        Chao E C T, Fahey J J, Littler J, Milton D J. 1962. Stishovite, SiO2, a very high-pressure new mineral from Meteor Crater, Arizona. Journal of Geophysical Research, 67: 419~421.

        Chao E C T, Shoemaker E M, Madsen B M. 1960. First natural occurrence of coesite. Science, 132(3421): 220~222.

        Chennaoui A H, El Kerni H, Reimold, W U, Baratoux D, Koeberl C, Bouley S, Aoudjehane M. 2016. The Agoudal (high Atlas Mountains, Morocco) shatter cone conundrum: A recent meteorite fall onto the remnant of an impact site. Meteoritics and Planetary Science, 51:1497~1518.

        Chen Ming, Koeberl, C, Xiao Wansheng, Xie Xiande, Tan Dayong. 2011. Planar deformation features in quartz from impact-produced polymict breccia of the Xiuyan Crater, China. Meteoritics and Planetary Science, 46:729~736.

        Claeys P, Kiessling W, Alvarez W. 2002. Distribution of Chicxulub ejecta at the Cretaceous—Tertiary boundary. In: Koeberl C and Macleod K G. eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America Special Papers, 356: 55~68.

        Cluston M J, Brown D E, Tanner L H. 2018. Distal processes and effects of multiple Late Triassic terrestrial bolide impacts: Insights from the Norian Manicouagan event, northeastern Quebec, Canada. In: Tanner T H. ed. The Late Triassic World. Switzerland: Springer: 127~187.

        Clyde W C, Ramezani J, Johnson K R, Bowring S A, Jones M M. 2016. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth and Planetary Science Letters, 452:272~280.

        Cohen A J, Bunch T E, Reid A M. 1961. Coesite discoveries establish cryptovolcanics as fossil meterorite craters. Science, 134(3490): 1624~1625.

        Cohen B E, Mark D F, Lee M R, Simpson S L. 2017. A new high-precision40Ar/39Ar age for the Rochechouart impact structure: at least 5 Ma older than the Triassic—Jurassic boundary. Meteoritics and Planetary Science, 52:1600~1611.

        Connors M, Hildebrand R A, Pilkington M, Ortiz-aleman C, Chavez R E, Urrutia-fucugauchi J, Graniel-castro E, Camarazi A, Vasquez J, and Halpenny J F. 1996. Yucatán karst features and the size of Chicxulub Crater. Geophysical Journal International, 127: F11~F14.

        Crosta A P, Reimold W U, Vasconcelos M A R, Hauser N, Oliveira, G J G, Maziviero M V, Goes A M. 2019. Impact cratering: The South American record——part 1. Geochemistry, 79(1):1~61.

        Dewing K, Pratt B R, Hadlari T, Brent T Bedard J, Rainbird R H. 2013. Newly identified “Tunnunik” impact structure, Prince Albert Peninsula, northwestern Victoria Island, Arctic Canada. Meteoritics and Planetary Science, 48(2):211~223.

        Dietz R S. 1947. Meteorite impact suggested by the orientation of shatter cones at the Kentland, Indiana disturbance. Science, 105: 42~43;

        Doi: 10.1126/science.105.2715.42

        Dietz R S. 1960. Meteorite impact suggested by shatter cones in rock. Science, 131(3416): 1781~1784.

        Ding Yi, Wu Yunxia, Li Jicheng, Hao Zhiping, Dai Taojie. 2019&. Discovery and significance of Maars in Zhuozi County, Inner Mongolia. Geological Review, 65(6):1431~1434.

        Earth Impact Database. 2021. Data online retrieved on 2021-02-23 from www.passc.net/EarthImpactDatabase/. University of New Brunswick, Fredericton, Canada.

        Erickson T M, Cavosie A J, Moser D E, Barker I R, Radovan H A, Wooden J. 2013. Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa, using SEM and SHRIMP—RG techniques. Geochimica et Cosmochimica Acta, 107: 170~188.

        Erickson T M, Timms N E, Kirkland C I, Tohver E, Cavosie A J, Pearce M A, Reddy S M. 2017. Shocked monazite chronometry: Integrating microstructural and in situ isotopic age data for determining precise impact ages. Contributions to Mineralogy and Petrology, 172:11

        Evans S C, Elmore R D, Dennie D, Dulin S A. 2012. Remagnetization of the Alamo Breccia, Nevada. Geological Society, London, Special Publications, 371: 145~162;

        Doi: 10.1144/SP371.8.

        Fahey J J. 1964. Recovery of coesite and stishovite from Coconino sandstone of Meteor Crater, Arizona. American Mineralogist, 49: 1643~1647.

        Ferriere L, Morrow J R, Amgaa T, Koeberl C. 2009. Systematic study of universal-stage measurements of planar deformation features in shocked quartz: Implications for statistical significance and representation of results, Meteoritics and Planetary Science, 44(6): 925~940;

        Doi: 10.1111/j.1945-5100.2009.tb00778.x

        Ferriere L, Osinski G R. 2012. Shock metamorphism. In: Osinski G R and Pierazzo E. eds. Impact Cratering: Processes and Products. Chichester, UK: John Wiley & Sons, Ltd.

        Flamini E, Di Martino M, Coletta A. 2019. Encyclopedic Atlas of Terrestrial Impact Craters. Switzerland: Springer: 1~606.

        Folco L, Glass B P, D’orazio M, Rochette P. 2018. Australasian microtektites: impactor identification using Cr, Co and Ni ratios. Geochimica et Cosmochimica Acta, 222:550~568.

        French B M, Koeberl C. 2010. The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews, 98(1~2):123~170.

        French B M, Mckay R M, Liu H P, Briggs D E, Witzke B J. 2018. The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact. Geological Society of America Bulletin, 130(11~12);

        Doi: 10.1130/B31925.1

        Grieve R A F,Reimold W U, Morgan J, Riller U, Pilkington M. 2008. Observations and interpretations at Vredefort, Sudbury, and Chicxulub: Towards an empirical model of terrestrial impact basin formation. Meteoritics and Planetary Science, 43: 855~882.

        Gulick S P S, Christeson G L, Barton P J, Grieve R F, Morgan J, Urrutia-fucugauchi J. 2013. Geophysical characterization of the Chicxulub impact crater. Reviews of Geophysics: 51: 31~52;

        Doi: 10.1002/rog.200

        Hergarten S, Kenkmann T. 2015. The number of impact craters on Earth: Any room for further discoveries. Earth and Planetary Science Letter, 425:187~192.

        Jourdan F, Nomade S, Wingate M T, Eroglu E, Deino A. 2019. Ultraprecise age and formation temperature of the Australasian tektites constrained by40Ar/39Ar analyses. Meteoritics and Planetary Science, 19;

        Doi: 10.1111/maps.13305. 54: 2573~2591.

        Keith A M, Tapanila L, Bottenberg H C. 2013. Lithologic mapping of the Alamo impact in the Reveille Range, Nevada. Journal of the Idaho Academy of Science, 49(1): 59.

        Kenkmann T. 2002. Folding within seconds. Geology, 30(3):231~234.

        Kring D A. 2017. Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater): 2nd edition. Lunar and Planetary Institute, Houston TX: 1~270; LPI Contribution No. 2040.

        Kring D A, Claeys P, Gulick S P S, Morgan J V, Collins G S. 2017. Chicxulub and the Exploration of Large Peak—Ring Impact Craters through Scientific Drilling. GSA Today, 27 (10): 4~8;

        Doi: 10.1130/GSATG352A.1

        Krot A N, Keil K, Scott E R D, Goodrich C A, Weisberg M K. 2007. “Classification of Meteorites”. In: Holland H D, Turekian K K. eds. Treatise on Geochemistry: 1. London: Elsevier Ltd.: 83~128; DOI:10.1016/B0-08-043751-6/01062-8. ISBN 978-0-08-043751-4

        Lenauer I, Riller U. 2012. Strain fabric evolution within and near deformed igneous sheets: The Sudbury Igneous Complex, Canada. Tectonophysics, 558~559: 45 ~57;

        Doi: 10.1016/j.tecto.2012.06.021

        Lepaulard C, Gattacceca J, Swanson-hysell N, Quesnel Y, Demory F,Osinski G R. 2019. A Paleozoic age for the Tunnunik impact structure. Meteoritics and Planetary Science, 54:740~751.

        Lowery C M, Bralower T J, Owens J D, Rodriguez-tovar F J, Jones H, Smit J, Whalen M T, Claeys P H, Farley K, Gulick S P, Morgan J V. 2018. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 558:288~291;

        Doi: 10.1038/s41586-018-0163-6

        Maclagan E, Walton E L, Herd C D K, Dence M. 2018. Investigation of impact melt in allochthonous crater fill deposits of the Steen River impact structure, Alberta, Canada. Meteoritics and Planetary Science, 53:2285~2305.

        Mazrouei S, Ghent R R, Bottke W F, Parker A H,Gernon T M. 2019. Earth and Moon impactux increased at the end of the Paleozoic. Science, 363:253~257.

        Mcgregor M, Mcfarlane C R M, Spray J G. 2018. In situ LA-ICP-MS apatite and zircon U-Pb geochronology of the Nicholson Lake impact structure, Canada: shock and related thermal effects. Earth and Planetary Science Letter, 504:185~197.

        Morgan J, Gulick S, Bralower T, Chenot E, Christen G, Claeys P H, Cockell C, Collins G, Coolen M, Ferrie`re L, Gebhardt C, Goto K, Jones H, Kring D, Le Ber E, Lofi J, Long X, Lowery C, Mellet C, Ocampo-torres R, Osinski G, Perez-cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-vieyra M, Riller U, Sato H, Schmitt D, Smit J, Tikoo-schantz S, Tomioka N, Fucugauchi J U, Whalen M, Wittmann A, Yamaguchi K, Zylberman W. 2016. The formation of peak rings in large impact craters. Science, 354:878~882.

        Mougel B, Moynier F, Gopel C, Koeberl C. 2017. Chromium isotope evidence in ejecta deposits for the nature of Paleoproterozoic impactors. Earth and Planetary Science Letter, 460:105~111.

        Mougel B, MoynierF, Koeberl C, Wielandt D, Bizzarro M. 2019. Identification of a meteoritic component using chromium isotopic composition of impact rocks from the Lonar impact structure, India. Meteoritics and Planetary Science, 54:2592~2599.

        O’Neill C, Heine C. 2005. Reconstructing the Wolfe Creek meteorite impact: deep structure of the crater and effects on target rock. Australian Journal of Earth Sciences, 52: 699~709.

        Osinski G R, Ferriere L. 2016. Shatter cones: (Mis)understood? Science Advances, 2(8): e1600616; http://DOI.org/10.1126/sciadv.1600616.

        Pinto J, Warme J. 2007. Alamo Event, Nevada: Crater stratigraphy and impact breccia Realms. Geological Society of America Special Papers, 437: 99~137;

        Doi: 10.1130/2008.2437(07)

        Plado J, Hietala S, Kreitsmann T, Lerssi J, Nenonen J, Pesonen L J. 2018. Summanen, a new meteorite impact structure in Central Finland. Meteoritics and Planetary Science, 53:2413~2426.

        Pickersgill A E, Christou E, Mark D F, Lee M R, Tremblay M M, Rasmussen C, Morgan J V, Gulick S P S, Schmieder M, Bach W, Osinski G R, Simpson S L, Kring D A, Cockell C C, Collins G S, Christeson G L, Tikoo S M, Stockli D F, Ross C, Wittmann A, Swindle T D, the Expedition 364 Scientists. 2019. Six million years of hydrothermal activity at Chicxulub? [abstract 5082]. In: Large Meteorite Impacts VI, 2019, Brazil, LPI Contribution No. 2136. Lunar and Planetary Institute, Houston, TX.

        Poole F G, Sandberg C A. 2015. Unusual central Nevada geologic terranes produced by Late Devonian Antler Orogeny and Alamo Impact. Geological Society of America Special Papers, 517; ISBN: 978-0-8137-2517-8;

        Doi: 10.1130/9780813725178

        Regan R D, Hinze W J. 1975. Gravity and magnetic investigations of Meteor crater, Arizona. Journal of Geophysical Research, 80: 776~778.

        Reimold W U, Ferriere L, Deutsch A, Koeberl C. 2014. Impact controversies: Impact recognition criteria and related issues. Meteoritics and Planetary Science, 49: 723~731;

        Doi: 10.1111/maps.12284.

        Reimold W U, Hauser N, Crosta A P. 2018. The impact record of southwest Gondwana. In: Siegesmund S et al. eds. Geology of Southwest Gondwana. Switzerland: Springer: 677~688.

        Renne P R, Arenillas I, Arz J A, Vajda V, Gilabert V, Bermudez H D. 2018. Multi-proxy record of the Chicxulub impact at the Cretaceous—Paleogene boundary from Gorgonilla Island, Colombia. Geology, 46:547~550.

        Richards M A, Alvarez W, Self S, Karlstrom L, Renne P R, Manga M, Sprain C J, Smit J, Vanderkluysen L, Gibson S A. 2015. Triggering of the largest Deccan eruptions by the Chicxulub impact. GSA Bull., 127:1507~1520.

        Schmidt G. 1997. Clues to the nature of the impacting bodies from platinum-group elements (Rhenium and gold) in borehole samples from the Clearwater East crater (Canada) and the Boltysh impact crater (Ukraine). Meteoritics and Planetary Science, 32(6):761~767;

        Doi: 10.1111/j.1945-5100. 1997. tb01566.x

        Schaller M F, Fung M K. 2018.The extraterrestrial impact evidence at the Palaeocene—Eocene boundary and sequence of environmental change on the continental shelf. Philosophical Transactions of the Royal Society A, 376:20170081.

        Schmieder M, Shaulis B J, Lapen T J, Buchner E, Kring D A. 2019. In situ U-Pb analysis of shocked zircon from the Charlevoix impact structure, Quebec, Canada. Meteoritics and Planetary Science, 54:1808~1827.

        Stepinski T F, Ding Wei, Vilalta R. 2012. Detecting Impact Craters in Planetary Images Using Machine Learning[OL]. Http//: www.researchgate.com; DOI:10.4018/978-1-4666-1806-0.ch008

        Stewart S A. 2011. Estimates of yet-to-find impact crater population on earth. Journal of the Geological Society, London, 168(1): 1~14;

        Doi: 10.1144/0016-76492010-006.

        St?ffler D, Artemieva N A, Pierazzo E. 2002. Modeling the Ries—Steinheim impact event and the formation of the moldavite—strewn field. Meteoritics and Planetary Science, 37:1893~1907.

        St?ffler D, Grieve R A F. 2007. Impactites: Chapter 2.11. In: Fettes D and Desmons J. eds. Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences. Cambridge: Cambridge University Press.

        Tagle R and Hecht L. 2006. Geochemical identification of projectiles in impact rocks. Meteoritics and Planetary Science, 41(11): 1721~1735.

        Visible Earth. 2021. Data online retrieved on 2021-03-31 from https://visibleearth.nasa.gov/images/82517/dune-movement-around-aorounga. NASA.

        Walton E L, Sharp T G, Hu J, Tschauner O. 2018. Investigating the response of biotite to impact metamorphism: Examples from the Steen River impact structure, Canada[J][OL]. Meteoritics and Planetary Science, 53(1): 75~92; Http://dx.DOI.org/10.1111/maps.13011

        Wang Guangxu, Zhan Renbin, Percival I G. 2019. The end Ordovician mass extinction: A single-pulse event? Earth-Science Reviews, 192:15~33.

        Wang Ruobai, He Zhaoxiong, Wan Wenni, Gao Peizhi, Li Airong. 2004&. A special landform: Dish-shaped pit groups and their genesis. Geological Review,50(4):391~396.

        Watters T R, Solomon S C, Robinson M S, Head J W, Andre S L, Hauck II S A, Murchie S L. 2009. The tectonics of Mercury: The view after MESSENGER’s first flyby. Earth and Planetary Science Letters, 285: 283~296.

        Weisberg M K, McCoy T J, Krot A N. 2006. Systematics and evaluation of meteorite classification. In: Lauretta D S and McSween H Y Jr. eds. Meteorites and the Early Solar System II. Tucson: University of Arizona Press: 19~52.

        Wilshire H, Howard K, Offield T. 1971. Impact breccias in carbonate rocks, Sierra Madera, Texas. Geological Society of America Bulletin, 82: 1009~1018.

        Yun Jinbiao,Ning Fei,Song Haiming. 2019&. Ring structure of northern Pishan in the southern Xinjiang: Record from meteorite impact. Geological Review,65(1):16~25.

        色视频线观看在线网站| 亚洲av色香蕉第一区二区三区| 中文字幕日本在线乱码| 亚洲精品乱码久久久久久| 精品9e精品视频在线观看| 91在线精品老司机免费播放| 久久久婷婷综合五月天| 最近更新中文字幕一区二区| av免费网址在线观看| 日韩精品无码一区二区三区视频| 亚洲中文欧美日韩在线| 亚洲激情视频在线观看a五月| 久久精品第九区免费观看| 国产精品无码a∨精品影院| 久久频这里精品99香蕉| 美女射精视频在线观看| 蜜臀av在线观看| 色一情一区二| 亚洲AV无码乱码一区二区三区| 综合亚洲二区三区四区在线| 国产又爽又大又黄a片| 精精国产xxxx视频在线| 99热久久只有这里是精品| 亚洲国产精品国自产拍性色 | 日本高清一区二区在线播放| 欧美激情一区二区三区成人 | 国产一区二区亚洲av| 国产免费人成视频网站在线18| 天天狠天天添日日拍| 亚洲色欲在线播放一区| 亚洲老女人区一区二视频| 亚洲国产色一区二区三区| 亚洲小说区图片区另类春色| 99JK无码免费| 国产女人精品一区二区三区| 国产精品三级av及在线观看 | 中文字幕日韩高清乱码| 亚洲乱亚洲乱妇| 97色在线视频| 亚洲av综合色区久久精品| 国产精品天干天干|