陸強(qiáng) 鄭燕萍
摘 要:為保證續(xù)駛里程的前提下,提高純電動賽車的動力性能和比賽競爭力,確定賽車整車參數(shù)與動力性能目標(biāo),對電機(jī)、電池和主減速比等動力參數(shù)進(jìn)行設(shè)計(jì)及匹配計(jì)算,通過CRUISE仿真軟件搭建整車模型,并建立75 m直線加速、最高車速與NEDC循環(huán)工況等任務(wù),利用正交試驗(yàn)法,采用三因素三水平對賽車電機(jī)的額定功率、額定轉(zhuǎn)速和傳動比進(jìn)行優(yōu)化組合,運(yùn)用極差分析法對仿真結(jié)果計(jì)算分析,對優(yōu)化后的動力參數(shù)進(jìn)行仿真。優(yōu)化仿真結(jié)果表明:與原設(shè)計(jì)方案相比,賽車的75 m直線加速時(shí)間為3.98 s,縮短了2.926%;最高車速達(dá)到164 km/h,提高了9.342%;最大續(xù)駛里程達(dá)到30.143 km,提高了0.685%。研究結(jié)果表明正交試驗(yàn)法可以對賽車動力參數(shù)優(yōu)化的研究提供一定參考。
關(guān)鍵詞:電動方程式賽車;動力系統(tǒng);參數(shù)匹配;正交試驗(yàn)
中圖分類號:U463.1 ? ?文獻(xiàn)標(biāo)識碼:A ? 文章編號:1006-8023(2021)03-0088-07
Abstract:In order to ensure the continuous driving range on the premise of improving the power performance and competition competitiveness of pure electric racing cars, the vehicle parameters and dynamic performance targets of the racing cars were determined, and the motor, battery, main reduction ratio and other dynamic parameters were designed and matched. The vehicle model was built by Cruise simulation software, and 75 m linear acceleration, top speed with the NEDC cycle conditions were established. Using the orthogonal experiment method, the three factors and three levels of car motor rated power, rated speed and transmission ratio was optimized combination. The range analysis method was used to calculate and analyze the simulation results, and the dynamic parameters after optimization were simulated. The simulation results showed that, compared with the original design scheme, the 75 m linear acceleration time of the race car was 3.98 s, which was shortened by 2.926%. The maximum speed reached 164 km/h, increased by 9.342%. The maximum driving range reached 30.143 km, increased of 0.685%. The research content of this paper shows that the orthogonal test method can provide a certain reference for the research on the optimization of dynamic parameters of racing cars.
Keywords:Electric formula car; power system; parameter matching; orthogonal test
0 引言
電動方程式賽車要求擁有良好的動力性能與經(jīng)濟(jì)性能,能夠完成直線加速、8字環(huán)繞測試、高速避障測試和耐久測試等比賽項(xiàng)目[1]。
在符合賽事規(guī)則的情況下,針對賽車的動力系統(tǒng)進(jìn)行優(yōu)化,可以提高賽車在比賽中的競爭力。趙晟超等[2]利用Optimum Lap搭建賽道模型,對賽車傳動比進(jìn)行優(yōu)化,用CRUISE軟件驗(yàn)證賽車經(jīng)濟(jì)性提高;仝志輝等[3]采用雙電機(jī)布置形式,建立電動方程式賽車模型及循環(huán)工況,使用CRUISE軟件對電動方程式賽車進(jìn)行動力性、經(jīng)濟(jì)性工況仿真分析;佟剛等[4]通過對ADVISOR軟件進(jìn)行二次開發(fā),將前輪驅(qū)動模型改為后輪驅(qū)動模型,并運(yùn)用ADVISOR仿真軟件對電動賽車的動力系統(tǒng)以及續(xù)駛里程進(jìn)行仿真分析;Prochazka等[5]根據(jù)電機(jī)轉(zhuǎn)矩與速度、功率與速度的關(guān)系優(yōu)化傳動比,提高電機(jī)效率。但這些文獻(xiàn)主要是針對賽車的動力電池與傳動比進(jìn)行研究,而動力傳動系統(tǒng)參數(shù)是純電動賽車的關(guān)鍵參數(shù)[6],沒有綜合考慮驅(qū)動電機(jī)的額定功率、額定轉(zhuǎn)速與傳動比對賽車動力性以及經(jīng)濟(jì)性的影響。
本文在確定電動賽車動力系統(tǒng)選型與參數(shù)匹配基礎(chǔ)上,研究利用正交試驗(yàn)法與CRUISE軟件針對驅(qū)動電機(jī)的額定功率、額定轉(zhuǎn)速與傳動比進(jìn)行優(yōu)化組合,實(shí)現(xiàn)賽車動力性能與經(jīng)濟(jì)性能的優(yōu)化。
1 電動方程式賽車動力裝置選型及參數(shù)匹配
目前,國內(nèi)外賽車常用的驅(qū)動布置形式有單電機(jī)后輪驅(qū)動、雙電機(jī)后輪驅(qū)動、一體式電機(jī)驅(qū)動與四輪電機(jī)驅(qū)動等。由于單電機(jī)后輪驅(qū)動布置結(jié)構(gòu)簡單緊湊、整車質(zhì)量輕等優(yōu)點(diǎn),本文采用單電機(jī)后輪驅(qū)動。
1.1 賽車整車參數(shù)及動力性指標(biāo)
純電動賽車動力參數(shù)匹配時(shí),需要考慮部件之間的配合以及能夠滿足賽車的性能需求。賽車的動力性能指標(biāo)決定了動力系統(tǒng)總成、整車動力性能及比賽成績。參考國內(nèi)外賽車的設(shè)計(jì)方案和性能參數(shù)[7],確定電動賽車的整車主要參數(shù)及動力性能指標(biāo),見表1。
2.3 確定優(yōu)化組合方案
根據(jù)表6結(jié)果,最終確定的匹配方案為電機(jī)的額定功率為32 kW,額定轉(zhuǎn)速為3 000 r/min,主減速器傳動比為4.96。
將確定的優(yōu)化組合輸入整車模型進(jìn)行仿真,對比優(yōu)化前后的仿真結(jié)果,75 m直線加速如圖2和圖3所示,最高車速如圖4和圖5示??梢钥闯觯瑑?yōu)化后賽車的動力性能有所改善,75 m直線加速時(shí)間比優(yōu)化前提高了2.926%,其最高車速比優(yōu)化前提高了9.342%,賽車的續(xù)駛里程也有一定的提高,相比之前提高了0.685%。優(yōu)化前后評價(jià)指標(biāo)對比見表7。
相比優(yōu)化前,賽車最大加速度略有增大,前期以較大加速度行駛的時(shí)間段變長,后期加速度減小幅度變緩,賽車加速性能得到增強(qiáng)。優(yōu)化前后的賽車性能均滿足設(shè)計(jì)目標(biāo),在額定轉(zhuǎn)速不變的情況下,額定功率的提高使峰值轉(zhuǎn)矩得到提高,這使賽車起步加速性能增強(qiáng)。賽車主減速器傳動比大小會影響整車的動力性能,傳動比過大,則最高車速變小,高速路段時(shí)間增加。傳動比過小,則加速度變小,加速性能下降。優(yōu)化后,賽車的傳動比減小,最高車速提高了,但額定功率的增加使賽車加速性能沒有太大影響,賽車動力性能和經(jīng)濟(jì)性能都有提高,使賽車的動力參數(shù)得到優(yōu)化組合。
3 結(jié)論
本文首先依據(jù)純電動賽車的設(shè)計(jì)目標(biāo),對賽車的動力裝置參數(shù)進(jìn)行匹配,在確定賽車的動力裝置參數(shù)后,通過正交試驗(yàn)法將賽車的額定功率、額定轉(zhuǎn)速與主減速器傳動比進(jìn)行正交試驗(yàn),得到優(yōu)化的組合方案。試驗(yàn)仿真結(jié)果表明:正交試驗(yàn)法可以明顯改善賽車的性能,優(yōu)化后賽車的75 m直線加速時(shí)間為3.98 s,最高車速達(dá)到164 km/h,最大續(xù)駛里程達(dá)到30.143 km。因此,將正交試驗(yàn)法應(yīng)用于賽車的動力裝置參數(shù)優(yōu)化匹配方案,可以提高賽車動力性能和比賽時(shí)的競爭力。
【參 考 文 獻(xiàn)】
[1]田哲文,袁曉東,劉易斯,等.電動方程式賽車傳動系統(tǒng)的設(shè)計(jì)與仿真[J].汽車科技,2016,44(4):34-38.
TIAN Z W, YUAN X D, LIU Y S, et al. Power-train design and simulation of electric formula car[J]. Automobile Science & Technology, 2016, 44(4):34-38.
[2]趙晟超, 朱利靜, 陳浩, 等. 純電動賽車動力系統(tǒng)匹配優(yōu)化與仿真[J]. 計(jì)算機(jī)仿真, 2019, 36(1):187-191.
ZHAO S C, ZHU L J, CHEN H, et al. Optimal matching of power system and simulation for electric racing car[J]. Computer Simulation, 2019, 36(1):187-191.
[3]仝志輝,吳全君,游遠(yuǎn)翔.電動方程式賽車雙電機(jī)動力系統(tǒng)設(shè)計(jì)與仿真[J].現(xiàn)代電子技術(shù),2019,42(15):139-143.
TONG Z H, WU Q J, YOU Y X. Design and simulation of dual-motor power system for electric formula racing car[J]. Modern Electronics Technique, 2019, 42(15):139-143.
[4]佟剛,關(guān)健.基于ADVISOR的FSEC賽車動力系統(tǒng)參數(shù)設(shè)計(jì)[J].沈陽航空航天大學(xué)學(xué)報(bào),2017,34(2):38-43.
TONG G, GUAN J. Parameter design of power system for FSEC vehicle based on ADVISOR software[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2017, 34(2):38-43.
[5]PROCHAZKA P, PAZDERA I, VOREL P, et al. Design of small electric car[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, IEEE, Italy, 2012.
[6]李勝琴,于博.基于CRUISE的純電動汽車動力參數(shù)匹配設(shè)計(jì)及仿真[J].森林工程,2019,35(1):80-86.
LI S Q, YU B. Matching design and simulation for power train parameter of pure electric vehicle based on CRUISE[J]. Forest Engineering, 2019, 35(1):80-86.
[7]鄧家奇. FSAE純電動賽車動力匹配及試驗(yàn)研究[D]. 西安:長安大學(xué), 2016.
DENG J Q. FSAE electric racing power system matching and experimental research[D]. Xian: Changan University, 2016.
[8]王智超.電動汽車動力系統(tǒng)參數(shù)匹配及優(yōu)化分析研究[D].西安:西安科技大學(xué),2018.
WANG Z C. Research on parameter matching and optimization of power system of electric vehicle[D]. Xian: Xian University of Science and Technology, 2018.
[9]孫嵩松,萬茂松,徐曉美.不同臨界距離法在曲軸疲勞特性預(yù)測中的對比研究[J].機(jī)械強(qiáng)度,2020,42(2):431-436.
SONG S S,WAN M S, XU X M. A comparative stud-y of the application of different TCD in crankshaft fatigue property prediction[J]. Journal of Mechanical Strength, 2020, 42(2): 431-436.
[10]余志生.汽車?yán)碚揫M].北京:機(jī)械工業(yè)出版,2019:2-90.
YU Z S. Automotive theory[M]. Beijing: China Machine Press, 2019.
[11]崔淑華,遲云超.某純電動轎車動力系統(tǒng)匹配設(shè)計(jì)及CRUISE仿真研究[J].森林工程,2018,34(2):65-69.
CUI S H, CHI Y C. Research on power system matching and simulation of pure electric vehicle based on CRUISE[J]. Forest Engineering, 2018, 34(2):65-69.
[12]王標(biāo).基于電池模型的汽車鉛酸電池SOC在線估計(jì)方法研究[D].合肥:合肥工業(yè)大學(xué),2015.
WANG B. Research on SOC estimation method of automotive lead-acid battery based on battery model[D]. Hefei: Hefei University of Technology, 2015.
[13]REN Q, CROLLA D A, MORRIS A. Effect of geared transmissions on electric vehicle drivetrains [C]// ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, 2009.
[14]葛曹鵬,徐曉美,朱中輝.基于COMSOL的某輕型貨車排氣消聲器設(shè)計(jì)[J].制造業(yè)自動化,2019,41(8):29-31.
GE C P, XU X M, ZHU Z H. Design of exhaust muffler for the light truck based on COMSOL[J]. Manufacturing Automation, 2019, 41(8): 29-31.
[15]高瓊,田軍.正交設(shè)計(jì)法在環(huán)保型橡膠瀝青試驗(yàn)配比中的應(yīng)用研究[J].公路工程,2019,44(6):115-118.
GAO Q, TIAN J. Study on the application of orthogonal design method in the matching of environmental protection rubber asphalt test[J]. Highway Engineering, 2019, 44(6):115-118.
[16]謝頡,張文光,尹雪樂,等.基于正交試驗(yàn)方法的柔性神經(jīng)電極優(yōu)化設(shè)計(jì)[J].上海交通大學(xué)學(xué)報(bào),2020,54(8):785-791.
XIE J, ZHANG W G, YIN X L, et al. Optimization design of flexible neural electrodes based on orthogonal experimental method[J]. Journal of Shanghai JiaoTong University, 2020, 54(8):785-791.
[17]張?jiān)3?,高坤明,路艷玲,等.基于正交試驗(yàn)法整定主動懸架PID控制器參數(shù)[J].山東理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,35(1):63-68.
ZHANG Y C, GAO K M, LU Y L, et al. PID controller parameters of active suspension are adjusted based on orthogonal test method[J]. Journal of Shandong University of Technology (Natural Science Edition), 2021, ?35(1):63-68.
[18]田杰,胡晨,湯李建,等.主動四輪轉(zhuǎn)向車輛的分層控制[J].機(jī)械設(shè)計(jì),2018,35(4):47-54.
TIAN J, HU C, TANG L J, et al. Hierarchical control research on active 4WS vehicle[J]. Journal of Machine Design, 2018, 35(4): 47-54.