亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Auslander Categories and Free Normalizing Extensions

        2021-07-05 07:12:22

        (School of Mathematics and Physics,Anhui University of Technology,Maanshan 243032,China)

        Abstract:Let RCS be a semidualizing(R,S)-bimodule.Then RCS induces an equivalent between the Auslander class AC(S)and the Bass class BC(R).Let A and B be free normalizing extensions of R and S respectively.In this paper,we prove that HomS(BBS,RCS)is a semidualizing(A,B)-bimodule under some suitable conditions,and so HomS(BBS,RCS)induces an equivalence between the Auslander class and the Bass class Furthermore,under a suitable condition onRCS,we develop a generalized Morita theory for Auslander categories.

        Keywords:Semidualizing module;Auslander class;Excellent extension

        §1.Introduction

        LetRbe a ring.Mod-Rdenotes the category of all rightR-modules,andR-Moddenotes the category of all leftR-modules.

        Over a commutative,noetherian local ring,semidualizing modules provide a common generalization of a dualizing module and a free module of rank one.Foxby[6]first defined them(PG-modules of rank one).In[8],Henric Holm and Diana White extended the definition of semidualizing(S,R)-bimodules,whereRandSare arbitrary associative rings,which are defined as follows:An(R,S)-moduleRCSis semidualizing if

        (a1)RCadmits a degreewise finiteR-projective resolution(i.e.,there exists a resolution···→P1→P0→M→0 where eachPiis finitely generatedR-projective).

        (a2)CSadmits a degreewise finiteSop-projective resolution.

        (b1)The natural homothety mapRRR→HomSop(C,C)is an isomorphism.

        (b2)The natural homothety mapSSS→HomR(C,C)is an isomorphism.

        A semidualizing module over a commutative noetherian ring gives rise two full subcategories of the category ofR-modules,namely the so-called Auslander classAC(R)and Bass classBC(R)defined by Avramov and Foxby[1,6].Semidualizing modules and their Auslander(resp.,Bass)classes have caught the attention of several authors,see for example[1–7].Henric Holm and Diana White also extended the definitions of Auslander classes and Bass classes to non-commutative non-noetherian rings.The Auslander classAC(S)is defined as follows:theAuslander class with respect to C,denoted byACorAC(S),consists of allS-modulesMsatisfying

        (c)The natural mapμCCM:M→HomR(C,C?R M)is an isomorphism.

        We will writeμM=μCCMif there is no confusion.Dually,we can defineBC(R).

        LetRbe commutative and noetherian.Christensen[2]proved that ifψ:R→Sis local and flat,thenCis semidualizing forRif and only ifC?R Sis semidualizing forS.This result is the motivation for our Theorem 2.1.LetSbe a ring and letRbe a subring ofS(with the same 1).Sis called a finite normalizing extension ofRif there exist elementsa1,a2,...an∈Ssuch thatS=aiRwhereaiR=Raifori=1,2,...n.Finite normalizing extensions have been studied in many papers such as[9–15].Sis called a free normalizing extension ofRifS=aiRis a normalizing extension ofRandSis free with basis{a1=1,a2,...,an}as both a rightR-module and a leftR-module.

        LetAandBbe the free normalizing extensions ofRandSrespectively.LetSCRbe a semidualizing(R,S)-bimodule.We get the semidualizing(A,B)-bimodule with respect toRCS.Under a suitable condition onRCS,we develop a generalized Morita theory for Auslander categories.

        §2.Auslander categories and free normalizing extensions

        In this section,we will give our main results.

        Theorem 2.1.Let A=Rai and B=Sbj be left and right free normalizing extensionsof R and S respectively,where each ai centralizes the elements of R and bj centralizes theelements of S.Suppose rijkc=csijk for all c∈C and all i,j,k;where put aiaj=rijhahand bibj=sijhbh.

        (1)If RCS is a bimodule,SEndR(RCS)and R~=EndS(RCS),then

        as ring isomorphism.

        (2)If RCS is a semidualizing(R,S)-bimodule,then Hom(B,RCS)is a semidualizing(A,B)-bimodule,and

        defines an equivalent.

        Proof.(1)See[16],Theorem 1.1.

        (2)First,we shall show thatAHom(BBS,RCS)admits a degreewise finiteA-projective resolution.AsR-modules we haveHom(BBS,RCS).ThenHom(BBS,RCS)has a degreewise finiteR-projective resolution

        ApplyingAAR?R-to(2.1),we get

        where eachAARR P′iis a finitely generated projectiveA-module for alli=0,1,2,···.By(1),Hom(BBS,RCS)is also anA-module.So we define the map

        byε(a?f)(b)=Clearlyεis anA-module isomorphism.ThenAHom(BBS,RCS)has a degreewiseA-projective resolution.Similarly,ifRCShas a degreewise finiteS-projective resolution,thenHom(BBS,RCS)has a degreewise finiteB-projective resolution.

        Next,we shall show that

        and

        We only show(Hom(B,RCS),Hom(B,RCS))=0.In fact,everyA-module isRmodule,thus(M,N)=0 implies(M,N)=0.We have

        Then(Hom(BBS,RCS),Hom(BBS,RCS))=0.Hom(BBS,RCS)is a semidualizing(A,B)-bimodule and

        defines an equivalent by[8].

        Corollary 2.1.Let A=Rai be a free normalizing extension of R,where each ai centralizesthe elements of R.Suppose rijkc=crijk for all c∈C and all i,j,k;where put aiaj=.

        If RCR is a semidualizing(R,R)-bimodule,then Hom(A,C)is a semidualizing(A,A)-bimodule,and the following holds for an A-module F:

        In the rest of this section,we shall discuss generalized Auslander classes and extension rings.

        Definition 2.1.Let RCS be an(R,S)(RCS).Define

        Let RCS be an(R,S)-bimodule,and S~=EndR(RCS).Define

        Proposition 2.1.Let RCS be an(R,S)-bimodule with R~=HomS(RCS,RCS)(RCS).

        Then RCS?-:AC(S)BC(R):Hom(RCS,-)defines an equivalence.

        Theorem 2.2.(1)Let RCS be a finitely generated projective S-module,and REndS(RCS).

        Then we have the following adjoint equivalence of categories

        (2)Let RCS be a finitely generated projective S-module,and SEndR(RCS).Then we have the following adjoint equivalence of categories

        Proof.(1)We begin by observing that for anyR-moduleM,the moduleHom(RCS,RM)in fact is an object ofAC(S).Note that,

        Thus,

        We now need to show that the adjoint pair is an equivalence ifRNR-Mod.SinceRCS?S Hom(RCS,RM),the adjoint pair is an equivalence.

        (2)Similar to the proof of(1).

        Remark 2.1.Theorem 2.2 is a variant of Morita theory.If CS is a finitely generated projective generator and REndS(CS),we have that the category of R-modules is equivalent to the category of S-modules over S.Theorem 2.2 states that if CS is a finitely generated projective module,then the category of R-modules is equivalent to the subcategory AC(S)of S-modules.

        Proposition 2.2.Let A=Rai and B=Sbj be left and right free normalizingextensions of R and S respectively,where each ai centralizes the elements of R and bj centralizesthe elements of S.Suppose rijkc=csijk for all c∈C and all i,j,k;where put aiaj=and bibj=

        (1)Let RCS be a finitely generated projective Sop-module,and R~=End(RCS).Then wehave the following adjoint equivalence:

        (2)Let RCS be a finitely generated projective Sop-module,and S~=End(RCS).Then we have the following adjoint equivalence:

        Proof.Note that the proofs of(1)and(2)are similar,so we only show(1).SinceRCSis a finitely generated projectiveS-module,Hom(BBS,RCS)is a finitely generated projectiveB-module.By Theorem 2.1(1),

        Thus,Hom(BBS,RCS)defines an equivalence by Theorem 2.2.

        Acknowledgements

        We are greatly indebted to the anonymous referee for helpful comments and stimulating hints.

        美腿丝袜av在线播放| 国产欧美日韩网站| 亚洲蜜芽在线精品一区| 中文字幕乱码一区在线观看| 久久黄色视频| 先锋影音av最新资源| 亚洲精品黄网在线观看| 亚洲成生人免费av毛片| 人妻久久一区二区三区蜜桃| 午夜毛片不卡免费观看视频 | 亚洲人成综合网站在线| 亚洲一区二区av偷偷| 亚洲av成熟国产一区二区| 国产在线 | 中文| 欧美在线区| 人妻熟女妇av北条麻记三级| 三级国产精品久久久99| 国产又爽又粗又猛的视频| 无码午夜剧场| 国内精品少妇久久精品| 国产精品免费观看调教网| 国产成人精品日本亚洲| 国产v精品成人免费视频400条 | 久久精品中文字幕第一页| 日日高潮夜夜爽高清视频| 国产成人无码精品久久久露脸| 特级毛片a级毛片在线播放www| 国产美女av一区二区三区| 亚洲av成人av三上悠亚| 国产成人精品无码一区二区老年人 | 日韩美女av一区二区| 国产精品亚洲а∨无码播放不卡 | 成l人在线观看线路1| 综合色久七七综合尤物| 午夜一区二区三区在线观看| 极品人妻被黑人中出种子| a级国产乱理论片在线观看| 亚洲AV无码一区二区三区少妇av| 久久精品国产免费一区二区三区| 亚洲热妇无码av在线播放| 一级呦女专区毛片|