張大英,張帥楓,孫慶珍,梁醒培
糧食群倉(cāng)的環(huán)境振動(dòng)測(cè)試和角倉(cāng)邊倉(cāng)振動(dòng)響應(yīng)分析
張大英1,張帥楓1,孫慶珍1,梁醒培2
(1.鄭州航空工業(yè)管理學(xué)院土木建筑學(xué)院,鄭州 450046; 2. 河南工業(yè)大學(xué)土木建筑學(xué)院,鄭州 450001)
為了獲取群倉(cāng)準(zhǔn)確的動(dòng)力特性參數(shù)從而更合理地進(jìn)行群倉(cāng)的抗震設(shè)計(jì),從糧食儲(chǔ)藏工程考慮,對(duì)實(shí)際工程中一組三排五列的糧食群倉(cāng)的振動(dòng)特性進(jìn)行了分析?;诮Y(jié)構(gòu)振動(dòng)理論和有限元數(shù)值分析,考慮結(jié)構(gòu)對(duì)稱性、荷載對(duì)稱性和工程實(shí)際情況,制定了環(huán)境振動(dòng)測(cè)試糧食群倉(cāng)的優(yōu)化方案;利用最小二乘法、五點(diǎn)三次平滑法和數(shù)字濾波的方法對(duì)測(cè)試信號(hào)進(jìn)行了處理,得到了有效的測(cè)點(diǎn)加速度響應(yīng)數(shù)據(jù)?;诳刂评碚摵驼駝?dòng)系統(tǒng)的運(yùn)動(dòng)方程,引入變換矩陣,推導(dǎo)了環(huán)境振動(dòng)下利用測(cè)點(diǎn)加速度響應(yīng)數(shù)據(jù)進(jìn)行糧食群倉(cāng)振型計(jì)算的公式,從而得到前四階振型及對(duì)應(yīng)的頻率,各階振型形態(tài)和模擬結(jié)果相同;前四階頻率計(jì)算值分別為2.28、3.45、6.37、8.26 Hz,對(duì)應(yīng)模擬值分別為2.35、3.56、6.31、8.16 Hz,模擬值與計(jì)算值誤差分別為3.07%、3.19%、0.94%、1.21%。進(jìn)一步對(duì)角倉(cāng)和邊倉(cāng)的振動(dòng)反應(yīng)進(jìn)行分析,結(jié)果發(fā)現(xiàn):兩個(gè)倉(cāng)體的第一階振型均沿著糧食群倉(cāng)整體的短軸方向,以剪切型為主,振型幅值基本一致,相鄰倉(cāng)體間的約束作用對(duì)一階振動(dòng)反應(yīng)幾乎沒有影響;兩個(gè)倉(cāng)體的第二階振型均沿著糧食群倉(cāng)整體的長(zhǎng)軸方向,仍以剪切型為主,但振型幅值不同,邊倉(cāng)小于角倉(cāng);兩個(gè)倉(cāng)體的第三階振型形態(tài)為繞糧食群倉(cāng)整體中心的扭轉(zhuǎn),短軸方向測(cè)點(diǎn)轉(zhuǎn)動(dòng)幅值大于長(zhǎng)軸方向測(cè)點(diǎn);隨著相鄰倉(cāng)體間約束作用增強(qiáng),兩個(gè)倉(cāng)體的第四階振型形態(tài)和振型幅值均不同,角倉(cāng)和邊倉(cāng)呈現(xiàn)不同的振動(dòng)特性,角倉(cāng)上靠近邊倉(cāng)測(cè)點(diǎn)振型以彎曲型為主,振型幅值相對(duì)較小,其他測(cè)點(diǎn)以剪切型或彎剪型為主,振型幅值相對(duì)較大;邊倉(cāng)受相鄰3個(gè)倉(cāng)體的約束作用,測(cè)點(diǎn)振型幅值都較小,而且靠近相鄰倉(cāng)體測(cè)點(diǎn)振型以彎剪型為主,中間列測(cè)點(diǎn)以剪切型為主。研究結(jié)果表明:相鄰倉(cāng)體間的相互約束作用對(duì)二階及以上振型影響較大,根據(jù)振型形態(tài)和振型幅值分組進(jìn)行糧食群倉(cāng)中倉(cāng)體的抗震設(shè)計(jì)更加切合實(shí)際,節(jié)約材料,降低成本。
糧食;糧倉(cāng);振動(dòng);有限元模擬;環(huán)境振動(dòng)測(cè)試
2020年以來,隨著新冠肺炎疫情在海內(nèi)外的蔓延,多國(guó)政府宣布限制糧食出口,因此具有豐厚的糧食儲(chǔ)藏在各國(guó)至關(guān)重要。從目前情況看,政策性庫(kù)存創(chuàng)歷史新高,主產(chǎn)區(qū)普遍高裝滿儲(chǔ),夏糧收購(gòu)面臨一定倉(cāng)容壓力,要通過加快庫(kù)存消化、增加儲(chǔ)糧設(shè)施等措施,確保收購(gòu)順利進(jìn)行[1]。由此看來,在全國(guó)范圍內(nèi)大力建設(shè)糧倉(cāng)是大勢(shì)所趨,是保障國(guó)內(nèi)民生的重要工程。糧食群倉(cāng)由于其倉(cāng)容量大、機(jī)械化程度高、占地面積小等特點(diǎn),是全國(guó)性重要糧食物流節(jié)點(diǎn)中大規(guī)模倉(cāng)儲(chǔ)建設(shè)的主導(dǎo)倉(cāng)型。因此,采用合理的計(jì)算方法進(jìn)行糧食群倉(cāng)設(shè)計(jì)至關(guān)重要,而且從長(zhǎng)遠(yuǎn)來看,作為國(guó)家戰(zhàn)略發(fā)展儲(chǔ)備的糧倉(cāng)應(yīng)能夠抵御如地震等各種自然災(zāi)害。鑒于此,自20世紀(jì)80年代以來,糧倉(cāng)抗震問題便成為最活躍的課題之一,也取得了諸多研究成果。20世紀(jì)90年代,各專家學(xué)者[2-4]主要通過單倉(cāng)模型的地震模擬振動(dòng)臺(tái)試驗(yàn)研究單倉(cāng)的動(dòng)力特性和地震反應(yīng)問題。進(jìn)入21世紀(jì)以后,劉增榮等[5]開始將模態(tài)試驗(yàn)測(cè)試方法應(yīng)用于單倉(cāng)結(jié)構(gòu)中獲得結(jié)構(gòu)的動(dòng)力特性參數(shù);一些專家學(xué)者[6-7]開始對(duì)小規(guī)模群倉(cāng)展開研究,并提出了自振頻率的回歸計(jì)算公式和修正的基底剪力計(jì)算公式;還有一些學(xué)者[8-11]主要研究散料-倉(cāng)壁的動(dòng)力相互作用,發(fā)現(xiàn)地震時(shí)處于彈性地基上的筒倉(cāng)減震效果明顯。隨后,相關(guān)學(xué)者[12-13]進(jìn)行基礎(chǔ)-筒倉(cāng)-散料的動(dòng)力相互作用研究,發(fā)現(xiàn)深倉(cāng)需要考慮兩者的相互作用,同樣驗(yàn)證了彈性地基上筒倉(cāng)結(jié)構(gòu)內(nèi)部受力更合理的研究成果,并給出了考慮三者動(dòng)力相互作用的鋼筋混凝土筒倉(cāng)抗震設(shè)計(jì)方面的一些建議。此外,一些專家學(xué)者主要考慮場(chǎng)地類別和不同地震波輸入下,地基-筒倉(cāng)[14-19]或地基-基礎(chǔ)-筒倉(cāng)[20]動(dòng)力相互作用對(duì)結(jié)構(gòu)體系的影響,研究發(fā)現(xiàn)場(chǎng)地土特性、基礎(chǔ)埋深對(duì)土-結(jié)構(gòu)相互作用影響顯著,結(jié)構(gòu)地震力發(fā)生折減,場(chǎng)地越軟,折減越明顯,結(jié)構(gòu)的位移反應(yīng)增大,且場(chǎng)地越軟增大越顯著。隨著國(guó)際局勢(shì)的變化,考慮到國(guó)家戰(zhàn)略發(fā)展的需要,近年來地下糧倉(cāng)[21-26]的研究和應(yīng)用也在逐步進(jìn)行中,如裝配式技術(shù)和組合結(jié)構(gòu)技術(shù)的新型地下糧倉(cāng)結(jié)構(gòu)設(shè)計(jì)方案的提出,裝配式地下糧倉(cāng)鋼-混組合倉(cāng)壁節(jié)點(diǎn)力學(xué)性能的有限元分析,為地下糧倉(cāng)的進(jìn)一步研究和設(shè)計(jì)應(yīng)用提供了參考。
從目前的研究成果來看,國(guó)內(nèi)外對(duì)糧倉(cāng)的抗震研究體現(xiàn)在多個(gè)方面,而且從早期就開展了糧倉(cāng)動(dòng)力特性參數(shù)的研究,包括地震模擬振動(dòng)臺(tái)試驗(yàn)和環(huán)境激勵(lì)模態(tài)試驗(yàn),但主要是單倉(cāng),并且目前規(guī)范[27]中主要以單倉(cāng)的研究結(jié)果為依據(jù)進(jìn)行群倉(cāng)的結(jié)構(gòu)設(shè)計(jì),過于保守,與實(shí)際情況不相符合,尤其是對(duì)于大規(guī)模群倉(cāng)如果簡(jiǎn)單依據(jù)單倉(cāng)設(shè)計(jì)經(jīng)驗(yàn)則更加不符合實(shí)際。因此,為了實(shí)現(xiàn)糧食群倉(cāng)的抗震優(yōu)化設(shè)計(jì),對(duì)糧食群倉(cāng)進(jìn)行環(huán)境振動(dòng)測(cè)試并分析其振動(dòng)反應(yīng)從而獲得不同位置倉(cāng)體的有效動(dòng)力特性參數(shù),這些參數(shù)是進(jìn)行結(jié)構(gòu)合理抗震設(shè)計(jì)的核心和根本。基于環(huán)境振動(dòng)測(cè)試數(shù)據(jù)進(jìn)行了糧食群倉(cāng)中角倉(cāng)和邊倉(cāng)動(dòng)力特性參數(shù)的理論計(jì)算,并與數(shù)值模擬分析的角倉(cāng)和邊倉(cāng)的振動(dòng)反應(yīng)進(jìn)行細(xì)化對(duì)比分析,明確角倉(cāng)和邊倉(cāng)各自的振動(dòng)反應(yīng)特點(diǎn),指出進(jìn)行群倉(cāng)抗震結(jié)構(gòu)設(shè)計(jì)時(shí)應(yīng)考慮倉(cāng)體所處位置不同所分配地震力的不同,以期優(yōu)化結(jié)構(gòu)設(shè)計(jì),降低工程成本。
圖1所示為進(jìn)行環(huán)境振動(dòng)測(cè)試的糧食群倉(cāng),共有15個(gè)同樣的倉(cāng)體按照三排五列的方式整體澆筑在一起。該糧食群倉(cāng)右側(cè)設(shè)置了一座工作塔,通過連廊與群倉(cāng)上部建筑物相連,經(jīng)過工作塔內(nèi)的電梯到達(dá)群倉(cāng)頂部的倉(cāng)上建筑。從室外地面到糧食群倉(cāng)頂蓋表面的高度為30.5m,筒壁支撐與倉(cāng)身之間的環(huán)梁到糧食群倉(cāng)頂蓋的高度為25 m,倉(cāng)上建筑物高度為4m,頂蓋的厚度為100mm,倉(cāng)壁厚度為180mm,群倉(cāng)內(nèi)半徑為3.82m,外半徑為4 m。試驗(yàn)過程中,每個(gè)倉(cāng)體內(nèi)裝滿小麥,倉(cāng)體之間的星倉(cāng)內(nèi)沒有裝糧。
測(cè)試用到的儀器設(shè)備為江蘇東華測(cè)試技術(shù)有限公司的DH5922型動(dòng)態(tài)信號(hào)采集儀系統(tǒng)和DH610型傳感器,該系統(tǒng)的采樣頻率范圍為10 Hz~128 kHz,使用了DH610型傳感器的加速度檔進(jìn)行糧食群倉(cāng)的加速度數(shù)據(jù)信號(hào)采集。
圖1所示糧食群倉(cāng)結(jié)構(gòu),單個(gè)倉(cāng)體之間在相切處澆筑成整體,根據(jù)結(jié)構(gòu)動(dòng)力學(xué)的相關(guān)知識(shí)并結(jié)合有限元分析結(jié)果,糧食群倉(cāng)的自振特性表現(xiàn)為低階(前三階)整體振動(dòng)反應(yīng)、高階(4階及以上)局部振動(dòng)反應(yīng),即高階時(shí)組成群倉(cāng)的單個(gè)倉(cāng)體的局部振動(dòng)反應(yīng)具有各自的特點(diǎn)。根據(jù)這些特點(diǎn)并考慮群倉(cāng)的對(duì)稱特性和現(xiàn)場(chǎng)操作實(shí)際情況,對(duì)處于群倉(cāng)4個(gè)角的倉(cāng)體(圖2中角倉(cāng)1、角倉(cāng)5、角倉(cāng)11、角倉(cāng)15)、第一列中間位置的倉(cāng)體(圖2中邊倉(cāng)6)、第三排左起第2列(圖2中邊倉(cāng)12)、第3列(圖2中邊倉(cāng)13)倉(cāng)體布置測(cè)點(diǎn)進(jìn)行環(huán)境振動(dòng)測(cè)試。角倉(cāng)1和角倉(cāng)11作為主要研究對(duì)象,測(cè)點(diǎn)布置數(shù)量多;角倉(cāng)5和角倉(cāng)15主要作為角倉(cāng)1和角倉(cāng)11的校核,測(cè)點(diǎn)布置數(shù)量少。邊倉(cāng)12和邊倉(cāng)13作為與角倉(cāng)進(jìn)行高階振動(dòng)反應(yīng)對(duì)比的主要對(duì)象,布置3列測(cè)點(diǎn);邊倉(cāng)6布置1列測(cè)點(diǎn)。
注:C11、C12為參考點(diǎn),C56~C100為其他測(cè)點(diǎn)。圖中單位為mm。
Note: C11 and C12 are reference points, and C56-C100 are the other measuring points. The unit in the plan is mm.
圖2 糧食群倉(cāng)平面圖
Fig.2 Plan of grain group silos
此次振動(dòng)反應(yīng)細(xì)化分析中以角倉(cāng)11和邊倉(cāng)12為主要對(duì)象進(jìn)行分析對(duì)比,兩個(gè)倉(cāng)的測(cè)點(diǎn)平面詳細(xì)位置見圖2,將測(cè)點(diǎn)距地面的高度、采樣批次和所要測(cè)試的加速度方向列于表1,表1的批次代表環(huán)境振動(dòng)測(cè)試時(shí)的采樣批次。由于測(cè)點(diǎn)數(shù)量多,需要分批次進(jìn)行測(cè)試,參考點(diǎn)為1號(hào)角倉(cāng)上的測(cè)點(diǎn)C11和C12,其距地面高度分別為30.5和24.5 m,C11和C12均需要測(cè)試法向和切向加速度。
表1 測(cè)點(diǎn)C56~C100采樣批次及加速度方向
注:R+代表單個(gè)倉(cāng)體自身平面圓的外法線方向;T+代表測(cè)點(diǎn)切向方向,逆時(shí)針為正。
Note: R+ represents the outer normal direction of the plane circle of the single silo; T+ represents the tangential direction of the measuring point and the anticlockwise direction is positive.
對(duì)糧食群倉(cāng)進(jìn)行環(huán)境振動(dòng)測(cè)試,首先通過有限元模擬的方法算得所需要的結(jié)構(gòu)最大頻率max,然后根據(jù)采樣定理的條件f≥2max設(shè)定合適的采樣頻率f,此外,采用濾波器進(jìn)行抗混濾波,設(shè)定上限頻率,消除不在考慮范圍內(nèi)的其他頻率信號(hào)的影響。據(jù)此,測(cè)試時(shí)采樣頻率以100和50 Hz為主,上限頻率設(shè)置為30 Hz進(jìn)行加速度數(shù)據(jù)采集。對(duì)每一批測(cè)點(diǎn)進(jìn)行多次數(shù)據(jù)采集完成后從中選擇無異常突變的采樣數(shù)據(jù)進(jìn)行分析。由于采集得到的振動(dòng)信號(hào)中通常會(huì)疊加有噪聲信號(hào),包括50 Hz的工頻及其倍頻程等周期性的干擾信號(hào),以及不規(guī)則的隨機(jī)干擾信號(hào)。隨機(jī)干擾信號(hào)往往頻帶較寬,有時(shí)高頻成分占比例很大,這樣利用采集的離散數(shù)據(jù)描繪成的振動(dòng)曲線上會(huì)呈現(xiàn)出許多毛刺,很不光滑。為了消除上述干擾信號(hào)的影響,提高振動(dòng)曲線光滑度,因此還需對(duì)采樣數(shù)據(jù)進(jìn)行平滑處理。此外,數(shù)據(jù)平滑還可以消除信號(hào)的不規(guī)則趨勢(shì)項(xiàng),這些不規(guī)則趨勢(shì)項(xiàng)通常是由于測(cè)試儀器受到某些意外干擾,造成個(gè)別測(cè)點(diǎn)的采樣信號(hào)產(chǎn)生偏離基線較大而產(chǎn)生的,對(duì)數(shù)據(jù)進(jìn)行多次平滑處理后,得到一條光滑的趨勢(shì)項(xiàng)曲線,用原始信號(hào)減去趨勢(shì)項(xiàng),可以消除信號(hào)的不規(guī)則趨勢(shì)項(xiàng)。五點(diǎn)三次平滑法[28]是進(jìn)行時(shí)域和頻域信號(hào)平滑處理的一種有效方法,其利用最小二乘法原理對(duì)離散數(shù)據(jù)進(jìn)行三次最小二乘多項(xiàng)式平滑,能夠減少時(shí)域數(shù)據(jù)中混入振動(dòng)信號(hào)的高頻隨機(jī)噪聲。但是需要注意平滑次數(shù)的確定,可以通過多次試算后最終確定平滑次數(shù)的數(shù)值,防止平滑次數(shù)太多導(dǎo)致識(shí)別參數(shù)誤差增大。通過多次試算,本文確定平滑次數(shù)為3。
通過自功率譜分析,預(yù)估每次采樣的頻率變化范圍,利用低通數(shù)字濾波的方式濾除不感興趣或干擾頻率。通過消除多項(xiàng)式和不規(guī)則趨勢(shì)項(xiàng),以及平滑曲線的方法將高頻干擾信號(hào)剔除。經(jīng)過上述信號(hào)預(yù)處理就可以得到有效的加速度響應(yīng)數(shù)據(jù)。
圖3a截取了第三批測(cè)試中第一次采樣的參考點(diǎn)C11在時(shí)間段0~81.91 s之間的加速度數(shù)據(jù)作為示例進(jìn)行分析。利用最小二乘法消除多項(xiàng)式趨勢(shì)項(xiàng),再利用五點(diǎn)三次平滑法和數(shù)字濾波方式對(duì)曲線進(jìn)行處理得到圖3b所示的測(cè)點(diǎn)C11加速度曲線。比較圖3a、b可以看出,經(jīng)過數(shù)據(jù)處理后,加速度曲線幅值較原始曲線幅值降低,而且曲線更加平滑。
根據(jù)自由度為的振動(dòng)系統(tǒng)的運(yùn)動(dòng)方程式:
式中、和為結(jié)構(gòu)質(zhì)量、阻尼和剛度矩陣;()為連續(xù)時(shí)間上的位移向量;()為激勵(lì)力向量。
根據(jù)控制理論,將運(yùn)動(dòng)方程式(1)進(jìn)行轉(zhuǎn)換,得到離散時(shí)間上的狀態(tài)空間模型表達(dá)式:
式中+1和為時(shí)刻的狀態(tài)輸入和輸出向量;為離散時(shí)間上的狀態(tài)矩陣;2為輸出矩陣;和為過程噪聲和測(cè)量噪聲。
利用所測(cè)得的加速度數(shù)據(jù)信號(hào)構(gòu)建Hankel矩陣(以下稱矩陣)[29],并進(jìn)行QR分解[30]。
同樣方式得到:
將系統(tǒng)矩陣進(jìn)行特征值分解,求解得到特征值和特征向量,進(jìn)一步地求解連續(xù)時(shí)間上的系統(tǒng)矩陣(=exp(Δ),Δ為時(shí)間間隔)的特征值和特征向量,公式如下:
計(jì)算得到原系統(tǒng)的復(fù)模態(tài)振型矩陣:
=2(11)
式中代表系統(tǒng)的階數(shù)。
實(shí)際測(cè)試時(shí)所得到的結(jié)構(gòu)模態(tài)數(shù)目通常小于結(jié)構(gòu)自由度和結(jié)構(gòu)上的測(cè)點(diǎn)數(shù)目,所以需要對(duì)公式(13)進(jìn)行變換:
式中為所能測(cè)得的模態(tài)的數(shù)目;Re{}為振型實(shí)部。
再利用變換矩陣,得到原系統(tǒng)的實(shí)模態(tài)振型如下
根據(jù)振型計(jì)算理論,定義式(19)所示的判定準(zhǔn)則,以頻率為橫軸,系統(tǒng)階數(shù)為縱軸,系統(tǒng)階數(shù)依次取2、4、6、8…max(一個(gè)較大值,通過多次試算確定),判斷頻率、阻尼或振型是否滿足該判定準(zhǔn)則,如果滿足則將對(duì)應(yīng)頻率、阻尼和振型的符號(hào)描繪于圖中,當(dāng)三者都滿足時(shí),設(shè)置穩(wěn)定極點(diǎn)符號(hào),并描繪于圖中,由此描繪的圖形為穩(wěn)定圖。對(duì)應(yīng)某一頻率處的穩(wěn)定極點(diǎn)符號(hào)描繪成一條“豎直線”,稱為穩(wěn)定極值線,根據(jù)穩(wěn)定極值線可以確定系統(tǒng)的各階頻率值。
滿足式(19)的判定準(zhǔn)則,繪制R向和T向各批次測(cè)點(diǎn)的穩(wěn)定圖如圖4所示,同時(shí)將各測(cè)點(diǎn)的自功率譜疊加曲線繪制于圖中,利用曲線峰值和穩(wěn)定極值線共同判定系統(tǒng)的頻率值。
注:“·f”代表頻率穩(wěn)定,“·fv”代表頻率和振型穩(wěn)定,“·f z”代表頻率和阻尼比穩(wěn)定,“*”代表穩(wěn)定極點(diǎn)。
Note: ‘·f ’ represents stable frequency, ‘·fv ’ represents stable frequency and mode shape, ‘·fz ’ represents stable frequency and damping ratio, and ‘ * ’ represents stable poles.
圖4 測(cè)點(diǎn)穩(wěn)定圖
Fig.4 Stabilization diagram of the measuring points
根據(jù)穩(wěn)定圖4,確定系統(tǒng)的前四階頻率值,分別為2.28、3.45、6.37和8.26 Hz。根據(jù)上述振型計(jì)算理論,將對(duì)應(yīng)頻率代入可以得到對(duì)應(yīng)的前四階振型。將糧食群倉(cāng)中所有測(cè)試每個(gè)倉(cāng)體的R向和T向的各批次加速度數(shù)據(jù)分批獨(dú)立進(jìn)行分析,基于參考點(diǎn)進(jìn)行歸一化處理后作出相應(yīng)的振型圖。由于糧食群倉(cāng)為實(shí)際工程結(jié)構(gòu),根據(jù)實(shí)際情況布設(shè)的測(cè)點(diǎn)數(shù)目有限,因此不能類似數(shù)值模擬方式針對(duì)每個(gè)倉(cāng)體繪制連續(xù)完整的振型圖,但是可以根據(jù)測(cè)試數(shù)據(jù)利用上述的理論方法求解各個(gè)測(cè)點(diǎn)的振型值,并繪制出單列測(cè)點(diǎn)和同一高度處一環(huán)測(cè)點(diǎn)的振型曲線,并與數(shù)值模擬相應(yīng)位置處的振型曲線進(jìn)行對(duì)比分析。
3.2.1 參數(shù)和構(gòu)件單元類型定義
不考慮各個(gè)倉(cāng)體內(nèi)的小麥對(duì)糧食群倉(cāng)整體的剛度貢獻(xiàn)作用,將小麥質(zhì)量均勻地離散分布到倉(cāng)壁內(nèi)表面的各個(gè)節(jié)點(diǎn)上。材料參數(shù)列于表2中。糧食群倉(cāng)中倉(cāng)頂蓋、倉(cāng)壁、漏斗、內(nèi)柱均采用SOLID45單元,小麥采用MASS21單元。
表2 材料參數(shù)
3.2.2 數(shù)值結(jié)果
有限元分析得到的糧食群倉(cāng)的前四階頻率值分別為2.35、3.56、6.31和8.16 Hz,與前述3.1節(jié)識(shí)別得到的頻率值比較接近,各階頻率值誤差分別為3.07%、3.19%、0.94%、1.21%。
糧食群倉(cāng)的前四階振型見圖5,第1階振型主要呈現(xiàn)為糧食群倉(cāng)整體沿短軸方向的剪切變形,倉(cāng)體上部振動(dòng)反應(yīng)大于下部;第2階振型主要呈現(xiàn)為糧食群倉(cāng)整體沿長(zhǎng)軸方向的剪切變形,兩列短軸方向的邊倉(cāng)上部振動(dòng)反應(yīng)明顯大于其他倉(cāng)體;第3階振型主要呈現(xiàn)為糧食群倉(cāng)整體沿中心點(diǎn)的扭轉(zhuǎn)變形,而且4個(gè)角倉(cāng)上部振動(dòng)反應(yīng)較其他倉(cāng)體更加明顯;第4階振型主要呈現(xiàn)為各個(gè)倉(cāng)體的局部振動(dòng)反應(yīng),而且不同位置倉(cāng)體的振動(dòng)反應(yīng)不同。
根據(jù)圖5所示糧食群倉(cāng)整體振型數(shù)值云圖可以看出,當(dāng)倉(cāng)體內(nèi)儲(chǔ)糧對(duì)稱時(shí),振型具有軸對(duì)稱特性。為了深入分析不同位置倉(cāng)體振動(dòng)反應(yīng)的差異性,對(duì)圖2中11號(hào)角倉(cāng)和12號(hào)邊倉(cāng)進(jìn)行細(xì)化分析。
將11號(hào)角倉(cāng)上測(cè)點(diǎn)C71~C75和12號(hào)邊倉(cāng)上測(cè)點(diǎn)C91~C95的R向前三階振型立面繪制于圖6中。11號(hào)角倉(cāng)和12號(hào)邊倉(cāng)不同高度處的測(cè)點(diǎn)第四階振型平面圖和立面圖分別繪制于圖7和圖8中。
圖6a第1階振型,為沿著圖2所示軸方向即糧食群倉(cāng)整體的短軸方向的振動(dòng)反應(yīng),11號(hào)角倉(cāng)和12號(hào)邊倉(cāng)的振型模擬值基本一樣,它們的振型試驗(yàn)值也基本一樣,兩者的模擬值均大于試驗(yàn)值。當(dāng)產(chǎn)生向糧食群倉(cāng)整體短軸方向的振動(dòng)反應(yīng)時(shí),角倉(cāng)和邊倉(cāng)所處位置不同,但受相鄰倉(cāng)體的約束程度相差不大,因此振型幅值差異不大。
圖6b第2階振型,為沿著圖2所示軸方向即糧食群倉(cāng)整體的長(zhǎng)軸方向的振動(dòng)反應(yīng),11號(hào)角倉(cāng)試驗(yàn)值和模擬值曲線吻合良好,曲線的變化形態(tài)近似剪切型,從倉(cāng)體下部到倉(cāng)體上部振型幅值由小變大;12號(hào)邊倉(cāng)試驗(yàn)值和模擬值曲線吻合良好,曲線的變化形態(tài)亦近似剪切型,與角倉(cāng)一致,但邊倉(cāng)振型幅值略小于角倉(cāng),靠近倉(cāng)體頂部振型幅值較倉(cāng)體下部減小更多。主要是由于兩者在糧食群倉(cāng)整體中的位置不同引起,邊倉(cāng)與其周邊三個(gè)倉(cāng)體有相互約束作用,角倉(cāng)處于糧食群倉(cāng)的角部,受相鄰倉(cāng)體的約束程度明顯低于邊倉(cāng)。
觀察圖6c第3階振型,11號(hào)角倉(cāng)上測(cè)點(diǎn)C60~C56沿著切向(向)振型幅值明顯大于該角倉(cāng)上測(cè)點(diǎn)C75~C71和12號(hào)邊倉(cāng)上測(cè)點(diǎn)C95~C91沿著切向(向)的振型幅值,主要是由于測(cè)點(diǎn)C60~C56位于糧食群倉(cāng)整體短軸方向,振動(dòng)反應(yīng)更明顯,而測(cè)點(diǎn)C75~C71和測(cè)點(diǎn)C95~C91位于糧食群倉(cāng)整體長(zhǎng)軸方向,振動(dòng)反應(yīng)相對(duì)短軸方向弱??傮w描述這三列測(cè)點(diǎn)的振動(dòng)反應(yīng)呈現(xiàn)扭轉(zhuǎn)形態(tài),與圖5c所示的糧食群倉(cāng)整體的扭轉(zhuǎn)振型相一致。
圖7給出了11號(hào)角倉(cāng)和12號(hào)邊倉(cāng)上距地面高度分別為5.5、15.5、19.5、24.5和30.5 m處的測(cè)點(diǎn)第4階振型平面圖。分析圖7a,11號(hào)角倉(cāng)各高度處測(cè)點(diǎn)振型試驗(yàn)值與模擬值吻合較好,振動(dòng)反應(yīng)形態(tài)一致;高度為5.5 m處各測(cè)點(diǎn)R向振型幅值差異不大,高度為15.5、19.5和24.5 m處角倉(cāng)外部?jī)蓚€(gè)測(cè)點(diǎn)向著R+方向振動(dòng),靠近邊倉(cāng)方向的四個(gè)測(cè)點(diǎn)向著R-方向振動(dòng),靠近12號(hào)邊倉(cāng)的測(cè)點(diǎn)振型幅值較其他位置小,高度為30.5 m處測(cè)點(diǎn)振動(dòng)反應(yīng)形態(tài)與倉(cāng)體中部三環(huán)測(cè)點(diǎn)相似,但是振型幅值較小,主要是由于糧食群倉(cāng)頂部有倉(cāng)上建筑,對(duì)倉(cāng)頂部影響較其他位置大。分析圖7b,12號(hào)邊倉(cāng)各高度處測(cè)點(diǎn)振型試驗(yàn)值與模擬值吻合較好,振動(dòng)反應(yīng)形態(tài)一致;各高度處測(cè)點(diǎn)振型幅值差異較小,但邊倉(cāng)振型平面與角倉(cāng)振型平面不同,大致呈現(xiàn)為中間測(cè)點(diǎn)和兩側(cè)測(cè)點(diǎn)振型相反的趨勢(shì),進(jìn)一步說明了倉(cāng)體所處位置不同,則振動(dòng)反應(yīng)會(huì)有所不同。
注:振型模擬值和試驗(yàn)值以角倉(cāng)或邊倉(cāng)曲線為基準(zhǔn)向內(nèi)外振動(dòng);和代表倉(cāng)體的對(duì)稱軸。
Note: The simulated and experimental vibration mode based on the corner or side silo;andrepresent the axis of symmetry of the silo.
圖7 角倉(cāng)和邊倉(cāng)不同高度處振型平面圖
Fig.7 Plan of vibration mode of the corner and side silos at different heights
圖8為11號(hào)角倉(cāng)和12號(hào)邊倉(cāng)每列測(cè)點(diǎn)第4階振型立面圖。角倉(cāng)立面振型和邊倉(cāng)立面振型形態(tài)不同,各列測(cè)點(diǎn)振型試驗(yàn)值和模擬值吻合較好。
分析圖8a,靠近角倉(cāng)外部的四列測(cè)點(diǎn)的振型形態(tài)以彎剪型為主,倉(cāng)體中部振型幅值大、上部次之、下部最小;靠近邊倉(cāng)的兩列測(cè)點(diǎn)的振型幅值相對(duì)較小,而且離邊倉(cāng)最近的那一列測(cè)點(diǎn)的振型幅值最小,振型以彎曲型為主,另一列測(cè)點(diǎn)振型以剪切型為主;靠近角倉(cāng)外部的兩列測(cè)點(diǎn)振動(dòng)反應(yīng)沿著R+方向,另四列測(cè)點(diǎn)振動(dòng)反應(yīng)沿著R-方向。分析圖8b,邊倉(cāng)各列測(cè)點(diǎn)振型幅值相對(duì)較小,中間列測(cè)點(diǎn)振型形態(tài)以剪切型為主,另兩列測(cè)點(diǎn)振型形態(tài)以彎剪型為主;各列測(cè)點(diǎn)的振型幅值也大致呈現(xiàn)為中部幅值大、上部次之、下部最小的規(guī)律;靠近角倉(cāng)的那一列測(cè)點(diǎn)的幅值相對(duì)更小。角倉(cāng)和邊倉(cāng)的第四階振型立面圖更進(jìn)一步說明了角倉(cāng)和邊倉(cāng)在糧食群倉(cāng)中的位置不同引起了不同的相互約束作用,從而對(duì)各倉(cāng)體振動(dòng)反應(yīng)產(chǎn)生不同影響。
1)闡述了環(huán)境振動(dòng)下利用測(cè)點(diǎn)加速度響應(yīng)數(shù)據(jù)進(jìn)行糧食群倉(cāng)振型的理論計(jì)算方法,考慮到結(jié)構(gòu)模態(tài)數(shù)目通常小于結(jié)構(gòu)實(shí)際的自由度和結(jié)構(gòu)上的測(cè)點(diǎn)數(shù)目,通過對(duì)振型實(shí)部進(jìn)行SVD分解,得到變換矩陣后將復(fù)模態(tài)振型矩陣變換為實(shí)模態(tài)振型矩陣,得到了測(cè)點(diǎn)的有效振型。
2)針對(duì)糧食群倉(cāng)典型位置的倉(cāng)體進(jìn)行了測(cè)點(diǎn)布置,利用試驗(yàn)獲得的加速度響應(yīng)數(shù)據(jù)計(jì)算得到倉(cāng)體前四階振型和頻率,頻率值分別為2.28、3.45、6.37和8.26 Hz;利用有限元方法對(duì)糧食群倉(cāng)進(jìn)行了數(shù)值模擬,得到了群倉(cāng)整體以及各個(gè)倉(cāng)體的前四階振型和頻率,頻率值分別為2.35、3.56、6.31和8.16 Hz;兩者所得各階振型形狀相同,頻率值接近,各階頻率值誤差分別為3.07%、3.19%、0.94%、1.21%。
3)對(duì)糧食群倉(cāng)第一排的一個(gè)角倉(cāng)和一個(gè)邊倉(cāng)測(cè)點(diǎn)振型的試驗(yàn)值和模擬值進(jìn)行了振動(dòng)響應(yīng)分析,振型形狀相同;角倉(cāng)和邊倉(cāng)第一階振型形態(tài)和幅值基本一致,沒有明顯的差異性,說明此階振型中倉(cāng)體之間的相互約束作用不明顯;角倉(cāng)和邊倉(cāng)第二、三階振型形態(tài)一致,但振型幅值不同,說明倉(cāng)體之間的相互約束作用因倉(cāng)體所處位置不同而不同;角倉(cāng)和邊倉(cāng)第四階振型形態(tài)和振型幅值均不同,說明隨著振型階數(shù)的增加,倉(cāng)體所受相鄰倉(cāng)體的約束作用更加明顯,而且處于不同位置倉(cāng)體受約束作用的程度明顯不同。
根據(jù)上述結(jié)論,利用不利倉(cāng)體的內(nèi)力和振型進(jìn)行糧食群倉(cāng)整體抗震結(jié)構(gòu)設(shè)計(jì)顯得保守,并在一定程度上會(huì)浪費(fèi)材料,群倉(cāng)規(guī)模越大此種方法越不盡合理。將倉(cāng)體在糧食群倉(cāng)中因位置不同而受到相鄰倉(cāng)體約束作用不同的特性加以考慮,根據(jù)振型形態(tài)和幅值大小將倉(cāng)體分成不同組進(jìn)行抗震結(jié)構(gòu)設(shè)計(jì),則更加符合各倉(cāng)體的實(shí)際力學(xué)特性,而且能夠在保證受力合理的基礎(chǔ)上節(jié)約材料,降低工程成本。
[1] 夏青. 大國(guó)糧倉(cāng)[J]. 農(nóng)經(jīng),2020(5):34-39.
Xia Qing. Barn of great power[J]. Agriculture Economics, 2020(5): 34-39. (in Chinese with English abstract)
[2] 施衛(wèi)星,朱伯龍. 鋼筋混凝土圓形筒倉(cāng)地震反應(yīng)試驗(yàn)研究[J]. 特種結(jié)構(gòu),1994,11(4):55-58.
Shi Weixing, Zhu Bolong. The experimental study of earthquake response of R. C. cylinder silos[J]. Special Structures, 1994, 11(4): 55-58. (in Chinese with English abstract)
[3] 馬建勛,梅占馨. 筒倉(cāng)在地震作用下的計(jì)算理論[J]. 土木工程學(xué)報(bào),1997,30(1):25-30.
Ma Jianxun, Mei Zhanxin. Study on calculating theory of seismic response of silos[J]. China Civil Engineering Journal, 1997, 30(1): 25-30. (in Chinese with English abstract)
[4] 徐榮光,胡聲松. 圓筒倉(cāng)的自由振動(dòng)[J]. 噪聲與振動(dòng),1999(2):18-20.
Xu Rongguang, Hu Shengsong. The free vibration of the cylinder silos[J]. Noise and Vibration Control, 1999(2): 18-20. (in Chinese with English abstract)
[5] 劉增榮,黃義. 貯倉(cāng)結(jié)構(gòu)參數(shù)的頻域識(shí)別[J]. 振動(dòng)與沖擊,2001,20(1):79-81.
Liu Zengrong, Huang Yi. Frequency domain identification of storehouse structure parameters[J]. Journal of Vibration and Shock, 2001, 20(1): 79-81. (in Chinese with English abstract)
[6] 王命平,孫芳,高立堂,等. 筒承式群倉(cāng)的地震作用分析及試驗(yàn)研究[J]. 工業(yè)建筑,2005,35(10):29-32.
Wang Mingping, Sun Fang, Gao Litang, et al. Study of earthquake action and tests of multi-silo supported by cylinder[J]. Industrial Construction, 2005, 35(10): 29-32. (in Chinese with English abstract)
[7] 滕鍇,王命平,耿樹江. 筒承式群倉(cāng)有限元分析及自振基頻的簡(jiǎn)化計(jì)算[J]. 特種結(jié)構(gòu),2006,23(4):34-36.
Teng Kai, Wang Mingping, Geng Shujiang. Finite element analysis and simplified calculation of natural vibration fundamental frequency of group silos[J]. Special Structures, 2006, 23(4): 34-36. (in Chinese with English abstract)
[8] Nateghi F, Yakhchalian M. Seismic behavior of silos with different height to diameter ratios considering granular material structural interaction[J]. IJE Transaction B:Applications, 2012, 25(1): 27-37.
[9] Zhang P, Zhao Y. Seismic behavior of steel silos considering granular material-structure interaction: Research advances and natural vibration property analysis[J]. Spatial Structures, 2014, 20(3): 88-96.
[10] Jagtapa P, Chakrabortya T, Matsagara V. Nonlinear dynamic behavior of granular materials in base excited silos[J]. Mechanics of Advanced Materials and Structures, 2015, 22(4): 313-323.
[11] Nateghi F, Yakhchalian M. Seismic behavior of reinforced concrete silos considering granular material-structure interaction[J]. Procedia Engineering, 2011, 14: 3050-3058.
[12] 黃義,尹冠生. 考慮地基-結(jié)構(gòu)-散粒體相互作用時(shí)貯倉(cāng)結(jié)構(gòu)的靜動(dòng)力研究[I]:實(shí)驗(yàn)研究[J]. 應(yīng)用力學(xué)學(xué)報(bào),2002,19(3):40-45.
Huang Yi, Yin Guansheng. Silo's static and dynamic testing study on considering the interaction of foundation, structure and bulk Solid—[I] Static and dynamic testing study[J]. Chinese Journal of Applied Mechanics, 2002, 19(3): 40-45. (in Chinese with English abstract)
[13] 黃義,尹冠生. 考慮地基-結(jié)構(gòu)-散粒體相互作用時(shí)貯倉(cāng)結(jié)構(gòu)的靜動(dòng)力研究[II]:有限元分析[J]. 應(yīng)用力學(xué)學(xué)報(bào),2003,20(2):124-128.
Huang Yi, Yin Guansheng. Silo's static and dynamic testing study on considering the interaction of foundation, structure and bulk Solid—[II] FEM study[J]. Chinese Journal of Applied Mechanics, 2003, 20(2): 124-128. (in Chinese with English abstract)
[14] 王瑞萍. 筒承式筒倉(cāng)和地基相互作用的地震反應(yīng)分析[D]. 青島:青島建筑工程學(xué)院,2003.
Wang Ruiping. Seismic Response Analysis of the Interaction Between Silo and Foundation[D]. Qingdao: Qingdao University of Technology, 2003. (in Chinese with English abstract)
[15] 曹彩芹,黃義,劉彤,等. 大型筒倉(cāng)與地基動(dòng)力相互作用研究[J]. 空間結(jié)構(gòu),2004,10(4):57-59.
Cao Caiqin, Huang Yi, Liu Tong, et al. Dynamics analysis of interaction between large silo structure and its foundation[J]. Spatial Structures, 2004, 10(4): 57-59. (in Chinese with English abstract)
[16] Durmu? A, Livaoglu R. A simplified 3 D.O.F. model of a FEM model for seismic analysis of a silo containing elastic material accounting for soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 1-14.
[17] 王命平,孫芳,劉偉,等. 筒倉(cāng)與地基相互作用對(duì)支承柱端彎矩的影響[J]. 世界地震工程,2008,24(2):127-130.
Wang Mingping, Sun Fang, Liu Wei, et al. The effect of the silo-foundation interaction on the moment of supporting columns[J]. World Earthquake Engineering, 2008, 24(2): 127-130. (in Chinese with English abstract)
[18] 賈明明. 考慮土-結(jié)構(gòu)相互作用預(yù)應(yīng)力混凝土筒倉(cāng)地震反應(yīng)分析[D]. 西安:西安建筑科技大學(xué),2015.
Jia Mingming. Seismic Response Analysis of the Prestressed Concrete Silo Considering Soil-structure Interaction[D]. Xi'an: Xi'an University of Architecture and Technology, 2015. (in Chinese with English abstract)
[19] Zhang K, Chen T N, He L. Damping behaviors of granular particles in a vertically vibrated closed container[J]. Powder Technology, 2017, 321: 173-179.
[20] 馬瑞挺,孟云芳. 考慮倉(cāng)壁-基礎(chǔ)-地基相互作用時(shí)筒倉(cāng)結(jié)構(gòu)的有限元分析[J]. 寧夏工程技術(shù),2012,11(2):145-147.
Ma Ruiting, Meng Yunfang. Finite element analysis of silo considering the interaction of wall-basis-foundation[J]. Ningxia Engineering Technology, 2012, 11(2): 145-147. (in Chinese with English abstract)
[21] 王振清,揣君,劉永超,等. 地下糧倉(cāng)的結(jié)構(gòu)設(shè)計(jì)研究現(xiàn)狀與新進(jìn)展[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2019,40(5):132-138.
Wang Zhenqing, Chuai Jun, Liu Yongchao, et al. Current situation and new progresses of structure design of underground silos[J]. Journal of Henan University of Technology: Natural Science Edition, 2019, 40(5): 132-138. (in Chinese with English abstract)
[22] 張慶章,田栓柱,賈玲玲,等. 新型散裝糧食半地下平房倉(cāng)的自振特性及地震響應(yīng)分析[J]. 工程抗震與加固改造,2020,42(4):31-39.
Zhang Qingzhang, Tian Shuanzhu, Jia Lingling, et al. Natural vibration characteristics and seismic response analysis of a new type of semi-underground horizontal warehouse to storage bulk grain[J]. Earthquake Resistant Engineering and Retrofitting, 2020, 42(4): 31-39. (in Chinese with English abstract)
[23] 王振清,揣君,王錄民,等. 裝配式地下糧倉(cāng)鋼-混組合倉(cāng)壁節(jié)點(diǎn)力學(xué)性能有限元分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(24):298-306.
Wang Zhenqing, Chuai Jun, Wang Lumin, et al. Finite element analysis on mechanical properties of joint in precast steel plate-concrete composite wall of underground granary[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 298-306. (in Chinese with English abstract)
[24] 金立兵,梁新亞,霍承鼎,等. 地下混凝土筒倉(cāng)倉(cāng)壁力學(xué)性能工程試驗(yàn)與數(shù)值分析[J]. 土木與環(huán)境工程學(xué)報(bào)(中英文),2020,42(3):40-45.
Jin Libing, Liang Xinya, Huo Chengding, et al. Engineering test and numerical analysis of underground concrete silo[J]. Journal of Civil and Environmental Engineering, 2020, 42(3): 40-45. (in Chinese with English abstract)
[25] 揣君,王錄民,何毅,等. 地下圓形糧倉(cāng)鋼板-混凝土組合倉(cāng)壁彈性應(yīng)力計(jì)算公式推導(dǎo)與驗(yàn)證[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2021,42(1):108-113,123.
Chuai Jun, Wang Lumin, He Yi, et al. Derivation and verification of the formula for calculating the elastic stress of steel plateconcrete composite wall of underground silo[J]. Journal of Henan University of Technology: Natural Science Edition, 2021, 42(1): 108-113, 123. (in Chinese with English abstract)
[26] 張昊,孟慶婷,陶元慶,等. 地下糧倉(cāng)塑料-混凝土防水體系抗水壓試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):292-299.
Zhang Hao, Meng Qingting, Tao Yuanqing, et al. Experiment on water pressure resistance of plastic-concrete waterproof system of underground granary[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 292-299. (in Chinese with English abstract)
[27] 鋼筋混凝土筒倉(cāng)設(shè)計(jì)標(biāo)準(zhǔn):GB50077-2017[S]. 北京:中國(guó)計(jì)劃出版社,2017.
[28] 王濟(jì),胡曉. MATLAB在振動(dòng)信號(hào)處理中的應(yīng)用[M].北京:中國(guó)水利水電出版社,2006.
[29] 張大英,王錄民,王樹明. 一種獲取結(jié)構(gòu)實(shí)模態(tài)振型的方法[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2014,22(2):375-383.
Zhang Daying, Wang Lumin, Wang Shuming. An improved method for the determination of real vibration mode shapes[J]. Journal of Basic Science and Engineering, 2014, 22(2): 375-383.(in Chinese with English abstract)
[30] 楊明,劉先忠. 矩陣論(第二版)[M]. 武漢:華中科技大學(xué)出版社,2005.
[31] Overschee P V, Moor B D. Subspace Identification for Linear Systems: Theory-Implementation-Application[M]. Dordrecht, Netherlands: Springer, 1996.
Ambient vibration test of grain group silos and vibration response analysis of the corner and side silos
Zhang Daying1, Zhang Shuaifeng1, Sun Qingzhen1, Liang Xingpei2
(1.,,450046,; 2.,,450001,)
Accurate dynamic parameters are essential to more reasonably design grain group silos under earthquake action. In this study, the vibration characteristics of large-scale grain silos were analyzed, considering 15 silos in three rows and five columns in a grain storage project. The specific procedure was as follows: 1) A feasible optimization scheme was proposed for the ambient vibration test of grain group silos using structural vibration and finite element method (FEM), together with the structural and load symmetry in the actual engineering condition. 2) The measuring points were drawn in the corner silo (No. 11) and the side silo (No. 12), and then the point elevation and orientation were all listed in the tables. The acceleration signals of measuring points were obtained after the test. The least square, five-point three-smoothing, and digital filtering were then used to efficiently process the measured data. 3) The mode shapes of grain group silos were derived using control theory and motion equation of vibration via the acceleration data and transformation matrix. The first four mode shapes and frequencies were calculated to draw for the corner silo (No. 11) and the side silo (No. 12). The results demonstrated that the mode shapes were all the same. In the first four mode frequencies, the calculated values were 2.28, 3.45, 6.37 and 8.26 Hz, respectively, and the simulated values were 2.35, 3.56, 6.31 and 8.16 Hz with an error of 3.07%, 3.19%, 0.94%, and 1.21%, respectively. In the vibration responses of the corner silo (No. 11) and the side silo (No. 12), the first mode shapes of the two silos were all along the short axis direction of the whole grain silos with the same shear deformation and the same amplitude, indicating that there was little effect of adjacent silos on the first vibration response. The second mode shapes of two silos were all along the long axis direction of whole grain silos with the same shear deformation but a different amplitude. The constraint effect among the corner silo (No. 11) and the adjacent silos was weaker than that of the side silo (No. 12) and the adjacent silos. Therefore, the vibration amplitude of the former was larger than that of the latter. The third mode shapes of two silos were torsion shapes around the center of grain group silos, while, the rotational amplitude of the measuring point in the short-axis direction was greater than that in the long-axis direction. The fourth mode shapes of the two silos were significantly different, due to different interactions among the corner silo (No. 11) and the adjacent silos and that of the side silo (No. 12) and the adjacent silos. Bending mode shapes of the measuring points of the corner silo (No. 11) near the side silo, and the amplitudes were relatively small, but the other points were mainly shear or flexural shear mode shapes, and the amplitudes were relatively larger. The reason was that three adjacent silos constrained the side silo (No. 12) to the small amplitudes. Bend-shear mode shapes were found in the measuring points near the adjacent silos, but the points of the middle column were mainly shear mode shapes. Each silo in the grain group silos represented different interactions with the adjacent silos at the measuring positions, indicating a significant impact on the second order and above modes. A seismic design of grain group silos can be expected to divide into several parts for better materials cost-saving, according to the shape and amplitude of vibration mode.
grain; silos; vibration; finite element method; ambient vibration test
2020-11-09
2021-03-19
國(guó)家自然科學(xué)基金資助項(xiàng)目(51808511);2019 年度河南省高等學(xué)校青年骨干教師培養(yǎng)計(jì)劃項(xiàng)目(2019GGJS173);河南省2018年科技發(fā)展計(jì)劃項(xiàng)目(182102110288);河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(19A560026)
張大英,博士,副教授,研究方向?yàn)榧Z倉(cāng)結(jié)構(gòu)動(dòng)力問題計(jì)算、測(cè)試與分析。Email:daying803@126.com
10.11975/j.issn.1002-6819.2021.07.033
TU317+.2
A
1002-6819(2021)-07-0268-10
張大英,張帥楓,孫慶珍,等. 糧食群倉(cāng)的環(huán)境振動(dòng)測(cè)試和角倉(cāng)邊倉(cāng)振動(dòng)響應(yīng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):268-277. doi:10.11975/j.issn.1002-6819.2021.07.033 http://www.tcsae.org
Zhang Daying, Zhang Shuaifeng, Sun Qingzhen, et al. Ambient vibration test of grain group silos and vibration response analysis of the corner and side silos[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 268-277. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.033 http://www.tcsae.org