亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        冷藏設(shè)備防除冰表面非連續(xù)特征設(shè)計(jì)與試驗(yàn)

        2021-06-30 01:09:04陳奕穎任露泉金敬福陳廷坤

        陳奕穎,叢 茜,2,任露泉,2,金敬福,陳廷坤,2

        ·農(nóng)產(chǎn)品加工工程·

        冷藏設(shè)備防除冰表面非連續(xù)特征設(shè)計(jì)與試驗(yàn)

        陳奕穎1,叢 茜1,2,任露泉1,2,金敬福1,陳廷坤1,2※

        (1.吉林大學(xué)生物與農(nóng)業(yè)工程學(xué)院,長(zhǎng)春 130022;2.吉林大學(xué)工程仿生教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130022)

        蒸發(fā)器、換熱器等冷藏設(shè)備表面形成覆冰時(shí),影響設(shè)備的正常運(yùn)行及農(nóng)副產(chǎn)品的儲(chǔ)藏品質(zhì)。為了減小冰黏附對(duì)冷藏設(shè)備的影響,該研究通過(guò)在材料表面非連續(xù)涂覆圓形硅橡膠,改變材料單一的表面特性,提出一種提高部件主動(dòng)防除冰的方法,并探究圓形涂覆硅橡膠的直徑、相鄰硅橡膠間的圓心距、涂覆占空比及厚度對(duì)冰黏附強(qiáng)度降低率的影響,降低表面冰黏附強(qiáng)度。試驗(yàn)結(jié)果表明表面具有不同涂覆參數(shù)的試樣對(duì)冰黏附強(qiáng)度具有不同的降低效果,當(dāng)涂覆直徑為3.50 mm、圓心間距6.50 mm、占空比為8.50%及涂覆厚度為0.250 mm時(shí),鋁合金試樣表面的平均冰黏附強(qiáng)度降低率為46.83%。對(duì)試驗(yàn)結(jié)果進(jìn)行方差分析,建立設(shè)計(jì)因素與評(píng)價(jià)指標(biāo)間的數(shù)學(xué)回歸模型,確定對(duì)冰黏附強(qiáng)度影響的顯著性主次順序?yàn)椋簣A形涂覆硅橡膠間的圓心距、占空比、涂覆厚度及直徑。分析認(rèn)為通過(guò)改變材料表面特征的連續(xù)性,使不同位置內(nèi)的附著水具有不同的相變時(shí)間,利用后結(jié)冰區(qū)域產(chǎn)生的膨脹應(yīng)力,干擾冰與材料之間界面的穩(wěn)定性,降低冰黏附強(qiáng)度,提高冷藏設(shè)備部件的主動(dòng)防除冰特性,為進(jìn)一步開(kāi)發(fā)新型防除冰技術(shù)提供參考。

        制冷;凍結(jié);相變;防除冰表面;非連續(xù)特性;冰黏附強(qiáng)度;模型

        0 引 言

        隨著中國(guó)社會(huì)經(jīng)濟(jì)的快速發(fā)展,國(guó)民對(duì)肉類、水果、蔬菜等農(nóng)副產(chǎn)品儲(chǔ)存及保鮮質(zhì)量要求愈發(fā)嚴(yán)格,進(jìn)而推動(dòng)了國(guó)內(nèi)冷庫(kù)、冷藏車輛等農(nóng)產(chǎn)品冷鏈物流的發(fā)展,也促進(jìn)了農(nóng)產(chǎn)品冷藏保鮮設(shè)備的保有量及設(shè)備種類的多樣化。據(jù)統(tǒng)計(jì),2019年中國(guó)食品冷鏈物流總額約為6萬(wàn)億元,冷藏車保有量為21.47萬(wàn)臺(tái),冷庫(kù)容量達(dá)到6.05×107t[1]。為促進(jìn)農(nóng)副產(chǎn)品冷鏈物流的發(fā)展,小型冷庫(kù)等冷藏設(shè)備已經(jīng)連續(xù)5 a被列入農(nóng)業(yè)部補(bǔ)貼項(xiàng)目指南[2],中國(guó)發(fā)展和改革委員會(huì)、農(nóng)業(yè)農(nóng)村部及國(guó)務(wù)院分別印發(fā)了關(guān)于農(nóng)副產(chǎn)品冷鏈物流的發(fā)展規(guī)劃[3-4],并在2020年中央一號(hào)文件里明確提出啟動(dòng)農(nóng)產(chǎn)品倉(cāng)儲(chǔ)保鮮冷鏈物流設(shè)施建設(shè)工程[5-6]。

        冷藏保鮮設(shè)備作為農(nóng)副產(chǎn)品冷藏保鮮鏈的核心部件,其運(yùn)行的高效性、節(jié)能性一直是該行業(yè)追求的目標(biāo),但設(shè)備運(yùn)行時(shí)壓縮機(jī)、冷凝器、冷風(fēng)機(jī)、蒸發(fā)器等關(guān)鍵零部件的表面溫度與環(huán)境溫度之間存在較大溫度差異,環(huán)境中的水分極易黏附在部件表面,形成霜層和冰層,導(dǎo)致冷風(fēng)機(jī)熱交換能力和換熱器換熱效率降低[7-9],增加空氣流通阻力和冷藏設(shè)備的運(yùn)行能耗[10-12],降低冷藏保鮮設(shè)備的工作效果,致使蔬菜、水果、肉類等農(nóng)副產(chǎn)品儲(chǔ)存質(zhì)量降低[13-16],引起社會(huì)經(jīng)濟(jì)的損失和資源浪費(fèi)。

        針對(duì)冷藏保鮮設(shè)備部件表面結(jié)霜、結(jié)冰現(xiàn)象,國(guó)內(nèi)外已形成了超聲振蕩、熱氨、電加熱、熱氣等多種常規(guī)方法[10-12,17-18],但這類防除霜/冰方法存在高成本[19]、高能耗[20]、污染環(huán)境[21]且易腐蝕橡膠、金屬部件等使用缺陷[22-23]。而超疏水表面作為潛在的防除冰方法,表面存在耐久性差[24-25]、微納結(jié)構(gòu)易損壞[26]、耐磨性差[27]、易脫落[28]等使用缺陷,暫不滿足實(shí)際工程領(lǐng)域的使用要求。因此,如何提高冷藏設(shè)備防除冰能力,仍是制冷行業(yè)尚需解決的問(wèn)題之一。

        課題組初期通過(guò)利用結(jié)冰過(guò)程中發(fā)生的相變膨脹現(xiàn)象,提出、設(shè)計(jì)了一種防除冰模型,達(dá)到了降低冰黏附強(qiáng)度的目的[29-30],但該防除冰模型需要在冷藏保鮮設(shè)備的本體表面加工,具有實(shí)際使用弊端。因此本研究改變材料單一的表面特性,利用水的結(jié)冰相變膨脹應(yīng)力,結(jié)合回歸方法設(shè)計(jì)試驗(yàn),建立防除冰表面設(shè)計(jì)因素影響冰黏附強(qiáng)度的數(shù)學(xué)模型,并分析其影響效應(yīng),為冷藏保鮮行業(yè)提供一種新型且主動(dòng)的防除冰方法。

        1 非連續(xù)表面防除冰原理

        冰在材料表面黏附,與材料之間形成穩(wěn)定的黏附系統(tǒng),而材料的表面特性對(duì)冰的黏附穩(wěn)定性具有重要的影響作用。結(jié)合課題組初期研究結(jié)果[29-30]及結(jié)冰膨脹對(duì)溝渠、渡槽等建筑物造成的影響[31-32],改變材料單一的導(dǎo)熱特性,如圖1所示,使材料表面不同位置具有不同的導(dǎo)熱性能。由于材料表面具有非連續(xù)的導(dǎo)熱性,材料表面不同位置附著的水具有不同相變時(shí)間,后結(jié)冰區(qū)域產(chǎn)生的相變膨脹應(yīng)力干擾先結(jié)冰區(qū)域與材料之間形成穩(wěn)定的附著界面,破壞其黏附穩(wěn)性,進(jìn)而降低冰在材料表面的黏附強(qiáng)度。

        1.基底 2.水 3.冰 4. 膨脹應(yīng)力 5.具有非連續(xù)特性的表面

        1.Substrate 2.Water 3.Ice 4.Swelling stress 5.Surface with non-continuous characteristic

        圖1 非連續(xù)特性表面的防除冰模型

        Fig.1 Anti-icing model with non-continuous surface characteristic

        2 冰黏附強(qiáng)度測(cè)試試驗(yàn)設(shè)計(jì)

        2.1 試驗(yàn)條件與材料

        試驗(yàn)中采用冷藏保鮮設(shè)備中常用的6061鋁合金材料作為試樣基體(尺寸為60 mm×60 mm×5 mm),導(dǎo)熱系數(shù)為238 W/(m·K)[33]。RTV-1硅橡膠導(dǎo)熱系數(shù)為0.17 W/(m·K)[34],其在金屬、橡膠等工程材料表面黏結(jié)性好,具有耐久性、耐候性、耐溫性等優(yōu)點(diǎn)[34],已在汽車、電力、制冷等領(lǐng)域廣泛應(yīng)用,因此通過(guò)模具法在鋁合金表面不同位置環(huán)形涂覆不同圓形尺寸參數(shù)的硅橡膠。通過(guò)低溫環(huán)境模擬箱控制試驗(yàn)溫度,在溫度為?20 ℃的低溫環(huán)境下、凍結(jié)1 h,用水量為5 mL,運(yùn)用內(nèi)徑為32 mm的鋁杯制備試樣表面的覆冰。試驗(yàn)中的用水均為純凈水(購(gòu)買(mǎi)自北京化學(xué)廠),并利用自制冰黏附力測(cè)試裝置測(cè)量冰在試樣表面的黏附力,如圖2所示。

        2.2 試驗(yàn)方法

        2.2.1 試驗(yàn)指標(biāo)

        重復(fù)10次測(cè)試不同試樣及光滑鋁合金表面的冰黏附強(qiáng)度,通過(guò)公式(1)計(jì)算不同試樣的冰黏附強(qiáng)度降低率。材料表面的冰黏附強(qiáng)度越低,越易于清除材料表面的覆冰,因此試驗(yàn)中以冰黏附強(qiáng)度降低率為評(píng)價(jià)指標(biāo)。

        式中為冰黏附強(qiáng)度降低率,%;0為光滑試樣表面冰黏附力,N;為防除冰試樣表面的冰黏附力,N。

        2.2.2 試驗(yàn)因素

        試驗(yàn)中在鋁合金試樣表面不同位置圓形涂覆不同參數(shù)的硅橡膠,影響表面附著水內(nèi)部不同黏附區(qū)域的結(jié)冰順序,利用結(jié)冰相變膨脹干擾冰黏附穩(wěn)定性,降低表面冰黏附強(qiáng)度。因此,選取圓形涂覆硅橡膠的直徑、相鄰圓形硅橡膠間的圓心距、硅橡膠涂覆的占空比及涂覆厚度作為試驗(yàn)因素,并根據(jù)鋁杯內(nèi)徑及試樣尺寸的限制,試驗(yàn)中選取3~4 mm的硅橡膠直徑、4~9 mm的圓心距、6%~11%的占空比及0.2~0.3 mm的涂覆厚度。其中占空比為硅橡膠涂覆面積與冰黏附面積比值。

        2.2.3 試驗(yàn)設(shè)計(jì)

        選取圓形涂覆硅橡膠的直徑1、不同圓形硅橡膠間的圓心距2、占空比3及涂覆厚度4作為試驗(yàn)因素,并運(yùn)用四元二次正交旋轉(zhuǎn)組合[35]設(shè)計(jì)試驗(yàn)方案,各因素水平的編碼如表1所示。

        在基底表面粘貼厚度約為0.020~0.025 mm的雙向拉伸聚丙烯薄膜(Biaxially Oriented Polypropylene,BOPP),通過(guò)粘貼多層BOPP薄膜滿足硅橡膠的涂覆厚度,運(yùn)用激光雕刻機(jī)在BOPP層表面加工待涂覆硅橡膠的分布圖形。室溫條件下自然固化24 h,清除BOPP薄膜表面多余的硅橡膠,移除基底表面粘貼的多層BOPP薄膜,并用酒精擦拭、清除基底表面的雜質(zhì)。

        利用冰黏附力測(cè)試裝置,根據(jù)設(shè)定的試驗(yàn)條件及編制的試驗(yàn)方案,利用公式(1)計(jì)算不同防除冰試樣表面的冰黏附強(qiáng)度降低率,計(jì)算每種試樣的平均降低率,并作為該試樣防除冰效果的評(píng)價(jià)指標(biāo)。

        3 結(jié)果與分析

        3.1 回歸模型與顯著性分析

        由表2中的試驗(yàn)測(cè)試結(jié)果可知:相對(duì)于冰在光滑試樣表面的黏附力,冰與表面不同位置具有圓形涂覆硅橡膠的鋁合金之間形成了低黏附力。防除冰表面設(shè)計(jì)因素均為0水平時(shí),鋁合金試樣表面的平均冰黏附強(qiáng)度降低率為46.83%,其中最大冰黏附強(qiáng)度降低率為52.38%,降低后期材料表面覆冰的清除難度和成本。

        表2 試驗(yàn)方案與測(cè)試結(jié)果

        式中1為圓形涂覆硅橡膠的直徑,mm;2為圓形硅橡膠間的圓心距,mm;3為硅橡膠涂覆的占空比,%;4為涂覆厚度,mm。

        表3 冰黏附強(qiáng)度降低率R回歸模型的方差分析

        注:<0.05為顯著,<0.01為極顯著。

        Note:<0.05 represents significance,<0.01 means extremely significance.

        3.2 響應(yīng)面分析

        利用響應(yīng)面法分析圓形涂覆硅橡膠各尺寸參數(shù)對(duì)冰黏附強(qiáng)度降低率的影響,固定4因素中的2個(gè)因素為0水平,考察其余2個(gè)因素對(duì)冰黏附強(qiáng)度降低率的影響效應(yīng)。

        如圖3a所示,當(dāng)圓心距2和厚度4分別保持6.50 mm、0.250 mm時(shí),直徑1和占空比3與冰黏附強(qiáng)度降低率的影響規(guī)律:冰黏附強(qiáng)度降低率總體上隨直徑1的增加而逐漸降低;隨占空比3的增加,冰黏附強(qiáng)度降低率先增加后降低,并且響應(yīng)面沿3方向的變化速率大于沿1方向的變化速率,說(shuō)明在試驗(yàn)水平下,涂覆硅橡膠的占空比其涂覆直徑對(duì)冰黏附強(qiáng)度降低率的影響更大。當(dāng)圓形硅橡膠涂覆直徑1增大時(shí),晚凍結(jié)區(qū)域面積變大,而產(chǎn)生的相變膨脹力作用面積成平方趨勢(shì)增加,降低了對(duì)冰黏附強(qiáng)度的作用效果,但當(dāng)占空比3超過(guò)8.91%時(shí),冰黏附強(qiáng)度降低率不再降低,甚至升高;占空比3增加時(shí),基底表面硅橡膠的涂覆位置增多,晚凍結(jié)區(qū)域數(shù)量增大,冰黏附強(qiáng)度降低率升高,但當(dāng)直徑1超過(guò)一定值時(shí),冰黏附強(qiáng)度降低率先升高后降低。

        如圖3b所示,當(dāng)直徑1和占空比3分別保持3.50 mm、8.50%時(shí),圓心距2和厚度4與冰黏附強(qiáng)度降低率的影響規(guī)律:冰黏附強(qiáng)度降低率總體上隨圓心距2的增加而降低;隨厚度4的增加,冰黏附強(qiáng)度降低率先增加后降低。響應(yīng)面沿2方向的變化速率大于沿4方向的變化速率,表明在試驗(yàn)水平下,圓形涂覆硅橡膠間的圓心距2比涂覆厚度4對(duì)結(jié)冰附著強(qiáng)度降低率的影響顯著。當(dāng)圓心距2減小時(shí),減小了涂覆區(qū)域附著水結(jié)冰產(chǎn)生相變膨脹力的作用距離,冰黏附強(qiáng)度降低率變大,但當(dāng)涂覆厚度4超過(guò)0.249 mm時(shí),冰黏附強(qiáng)度降低率不再升高,甚至降低;硅橡膠涂覆厚度4增大時(shí),擴(kuò)大了基底表面附著水內(nèi)部不同區(qū)域的凍結(jié)結(jié)冰時(shí)間,降低了冰在材料表面的黏附強(qiáng)度,當(dāng)涂覆厚度超過(guò)0.249 mm時(shí),未涂覆區(qū)域已與基底表面形成了穩(wěn)定的黏附界面,對(duì)冰黏附強(qiáng)度的影響逐漸降低,冰黏附強(qiáng)度降低率增大。

        注:響應(yīng)面試驗(yàn)因素和水平見(jiàn)表1,響應(yīng)值見(jiàn)表2,下同。

        Note: Factors levels of response surface test are shown in Table 1, and response values are shown in Table 2. Same as below.

        圖3 因素交互作用對(duì)冰黏附強(qiáng)度降低率的影響

        Fig.3 Effects of interactive factors on reduction rate of ice adhesion strength

        依此類推,試驗(yàn)中鋁合金試樣表面涂覆硅橡膠的尺寸參數(shù)對(duì)冰黏附強(qiáng)度降低率的影響順序依次為:圓形涂覆硅橡膠間的圓心距2、硅橡膠涂覆的占空比3、硅橡膠涂覆厚度4及其涂覆直徑1。

        3.3 討 論

        由試驗(yàn)測(cè)試結(jié)果及響應(yīng)面分析可見(jiàn),表面不同位置具有圓形涂覆硅橡膠的鋁合金試樣降低了其表面的冰黏附強(qiáng)度,并且表面具有不同分布參數(shù)、不同尺寸參數(shù)的圓形硅橡膠對(duì)冰黏附強(qiáng)度具有不同的影響作用。當(dāng)圓形涂覆硅橡膠的直徑為3.50 mm、圓心間距6.50 mm、占空比為8.50%及涂覆厚度為0.250 mm時(shí),鋁合金試樣表面的平均冰黏附強(qiáng)度降低率為46.83%;試樣表面具有直徑3.75 mm、圓心間距7.75 mm、占空比9.75%及厚度為0.225 mm的圓形硅橡膠時(shí),試樣表面的冰黏附強(qiáng)度降低率為18.74%。

        圖4為非連續(xù)導(dǎo)熱性表面對(duì)冰黏附穩(wěn)定性的影響示意圖。如圖4a所示,試樣表面圓形涂覆硅橡膠的直徑增大時(shí),基底表面附著水內(nèi)部受影響區(qū)域增大,相變膨脹力的作用面積呈平方趨勢(shì)增大,降低對(duì)已凍結(jié)區(qū)域覆冰黏附穩(wěn)定性的影響,因此,材料表面冰黏附強(qiáng)度增大,冰黏附強(qiáng)度降低率減小;反之,硅橡膠涂覆直徑減小,冰黏附強(qiáng)度降低率增大。如圖4b所示,相鄰圓形涂覆硅橡膠間的圓心距增大時(shí),降低了涂覆區(qū)域附著水結(jié)冰產(chǎn)生的膨脹應(yīng)力對(duì)已凍結(jié)區(qū)域的影響,有利于冰與未涂覆區(qū)域重新形成穩(wěn)定的黏附界面,減小對(duì)基底表面冰黏附強(qiáng)度的降低作用;當(dāng)圓心距達(dá)到5.92 mm時(shí),干擾冰與相鄰硅橡膠之間未涂覆區(qū)域的黏附穩(wěn)定性,降低了冰在基底表面的黏附強(qiáng)度。如圖4c所示,當(dāng)占空比增大,圓形硅橡膠在基底表面涂覆位置增多,提高了硅橡膠涂覆區(qū)域附著水結(jié)冰相變產(chǎn)生的膨脹應(yīng)力對(duì)冰黏附強(qiáng)度的影響,冰黏附強(qiáng)度降低率增大。如圖4d所示,硅橡膠涂覆厚度減小,縮減了基底表面附著水內(nèi)部不同位置之間的相變結(jié)冰時(shí)間差,導(dǎo)致未涂覆區(qū)域的覆冰重新附著于基底表面,減小了基底表面冰黏附強(qiáng)度降低率;涂覆厚度過(guò)大時(shí),擴(kuò)大了材料表面附著水內(nèi)部不同區(qū)域之間的相變結(jié)冰時(shí)間差,延長(zhǎng)硅橡膠表面附著水的過(guò)冷狀態(tài),但冰與材料表面未涂覆區(qū)域已形成穩(wěn)定的黏附界面,因此降低了對(duì)材料表面冰黏附強(qiáng)度的影響效果。

        1.冰 2.基底 3.硅橡膠表面附著的水/冰 4.硅橡膠表面附著水相變產(chǎn)生的膨脹應(yīng)力 5.硅橡膠

        1.Ice 2.Substrate 3.Water/Ice adhesion on silicon rubber 4.Swelling stress generated from water adhesion on silicone rubber 5.Silicone rubber

        圖4 表面非連續(xù)導(dǎo)熱性對(duì)冰黏附穩(wěn)定性的影響

        Fig.4 Effects of discontinuous thermal conductivity of the surface on ice adhesion stability

        4 結(jié) 論

        1)試驗(yàn)表明在材料表面不同位置圓形涂覆硅橡膠改變材料連續(xù)的表面特性,使表面不同位置附著水之間存在不同的相變結(jié)冰時(shí)間,利用后結(jié)冰區(qū)域產(chǎn)生的相變膨脹應(yīng)力可明顯降低材料表面的冰黏附強(qiáng)度,使基底材料可主動(dòng)降低冰黏附強(qiáng)度,減小后期表面覆冰清除的難度。

        2)以圓形涂覆硅橡膠的直徑、圓心間距、占空比及涂覆厚度為設(shè)計(jì)因素,利用四元二次正交旋轉(zhuǎn)組合設(shè)計(jì)方法,編制試驗(yàn)方案,并進(jìn)行數(shù)據(jù)分析。建立圓形涂覆硅橡膠的直徑、分布間距、占空比及涂覆厚度影響鋁合金基底表面冰黏附強(qiáng)度降低率的數(shù)學(xué)模型,并且各因素對(duì)冰黏附強(qiáng)度降低率影響的顯著性順序依次為:圓心距、占空比、厚度及直徑。當(dāng)圓形涂覆硅橡膠的直徑為3.50 mm、圓心間距6.50 mm、占空比為8.50%及涂覆厚度為0.250 mm時(shí),鋁合金試樣表面的平均冰黏附強(qiáng)度降低率為46.83%。

        通過(guò)改變材料表面特征的連續(xù)性,利用水凍結(jié)過(guò)程中產(chǎn)生的相變膨脹應(yīng)力,提升冷藏設(shè)備表面的主動(dòng)防除冰特性,減小覆冰對(duì)冷藏設(shè)備關(guān)鍵部件運(yùn)轉(zhuǎn)效果的影響,并為其他工程領(lǐng)域開(kāi)發(fā)一種主動(dòng)式防除冰技術(shù)提供參考。

        [2] 趙松松,楊昭,陳愛(ài)強(qiáng),等. 微型冷庫(kù)復(fù)合加熱循環(huán)除霜系統(tǒng)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):306-311.

        Zhao Songsong, Yang Zhao, Chen Aiqiang, et al. Development and experiment about recombination heating circulation defrosting system of mini cold storage house[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2015, 31(2): 306-311. (in Chinese with English abstract)

        [3] 中華人民共和國(guó)國(guó)家發(fā)展和改革委員會(huì).《農(nóng)產(chǎn)品冷鏈物流發(fā)展規(guī)劃》[EB/OL]. 2010-06-18[2020-12-12]. http://bgt.ndrc.gov.cn/zcfb/201007/t20100730_498782.html.

        [4] 中華人民共和國(guó)國(guó)務(wù)院.《物流業(yè)發(fā)展中長(zhǎng)期規(guī)劃(2014-2020年)》[EB/OL]. 2014-09-12[2020-12-12]. http://www.gov.cn/zhengce/content/2014-10/04/content_9120.htm.

        [5] 中華人民共和國(guó)國(guó)務(wù)院.《關(guān)于抓好“三農(nóng)”領(lǐng)域重點(diǎn)工作確保如期實(shí)現(xiàn)全面小康的意見(jiàn)》[EB/OL]. 2020-02-05 [2020-12-12]. http://www.gov.cn/zhengce/2020-02/05/ content_5474884.htm.

        [6] 中華人民共和國(guó)農(nóng)業(yè)農(nóng)村部.《關(guān)于加快農(nóng)產(chǎn)品倉(cāng)儲(chǔ)保鮮冷鏈設(shè)施建設(shè)的實(shí)施意見(jiàn)》[EB/OL]. 2020-04-13[2020-12-12]. http://www.gov.cn/zhengce/zhengceku/2020-04/21/content_5504611.htm.

        [7] 高萌,李明,王云峰,等. 低溫環(huán)境下熱泵熱風(fēng)干燥藏藥性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):316-322.

        Gao Meng, Li Ming, Wang Yunfeng, et al. Experimental study on the performance for heat pump hot air drying of Tibetan medicine at low-temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 316-322. (in Chinese with English abstract)

        [8] 任政,張興群,邵致遠(yuǎn),等. 板翅式換熱器熱通道結(jié)霜過(guò)程的數(shù)值模擬[J]. 西安交通大學(xué)學(xué)報(bào),2019,53(5):37-42.

        Ren Zheng, Zhang Xingqun, Shao Zhiyuan, et al. Numerical simulation on frosting process in hot channel of plate-fin heat exchangers[J]. Journal of Xi’an Jiaotong University, 2019, 53(5): 37-42. (in Chinese with English abstract)

        [9] 李麗艷,劉中良,趙玲倩,等. 結(jié)霜初期無(wú)液核形成時(shí)的抑霜研究[J]. 工程熱物理學(xué)報(bào),2019,40(1):198-203.

        Li Liyan, Liu Zhongliang, Zhao Lingqian, et al. Study on anti-frosting performance of hydrophobic surface without the appearance of water nuclei at the initial stage of frost formation[J]. Journal of Engineering Thermophysics, 2019, 40(1): 198-203. (in Chinese with English abstract)

        [10] 左建冬,陶唐飛,荊棘靚,等.速凍冷風(fēng)機(jī)超聲波除霜技術(shù)理論與實(shí)驗(yàn)研究[J]. 制冷學(xué)報(bào),2018,39(4):1-7.

        Zuo Jiandong, Tao Tangfei, Jing Jiliang, et al. Theoretical and experimental study on the ultrasonic defrosting technology of a quick-freezing cooling fan[J]. Journal of Refrigeration, 2018, 39(4): 1-7. (in Chinese with English abstract)

        [11] 張魯夢(mèng),郭憲民,薛杰. 翅片管換熱器表面霜層生長(zhǎng)特性的實(shí)驗(yàn)研究[J]. 化工學(xué)報(bào),2018,69(S2):186-192.

        Zhang Lumeng, Guo Xianmin, Xue Jie. Experimental study of frost growth characteristics on surface of finned-tube heat exchangers[J]. CIESC Journal, 2018, 69(S2): 186-192. (in Chinese with English abstract)

        [12] Zhao R J, Huang D, Peng X Y, et al. Reducing cabinet temperature rise during electric heater defrosting of frost-free refrigerators by using a special fan cover to block heat infiltration [J]. Science and Technology for the Built Environment, 2019, 25(10): 1505-1513.

        [13] 孫靜,陳全,王萍,等. 乙二醇蓄冷庫(kù)性能及其在黃冠梨保鮮上的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(8):276-282.

        Sun Jing, Chen Quan, Wang Ping, et al. Performance of cold storage with ethylene glycol as secondary refrigerant and its application on preservation of ‘Huangguan’ pear[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2018, 34(8): 276-282. (in Chinese with English abstract)

        [14] 白通通,南曉紅,金寶紅,等. 豎壁貼附送風(fēng)改善冷藏庫(kù)內(nèi)流場(chǎng)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):331-337.

        Bai Tongtong, Nan Xiaohong, Jin Baohong, et al. Improvement on characteristics of air flow field in cold storage with vertical wall attached ventilation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 331-337. (in Chinese with English abstract)

        [15] 辜雪冬,孫術(shù)國(guó),楊飛艷,等. 冰溫或冷藏對(duì)牦牛肉貯藏品質(zhì)及水分遷移的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(16):343-350.

        Gu Xuedong, Sun Shuguo, Yang Feiyan, et al. Effects of ice temperature or chilled storage on quality and moisture migration of yak meat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2019, 35(16): 343-350. (in Chinese with English abstract)

        [16] Yoon Y, Jeong H, Lee K S, et al. Adaptive defrost methods for improving defrosting efficiency of household refrigerator[J]. Energy Conversion and Management, 2018, 157: 511-516.

        [17] Amer M, Wang C C. Review of defrosting methods[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 53-74.

        [18] 徐俊芳,趙耀華,全貞花,等. 新型空氣-水雙熱源復(fù)合熱泵系統(tǒng)除霜特性及能耗[J]. 化工學(xué)報(bào),2018,69(6):2646-2654.

        Xu Junfang, Zhao Yaohua, Quan Zhenhua, et al. Defrosting characteristics and energy consumption of new air-water dual source composite heat pump system[J]. CIESC Journal, 2018, 69(6): 2646-2654. (in Chinese with English abstract)

        [19] Villegas M, Zhang Y X, Jarad N A, et al. Liquid-infused surfaces: Areview of theory, design, and applications[J]. ACS Nano, 2019, 13: 8517-8536.

        [20] Esmeryan K D, Gyoshev S D, Castano C E, et al. Anti-frosting and defrosting performance of chemically modified super-nonwettable carbon soot coatings[J]. Journal of Physics D: Applied Physics, 2021, 54(1): 015303.

        [21] Song M, Deng S M, Dang C B, et al. Review on improvement for air source heat pump units during frosting and defrosting[J]. Applied Energy, 2018, 211: 1150-1170.

        [22] Heu C S, Jang H, Jeon J, et al. Recent progress on developing anti-frosting and anti-fouling functional surfaces for air source heat pumps[J]. Energy and Buildings, 2020, 223: 110139.

        [23] Wang F, Liang C H, Zhang X S. Research of anti-frosting technology in refrigeration and air conditioning fields: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 707-722.

        [24] Jain R, Pitchumani R. Facile fabrication of durable copperbased superhydrophobic surfaces via electrodeposition[J]. Langmuir, 2018, 34, 3159-3169.

        [25] Li Q, Guo Z G. Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces[J]. Journal of Materials Chemistry A, 2018, 6: 13549-3581.

        [26] 郭永剛,張?chǎng)?,耿鐵,等. 超疏水表面耐久性能的研究進(jìn)展[J]. 中國(guó)表面工程,2018,31(5):63-72.

        Guo Yonggang, Zhang Xin, Geng Tie, et al. Research progress on durability of superhydrophobic surfaces[J]. China Surface Engineering, 2018, 31(5): 63-72. (in Chinese with English abstract)

        [27] 佟威,熊黨生. 仿生超疏水表面的發(fā)展及其應(yīng)用研究進(jìn)展[J]. 無(wú)機(jī)材料學(xué)報(bào),2019,34(11):1133-1144.

        Tong Wei, Xiong Dangsheng. Bioinspired superhydrophobic materials: Progress and functional application[J]. Journal of Inorganic Materials, 2019, 34(11): 1133-1144. (in Chinese with English abstract)

        [28] Phuong N T, Tran H N, Plamondon C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review[J]. Progress in Organic Coatings, 2019, 132: 235-256.

        [29] 叢茜,陳廷坤,孫成彬,等. 利用凍脹能的農(nóng)產(chǎn)品冷藏設(shè)備防結(jié)冰表面優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):283-289.

        Cong Qian, Chen Tingkun, Sun Chengbin, et al. Design of active de-icing surface for refrigeration equipment of agricultural by-products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 283-289. (in Chinese with English abstract)

        [30] 叢茜,陳廷坤,李楊,等. 利用相變釋能的農(nóng)產(chǎn)品冷藏設(shè)備主動(dòng)防除冰方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):276-281.

        Cong Qian, Chen Tingkun, Li Yang, et al. Active anti-icing method for agricultural product refrigerated equipment based on phase change energy release[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 276-281. (in Chinese with English abstract)

        [31] 葛建銳,王正中,牛永紅,等. 冰蓋輸水襯砌渠道冰凍破壞統(tǒng)一力學(xué)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):90-98.

        Ge Jianrui, Wang Zhengzhong, Niu Yonghong, et al. Elastic foundation beam unified model for ice and frost damage concrete canal of water delivery under ice cover [J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2020, 36(1): 90-98. (in Chinese with English abstract)

        [32] 張棟,郭璇. 灌淤凍土復(fù)合襯砌渠道保溫防凍脹效果分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(21):122-129.

        Zhang Dong, Guo Xuan. Effects of thermal insulation and anti-frost heaving in composite lining structures for a canal in colmatage frozen soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2020, 36(21): 122-129. (in Chinese with English abstract)

        [33] 秦大同,謝里陽(yáng).現(xiàn)代機(jī)械設(shè)計(jì)手冊(cè)(第1卷)[M]. 北京:化學(xué)工業(yè)出版社,2011:1-10.

        [34] 來(lái)國(guó)橋. 有機(jī)硅化學(xué)與工藝[M]. 北京:化學(xué)工業(yè)出版社,2011:250-251.

        [35] 任露泉. 回歸設(shè)計(jì)及其優(yōu)化[M]. 北京:科學(xué)出版社,2009:39-59.

        Design and experiment of the non-continuous anti-icing surface for refrigeration equipment

        Chen Yiying1, Cong Qian1,2, Ren Luquan1,2, Jin Jingfu1, Chen Tingkun1,2※

        (1. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;2. Key Laboratory of Bionic Engineering, Ministry of Education, Changchun 130022, China)

        Cold storage facility is widely expected to promote the development of agricultural and sideline products for better food quality in the evolving demand of a market. Meanwhile, a large amount of ice normally accumulates on the surface of cold storage equipment, such as the evaporator and heat exchanger, further deteriorating the operational performance of equipment and storage quality of products. Most anti/de-icing approaches have been developed to remove the accreted ice, including mechanical, heating, or chemical ways. These conventional anti-icing methods have caused high cost and energy consumption, even environmental pollution. Alternatively, a super hydrophobic surface presents the most potential anti-icing, but the durability and mechanical properties have been limited in the engineering field. A discontinuous circular coating of silicone rubber can be utilized to tailor the surface property of materials. However, there is a different phase transition time of attached water at different material surfaces, where the active anti-icing power is from the swelling force further to determine the ice adhesion strength. In this study, a feasible anti-icing model was proposed to change the continuity of substrate surface in a refrigerator. Silicone rubber with low thermal conductivity was coated at different locations on the substrate surface to modify the thermal conductivity of the substrate. The dimensional parameters of circular coated silicone rubber were determined to obtain the reduction rate of ice adhesion strength, such as the diameter, the center distance between the adjacent silicone rubbers, the duty cycle, and the thickness of coated silicone rubber. Meanwhile, an orthogonal rotation combination was used to design the experimental scheme. In addition, a self-developed device was utilized to measure the ice adhesion strength, further to calculate its reduction rate. The experimental results showed that the samples with different coating parameters on the surface had different reduction effects on ice adhesion strength. Furthermore, the non-continuous coating of silicone rubber on the sample surface significantly reduced the ice adhesion strength. Specifically, the reduction rate of ice adhesion strength on the aluminum alloy reached 52.38%, when the size of coated silicone rubber was 3.50 mm in diameter, 6.50 mm in center spacing, 8.50% in duty cycle, and 0.250 mm in coating thickness. The average reduction rate of ice adhesion strength on the aluminum alloy could reach 46.83%. And the maximum ice adhesion strength reduction rate was 52.38%. The variance analysis and Response Surface Method (RSM) were used to analyze the experimental data, and thus the mathematical regression models were established between the dimensional factors and the evaluation index. The significant influence on ice adhesion strength was determined in a descending order: center distance, duty ratio, thickness, and diameter of the coated silicone rubber. Phase change times depended mainly on the variation in continuous surface characteristics of the material at the various positions of attached water. In the post-icing area, the swelling stress rapidly generated to break the interfacial stability between the ice and coating, indicating an obvious reduction of ice adhesion strength. Therefore, a significant increase was achieved in the active anti-icing characteristics of the material for the further development of new anti-icing technology. This finding can provide new ideas for the subsequent research, particularly the effects of wettability and morphology of material surface on the ice adhesion strength. The anti/de-icing can also be expected to serve some engineering fields, including refrigeration, high-speed railway trains, and aircraft.

        refrigeration; freezing; phase change; anti-icing surface; non-continuous characteristic; ice adhesion strength; models

        2020-12-14

        2021-03-13

        國(guó)家自然科學(xué)基金面上項(xiàng)目(51775234);吉林省科技發(fā)展計(jì)劃項(xiàng)目(20200801049GH);吉林省教育廳科學(xué)研究項(xiàng)目(JJKH20211070KJ)。

        陳奕穎,博士生,研究方向?yàn)榈蜏胤纼鲳ぜ夹g(shù)。Email:yiyingc20@mails.jlu.edu.cn

        陳廷坤,講師,博士,研究方向?yàn)楣こ谭律鷮W(xué)與防凍黏機(jī)理。Email:chentk@jlu.edu.cn

        10.11975/j.issn.1002-6819.2021.07.032

        TB131

        A

        1002-6819(2021)-07-0261-07

        陳奕穎,叢茜,任露泉,等. 冷藏設(shè)備防除冰表面非連續(xù)特征設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):261-267. doi:10.11975/j.issn.1002-6819.2021.07.032 http://www.tcsae.org

        Chen Yiying, Cong Qian, Ren Luquan, et al. Design and experiment of the non-continuous anti-icing surface for refrigeration equipment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 261-267. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.032 http://www.tcsae.org

        日韩成人无码一区二区三区| 精品人妖一区二区三区四区 | 中文字幕人妻av四季| 黄色潮片三级三级三级免费| 久青草影院在线观看国产| 国产精品亚洲一区二区在线观看| a在线免费| 亚洲AV无码一区二区一二区教师| 青青草在线免费观看在线| 欧美嫩交一区二区三区| 亚洲av无码1区2区久久| 亚洲地址一地址二地址三| 国产日韩一区二区精品| 日本二区在线视频观看| 午夜视频在线瓜伦| 亚洲熟妇久久精品| 看全色黄大色大片免费久久| 国产极品美女高潮抽搐免费网站| 国产99视频一区二区三区| 校园春色综合久久精品中文字幕| 桃花影院理论片在线| 囯产精品无码va一区二区| 久久精品国产久精国产69| 国产亚洲综合另类色专区| 国产精品一区二区三区在线免费| 色妞ww精品视频7777| 日韩AV有码无码一区二区三区 | 精品无码AⅤ片| 漂亮人妻被强中文字幕乱码| 人人妻人人澡人人爽人人精品浪潮 | 亚洲视频在线免费观看一区二区| 国产一区二区三区在线大屁股| 日本免费视频| 日产精品久久久久久久性色| 久久亚洲国产精品五月天| 人妻中出中文字幕在线| 在线观看国产白浆一区三区| 国产后入又长又硬| 99热这里只有精品69| 中文字幕人妻在线少妇完整版| 丁香五月亚洲综合在线|