亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        作物葉片表面農(nóng)藥殘留的便攜式檢測(cè)儀器的設(shè)計(jì)與試驗(yàn)

        2021-06-30 01:27:44唐寶文姚坤杉胡雙齊
        關(guān)鍵詞:檢測(cè)

        孫 俊,唐寶文,周 鑫,姚坤杉,胡雙齊,張 林

        作物葉片表面農(nóng)藥殘留的便攜式檢測(cè)儀器的設(shè)計(jì)與試驗(yàn)

        孫 俊,唐寶文,周 鑫,姚坤杉,胡雙齊,張 林

        (江蘇大學(xué)電氣信息工程學(xué)院,鎮(zhèn)江212013)

        針對(duì)現(xiàn)有的農(nóng)藥殘留檢測(cè)儀器只能檢測(cè)水溶液體系中的農(nóng)藥殘留和檢測(cè)對(duì)象較為單一的問(wèn)題,該研究以不同植物葉片啶蟲(chóng)脒農(nóng)藥殘留為研究對(duì)象,探究了利用熒光強(qiáng)度檢測(cè)葉片表面農(nóng)藥殘留的可行性,設(shè)計(jì)了一款葉片表面農(nóng)藥殘留的便攜式檢測(cè)儀器。首先,通過(guò)啶蟲(chóng)脒農(nóng)藥葉片表面噴灑試驗(yàn),采集葉片的熒光光譜并進(jìn)行特征分析,發(fā)現(xiàn)啶蟲(chóng)脒農(nóng)藥的最佳激發(fā)波長(zhǎng)和最佳發(fā)射波長(zhǎng)分別為355 和500 nm,從而確定光源和光電信號(hào)接收源的特征波長(zhǎng)分別為350和500 nm。然后,通過(guò)獲取最佳光源照射角度以及光照距離,優(yōu)化光路結(jié)構(gòu)減少葉片表面雜散光的干擾。同時(shí),設(shè)計(jì)相關(guān)檢測(cè)電路(光源電路、信號(hào)調(diào)理電路、控制電路等)測(cè)出表征反射光強(qiáng)度的電壓值,構(gòu)建電壓值與農(nóng)藥殘留值之間的線性方程,設(shè)計(jì)便攜式檢測(cè)儀對(duì)農(nóng)藥殘留進(jìn)行檢測(cè)。結(jié)果表明:1)熒光強(qiáng)度與農(nóng)藥濃度在1~5 mg/L的范圍內(nèi)成正比;2)確定了檢測(cè)儀器最佳光照角度為45o,光源和待測(cè)葉片之間的最佳垂直距離為3.46 cm;3)方程決定系數(shù)達(dá)到了0.875,均方根誤差為0.405 mg/L。該研究所設(shè)計(jì)的便攜式熒光光譜儀能夠快速、準(zhǔn)確、無(wú)損檢測(cè)葉片表面農(nóng)藥殘留。

        農(nóng)作物;農(nóng)藥;葉片;熒光光譜;光學(xué)系統(tǒng);檢測(cè)儀器

        0 引 言

        農(nóng)業(yè)生產(chǎn)中,農(nóng)藥對(duì)病蟲(chóng)害的防治發(fā)揮著非常重要的作用,然而附著在農(nóng)產(chǎn)品上殘留的農(nóng)藥威脅著人們的身體健康[1],因此,實(shí)現(xiàn)對(duì)農(nóng)藥殘留的精準(zhǔn)檢測(cè)對(duì)保證食品安全和保護(hù)人體健康具有重大意義。

        目前,農(nóng)藥殘留的檢測(cè)技術(shù)主要包括氣相色譜法[2]、液相色譜法[3]、氣質(zhì)聯(lián)用法[4]等,這些方法雖然檢測(cè)靈敏度高、專屬性強(qiáng)、準(zhǔn)確性好,但樣品前期預(yù)處理過(guò)程繁瑣、儀器設(shè)備昂貴、儀器體積較大、數(shù)據(jù)處理繁瑣、便攜性較差,不能滿足農(nóng)藥殘留檢測(cè)實(shí)時(shí)與快捷的要求[5]。近年來(lái),熒光光譜法在農(nóng)藥殘留檢測(cè)領(lǐng)域取得了相當(dāng)大的發(fā)展[6],熒光光譜法檢測(cè)精度高、儀器結(jié)構(gòu)簡(jiǎn)單、成本低。為了滿足農(nóng)藥殘留的快速實(shí)時(shí)檢測(cè)的需求,多位學(xué)者設(shè)計(jì)了基于激發(fā)熒光的便攜式檢測(cè)儀器。王玉田等設(shè)計(jì)了一個(gè)熒光光纖農(nóng)藥殘留系統(tǒng),實(shí)現(xiàn)了水溶液和蔬菜汁中克百威、西維因等農(nóng)藥的直接檢測(cè),最低檢出限低于5g/L[7]。郭立泉等采用365 nm波長(zhǎng)的LED作為激發(fā)光源輔以中心波長(zhǎng)為450 nm的光電二極管接收熒光信號(hào),成功實(shí)現(xiàn)了對(duì)熒光物質(zhì)4-甲基傘形酮的檢測(cè),所設(shè)計(jì)的系統(tǒng)檢測(cè)誤差小于1.5%[8]。但這些檢測(cè)儀器主要是檢測(cè)水溶液體系中的農(nóng)藥殘留,直接檢測(cè)植物葉片表面農(nóng)藥殘留的便攜式檢測(cè)儀器較少,不能滿足農(nóng)業(yè)生產(chǎn)生活中初檢與速檢的要求。

        利用熒光光譜法直接檢測(cè)葉片表面農(nóng)藥殘留容易受到光源照射角度[9-10]、葉片表面平滑度[11]、葉片放置位置[12]等內(nèi)在與外在因素的影響,從而導(dǎo)致檢測(cè)結(jié)果的不確定性,難以滿足精準(zhǔn)農(nóng)業(yè)對(duì)農(nóng)藥殘留檢測(cè)的要求,且對(duì)便攜式檢測(cè)儀器的設(shè)計(jì)方面研究較少[13]。因此,本研究擬以葉片表面農(nóng)藥殘留檢測(cè)為目標(biāo),通過(guò)葉片表面農(nóng)藥噴灑試驗(yàn),獲取熒光的最佳發(fā)射與最佳激發(fā)波長(zhǎng),探究利用熒光強(qiáng)度檢測(cè)葉片表面農(nóng)藥殘留的可行性,分析影響葉片表面農(nóng)藥殘留檢測(cè)精度的相關(guān)因素,優(yōu)化光路結(jié)構(gòu),設(shè)計(jì)相應(yīng)檢測(cè)電路,以期設(shè)計(jì)開(kāi)發(fā)一款葉片表面農(nóng)藥殘留檢測(cè)儀器。

        1 數(shù)據(jù)采集與波長(zhǎng)選擇

        1.1 試驗(yàn)材料

        啶蟲(chóng)脒(70%啶蟲(chóng)脒散顆粒劑)用水溶液以及甲醇(分析純AR,99.5%)按照1:4的質(zhì)量比稀釋成4個(gè)不同梯度(1:200、1:300、1:500、1:1 000)的配比農(nóng)藥溶液,將配置好的啶蟲(chóng)脒溶液放置在容器中備用。

        選取大小相近,表面無(wú)損傷的生菜、菠菜、大白菜葉片樣品各60株。試驗(yàn)前,用干凈的半濕毛巾擦拭樣品表面,并按順序貼上標(biāo)簽,在植物葉片表面噴灑啶蟲(chóng)脒溶液。用移液槍分別移取不同濃度的啶蟲(chóng)脒標(biāo)準(zhǔn)溶液1 mL,依次噴灑在樣品表面,并自然干燥10 min,使植物葉片表面形成啶蟲(chóng)脒標(biāo)準(zhǔn)溶液的薄膜,隨后進(jìn)行植物葉片樣樣品熒光數(shù)據(jù)的采集。

        1.2 熒光光譜采集裝置

        熒光光譜數(shù)據(jù)采集儀器為FHSI系統(tǒng),包括一臺(tái)帶有光譜成像系統(tǒng)軟件的計(jì)算機(jī)、光譜儀(V10E,SPECIM,芬蘭)、照相機(jī)(Zyla4.2,安道爾,UTKL)、UVA光源(UBerLED100,IT,美國(guó))、電控位移臺(tái)(MSI300,五十鈴光學(xué),臺(tái)灣)。光譜范圍為400~1 000 nm,光譜分辨率為2.8 nm。儀器參數(shù)設(shè)置如下:圖像分辨率設(shè)置為2 048×478(即空間像素點(diǎn)為2 048,波段數(shù)為478),相機(jī)焦距為23 mm,樣品到鏡頭距離為0.45 m,相機(jī)曝光時(shí)間為0.1 s,電控位移臺(tái)速度為1.255 2 mm/s。

        1.3 農(nóng)藥殘留含量檢測(cè)

        將測(cè)定完畢的每組葉片樣品置于50 mL的燒杯中,加入10 mL的HCl浸泡,燒杯封口后用超聲震蕩,萃取液轉(zhuǎn)移至100 mL的燒杯中使用乙腈溶液定容,測(cè)量其熒光強(qiáng)度。再配置一系列啶蟲(chóng)脒標(biāo)準(zhǔn)溶液,建立一定濃度范圍的啶蟲(chóng)脒標(biāo)準(zhǔn)溶液的標(biāo)準(zhǔn)工作曲線,將上述測(cè)得的萃取液的熒光強(qiáng)度與所建工作曲線進(jìn)行對(duì)比,從而確定萃取液中啶蟲(chóng)脒的含量,進(jìn)而換算成生菜葉片表面啶蟲(chóng)脒的含量。

        1.4 特征波長(zhǎng)選擇

        由于植物葉片表面具有一定的生物活性,且表面的結(jié)構(gòu)與活性均不同,讓殘留在植物葉片表面的啶蟲(chóng)脒農(nóng)藥產(chǎn)生了一定的程度的代謝,可能會(huì)對(duì)表面的啶蟲(chóng)脒的熒光信號(hào)產(chǎn)生一定的影響[14]。因此,考察啶蟲(chóng)脒標(biāo)準(zhǔn)溶液在不同植物表面上的熒光信號(hào),以確定啶蟲(chóng)脒標(biāo)準(zhǔn)溶液在植物葉片表面的最佳激發(fā)波長(zhǎng)與最佳發(fā)射波長(zhǎng)。當(dāng)植物受外界環(huán)境光照射時(shí),其內(nèi)部葉綠素會(huì)被激發(fā)產(chǎn)生熒光,這將影響啶蟲(chóng)脒受光照激發(fā)出的熒光,本文先對(duì)植物本身葉片產(chǎn)生的熒光光譜進(jìn)行分析。利用熒光光譜系統(tǒng)對(duì)生菜、菠菜、白菜葉片樣品在400~1 000 nm范圍內(nèi)采集熒光光譜。圖1是潔凈植物葉片的熒光光譜,包括生菜、白菜、菠菜等植物葉片。從圖1中可以看出生菜、白菜、菠菜葉片的熒光光譜差異極小,波峰位于690和735 nm處。

        圖2為噴灑不同濃度啶蟲(chóng)脒溶液的生菜、菠菜、白菜樣本的熒光光譜,其中500 nm附近處為啶蟲(chóng)脒農(nóng)藥的熒光發(fā)射波長(zhǎng)[15],而690和735 nm則是葉片中葉綠素的熒光發(fā)射波長(zhǎng)[16]。因此,本文選用500 nm作為植物葉片表面啶蟲(chóng)脒溶液的特征峰。啶蟲(chóng)脒受到355 nm的紫外熒光激發(fā)時(shí),啶蟲(chóng)脒溶液熒光發(fā)射波峰位于500 nm附近,其熒光強(qiáng)度與農(nóng)藥濃度在1~5 mg/L范圍內(nèi)成正比,啶蟲(chóng)脒標(biāo)準(zhǔn)溶液的最佳激發(fā)波長(zhǎng)為350 nm,最佳發(fā)射波長(zhǎng)為500 nm,該結(jié)果與文獻(xiàn)[17-18]研究結(jié)果一致。

        2 儀器設(shè)計(jì)

        2.1 系統(tǒng)框架

        農(nóng)藥殘留檢測(cè)儀器主要由檢測(cè)電路模塊和光路模塊兩個(gè)模塊組成,總體結(jié)構(gòu)圖如圖3所示。

        a. 原理圖

        a. Law diagram

        1、2.光源激發(fā)模塊 3.透鏡 4.固定圈 5.反射杯 6.光電二極管 7.待檢測(cè)葉片放置臺(tái)

        1,2. Light source excitation module 3Lens 4.Fixing ring 5.Reflector cup 6.Photodiode 7.Placement table for the leaf to be inspected

        b. 結(jié)構(gòu)示意圖

        b. Structure diagram

        圖3 儀器結(jié)構(gòu)圖

        Fig.3 Schematic diagram of the instrument structure

        光路模塊主要采用的反射式光路結(jié)構(gòu),激發(fā)光源與光電二極管位于葉片表面的同一側(cè)。光源激發(fā)模塊由中心波長(zhǎng)為350 nm的照射鏡頭組成,每個(gè)照射鏡頭由窄帶濾光片和LED組成,模塊結(jié)構(gòu)簡(jiǎn)單,有利于后續(xù)儀器模塊化組裝。干涉濾光片選取窄帶濾光片,該濾波片的中心波長(zhǎng)為350 nm,透過(guò)率大于80%,截止深度為OD4,能夠有效降低其他波長(zhǎng)的干擾光通過(guò)。

        啶蟲(chóng)脒農(nóng)藥的吸收光波帶較窄,因此使用窄帶濾光片,有效的減少二級(jí)光譜的干擾。光電二極管前端的干涉濾光片選用誘導(dǎo)透射膜系帶通濾光片,其中心波長(zhǎng)為500 nm,透過(guò)率為70%,帶寬為20 nm,截止深度為OD4。光電二極管選用的S9219-01型光電二極管,其光譜響應(yīng)范圍為380~780 nm,靈敏度峰值響應(yīng)范圍較寬,約480~550 nm,感光靈敏度為0.24 A/W,暗電流為10 pA。

        2.2 光路設(shè)計(jì)

        檢測(cè)植物葉片表面農(nóng)藥殘留時(shí),檢測(cè)結(jié)果易受到葉片表面平滑度與自身生物活性的干擾[19]。經(jīng)典漫反射與鏡面反射光路結(jié)構(gòu)都不能有效的消除葉片表面農(nóng)藥殘留檢測(cè)時(shí)干擾信號(hào)的影響,因此需要設(shè)定植物葉片表面農(nóng)藥殘留檢測(cè)系統(tǒng)的條件參數(shù)(最佳激發(fā)波長(zhǎng)與最佳發(fā)射波長(zhǎng)、光源照射角度、光源照射距離等)。

        2.2.1 光源照射角度的優(yōu)化

        光源照射角度、位置不同,干擾信號(hào)的位置與強(qiáng)度也會(huì)有所不同,因此需要選擇最佳的光源照射角度[20]。圖4為啶蟲(chóng)脒標(biāo)準(zhǔn)溶液同樣濃度下3個(gè)光照角度下生菜葉片樣本的熒光光譜圖,在不同的光照角度下,啶蟲(chóng)脒標(biāo)準(zhǔn)溶液的最佳發(fā)射峰均為500 nm,但熒光的強(qiáng)度有著明顯的差異。當(dāng)光照角度為45°時(shí),熒光強(qiáng)度最大,光照角度設(shè)置為60°時(shí),熒光強(qiáng)度次之,當(dāng)光照角度設(shè)置為30°時(shí),熒光強(qiáng)度最低。

        由圖4可知,入射光角度對(duì)植物葉片表面啶蟲(chóng)脒農(nóng)藥激發(fā)出的熒光信號(hào)的強(qiáng)度存在著很大的影響,當(dāng)光源照射角度為45°時(shí),生菜葉片表面啶蟲(chóng)脒農(nóng)藥激發(fā)出的熒光信號(hào)強(qiáng)度最強(qiáng)。

        2.2.2 光源照射距離的優(yōu)化

        檢測(cè)植物葉片表面的農(nóng)藥殘留是根據(jù)熒光信號(hào)的強(qiáng)度來(lái)定量的[21],須保證每次所檢測(cè)到的熒光信號(hào)所對(duì)應(yīng)的農(nóng)藥物質(zhì)的量是一致的,需要保證葉片的大小與LED的光斑大小一致,讓整個(gè)待檢測(cè)葉片全部被光斑覆蓋。但是隨著LED與待檢測(cè)葉片之間距離的變大,LED光斑面積會(huì)增大,較大的光斑面積會(huì)影響光照強(qiáng)度,進(jìn)而影響農(nóng)藥發(fā)射熒光的強(qiáng)度[22]。為了提高檢測(cè)系統(tǒng)的精度,需要綜合考慮LED燈光斑面積與LED燈光照強(qiáng)度兩個(gè)特性參數(shù),對(duì)檢測(cè)系統(tǒng)的光源照射距離進(jìn)行優(yōu)化[23]。

        根據(jù)照度的余弦法則,由LED激發(fā)出的光在待檢測(cè)葉片上的照度為

        式中為L(zhǎng)ED的發(fā)光強(qiáng)度,cd;為光源照度,lx;為待檢測(cè)葉片距離光源的直線距離,cm;為光源距離待檢測(cè)葉片的垂直距離,cm。為光源與待檢測(cè)葉片之間的夾角,(°)。

        可見(jiàn)隨著LED激發(fā)光源到待檢測(cè)葉片之間距離的增加,照射到葉片表面上的光照度會(huì)急劇減小。此外,LED的照射光在空氣中傳播,經(jīng)傳播距離后光斑面積[24]為

        式中為視場(chǎng)角,rad;為光斑面積,cm2;

        由式(4)可知照射到葉片表面上的光照度與光斑面積成反比。由于設(shè)置待檢測(cè)葉片面積為4 cm2,因此設(shè)置光斑面積為4π cm2,略大于葉片面積。設(shè)計(jì)傳感器的視場(chǎng)角為30°,則

        通過(guò)計(jì)算可知,光電二極管與透鏡之間的距離為1.1 cm,此時(shí)光電二極管可有效接收到待檢測(cè)葉片的反射光。

        2.3 電路設(shè)計(jì)

        測(cè)量光譜信號(hào)時(shí),光電二極管接收到的熒光信號(hào)為微安級(jí)別的微弱信號(hào),光電二極管在接收熒光信號(hào)并進(jìn)行光電轉(zhuǎn)換的過(guò)程中,不僅會(huì)輸出檢測(cè)電壓信號(hào)或者檢測(cè)電流信號(hào),還會(huì)輸出無(wú)用的噪聲電壓或者噪聲電流[26]。針對(duì)這個(gè)問(wèn)題,本文設(shè)計(jì)的電路主要包括電流電壓轉(zhuǎn)換電路、二級(jí)放大電路、帶通濾波電路等,能夠滿足將微弱信號(hào)放大并減小噪聲的干擾的要求[27]。

        運(yùn)算放大器OPA380具有高精度、高穩(wěn)定性和低噪聲的優(yōu)點(diǎn),故選擇由運(yùn)算放大器OPA380設(shè)計(jì)電流放大型檢測(cè)電路,其輸出電壓與輸入短路光電流成正比,,輸出電壓信號(hào)與輸入短路光電流成正比。此時(shí)的輸出電壓為毫伏級(jí),為了滿足模數(shù)轉(zhuǎn)換的要求,需要將毫伏級(jí)的電壓信號(hào)進(jìn)行放大。因此,采用INA128芯片設(shè)計(jì)了一個(gè)增益可調(diào)的低燥放大電路,具體的增益倍數(shù)為:=1+50/1。其中,1為外接電阻的阻值,設(shè)置為2 kΩ,電路的實(shí)際增益是26,可以將輸出電壓放大至伏級(jí),滿足A/D轉(zhuǎn)換芯片的采樣要求。然后通過(guò)帶通濾波電路進(jìn)行信號(hào)選擇,對(duì)不需要的頻率信號(hào)進(jìn)行抑制,可以有效的降低電路中的白噪聲。對(duì)于低通濾波電路,電容一般選取1 000 pF,對(duì)于高通濾波器,電容一般選取0.1F,此外光源驅(qū)動(dòng)電路采用的是1 kHz的PWM波調(diào)制,隨后根據(jù)截至頻率公式,計(jì)算出R3和R4的阻值分別為20 和1 kΩ。OUT為電路的輸出端,檢測(cè)電路如圖6所示。

        運(yùn)算放大器OPA380采用零偏置,光電二極管會(huì)產(chǎn)生一個(gè)很小的正向或者反向偏置電壓[28],經(jīng)過(guò)電路的放大偏置電壓會(huì)對(duì)檢測(cè)電路的精度產(chǎn)生很大的影響。因此在本文檢測(cè)電路中,運(yùn)算放大器的兩端還需要與一個(gè)基準(zhǔn)電壓源VREF相連接,基準(zhǔn)電壓源具有自身穩(wěn)定的特性,波動(dòng)較小,可以有效的起到抗干擾的作用[29]。

        3 儀器性能測(cè)試與標(biāo)定

        3.1 試驗(yàn)數(shù)據(jù)獲取

        選擇新鮮生菜葉片樣品60片,避免莖干部分,裁剪葉片成表面大小為4 cm2的葉片塊。在葉片塊上分別用移液槍移取不同濃度的啶蟲(chóng)脒溶液1 mL。待自然風(fēng)干10 min之后,利用自制儀器測(cè)量不同濃度下的農(nóng)藥殘留值,為了減小測(cè)量誤差,測(cè)量3次取平均值。

        隨后使用熒光光譜數(shù)據(jù)采集儀器采集葉片表面的熒光光譜,確定啶蟲(chóng)脒標(biāo)準(zhǔn)溶液對(duì)應(yīng)的最佳激發(fā)波長(zhǎng)處的熒光光強(qiáng)。將測(cè)定完畢的每組葉片,將樣品置于50 mL的燒杯中,加入10 mL HCl浸泡,燒杯封口用超聲震蕩,萃取液轉(zhuǎn)移至100 mL的燒杯中使用乙腈溶液定容,測(cè)量其熒光強(qiáng)度。建立0~5 mg/L范圍內(nèi)的啶蟲(chóng)脒標(biāo)準(zhǔn)溶液的標(biāo)準(zhǔn)工作曲線,將上述測(cè)得的萃取液的熒光強(qiáng)度與所建啶蟲(chóng)脒標(biāo)準(zhǔn)溶液工作曲線進(jìn)行對(duì)比,從而定量萃取液中啶蟲(chóng)脒的量,進(jìn)而換算成葉片表面啶蟲(chóng)脒的量。

        3.2 試驗(yàn)驗(yàn)證

        3.2.1 重復(fù)性驗(yàn)證

        儀器重復(fù)性是衡量?jī)x器性能的一個(gè)重要指標(biāo)[30]。本文對(duì)生菜葉片進(jìn)行反射電壓測(cè)量,測(cè)量結(jié)果如圖7所示。

        由測(cè)試結(jié)果可知,檢測(cè)儀器在4個(gè)濃度下的輸出電壓基本保持不變,最大的標(biāo)準(zhǔn)偏差僅為4%,表明檢測(cè)儀器重復(fù)性良好,輸出結(jié)果穩(wěn)定。

        3.2.2 精度驗(yàn)證

        啶蟲(chóng)脒農(nóng)藥殘留檢測(cè)中,LED光源發(fā)出檢測(cè)熒光信號(hào),光電二極管接收照射到待檢測(cè)葉片表面所反射回來(lái)的熒光信號(hào),經(jīng)檢測(cè)電路處理,將模擬量的熒光信號(hào)轉(zhuǎn)換為能被檢測(cè)到數(shù)字量電壓信號(hào),該電壓信號(hào)標(biāo)記為反射電壓??梢愿鶕?jù)檢測(cè)數(shù)據(jù)建立相對(duì)熒光強(qiáng)度(通過(guò)檢測(cè)電路將熒光強(qiáng)度換算成的電壓值)與農(nóng)藥濃度的模型,測(cè)定得到的啶蟲(chóng)脒農(nóng)藥相對(duì)熒光強(qiáng)度如表1所示。

        表1 啶蟲(chóng)脒農(nóng)藥濃度標(biāo)準(zhǔn)曲線的相對(duì)熒光強(qiáng)度表

        注:相對(duì)熒光強(qiáng)度用換算的電壓值表示。

        Note: Reflected voltage is converted into relative fluorescence intensity.

        對(duì)測(cè)量數(shù)據(jù)進(jìn)行擬合,相對(duì)熒光強(qiáng)度(通過(guò)檢測(cè)電路將熒光強(qiáng)度換算成的電壓值)與農(nóng)藥殘留量擬合的線性方程為=1.481+0.876 3,式中為農(nóng)藥殘留值,為反射電壓值。農(nóng)藥殘留的預(yù)測(cè)值和實(shí)測(cè)值的相關(guān)圖如圖8所示,方程決定系數(shù)2為0.875,均方根誤差RMSE為0.405 mg/L。

        4 結(jié) 論

        本文以啶蟲(chóng)脒農(nóng)藥殘留的植物葉片為研究對(duì)象,將熒光光譜技術(shù)應(yīng)用到葉片表面農(nóng)藥含量的無(wú)損檢測(cè)中,采集了啶蟲(chóng)脒溶液在葉片表面的熒光光譜,確定啶蟲(chóng)脒溶液的最佳激發(fā)波長(zhǎng)和最佳發(fā)射波長(zhǎng)分別為355和500 nm,確定光源與光電信號(hào)接收器的特征波長(zhǎng)分別為350和500 nm。在此基礎(chǔ)上,根據(jù)熒光檢測(cè)原理選擇了相應(yīng)的光學(xué)器件,優(yōu)化了光路結(jié)構(gòu)的條件參數(shù),確定檢測(cè)儀器的最佳光照角度為45°,設(shè)定光源與待檢測(cè)葉片之間的最佳垂直距離為3.46 cm。同時(shí),設(shè)計(jì)相關(guān)檢測(cè)電路,用于獲取表征反射光強(qiáng)度的電壓值,構(gòu)建標(biāo)定方程,在此基礎(chǔ)上建立了便攜式檢測(cè)儀器測(cè)量值關(guān)系模型,關(guān)系模型決定系數(shù)為0.875,均方根誤差為0.405 mg/L。本研究所設(shè)計(jì)的便攜式檢測(cè)儀器對(duì)葉片表面農(nóng)藥殘留有著良好的檢測(cè)效果。

        本文已經(jīng)驗(yàn)證了葉片表面農(nóng)藥殘留的可行性,為研制更具普適性的便攜式農(nóng)殘檢測(cè)儀器提供參考。本文試驗(yàn)設(shè)置的農(nóng)藥梯度范圍僅包含典型農(nóng)藥梯度范圍,但在實(shí)際農(nóng)藥噴灑過(guò)程中,殘留在葉片表面上的農(nóng)藥含量可能因?yàn)閲姙⑦^(guò)程中角度或者遮擋等因素而低于本文中設(shè)置的最低農(nóng)藥梯度,因此如何進(jìn)一步提高農(nóng)藥的最低檢測(cè)限,尚需要進(jìn)一步地深入研究。

        [1] 孫俊,張梅霞,毛罕平,等. 基于高光譜圖像的桑葉農(nóng)藥殘留種類鑒別研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):251-256.

        Sun Jun, Zhang Meixia, Mao Hanping, et al. Identification of pesticide residues on mulberry leaves based on hyperspectral imaging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 251-256. (in Chinese with English abstract)

        [2] Chen H P, Wang X L, Liu P X, et al. Determination of three typical metabolites of pyrethroid pesticides in tea using a modified QuEChERS sample preparation by Ultra-High performance liquid chromatography tandem mass spectrometry[J]. Foods, 2021, 10(1): 189.

        [3] Zhou Q X, Wu Y L, Sun Y, et al. Magnetic polyamidoamine dendrimers for magnetic separation and sensitive determination of organochlorine pesticides from water samples by high-performance liquid chromatography[J]. Journal of Environmental Sciences, 2021, 102(4): 64-73.

        [4] Li S, Yu P P, Zhou C, et al. Analysis of pesticide residues in commercially available chenpi using a modified QuEChERS method and GC-MS/MS determination[J]. Journal of Pharmaceutical Analysis, 2020, 10(1): 60-69.

        [5] 陳菁菁,彭彥昆,李永玉,等. 基于高光譜熒光技術(shù)的葉菜農(nóng)藥殘留快速檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(14):1-5.

        Chen Jingjing, Peng Yankun, Li Yongyu, et al. Rapid detection of vegetable pesticide residue based on hyperspectral fluorescence imaging technolog[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(14): 1-5. (in Chinese with English abstract)

        [6] Lin G H, Ji R D, Yao H, et al. Fluorescence detection of multiple kinds of pesticides with multi hidden layers neural network algorithm[J]. Optik, 2020, 211: 164-170.

        [7] 王玉田,王忠東,關(guān)曉晶. 一種檢測(cè)西維因農(nóng)藥殘留的光纖式熒光光譜系統(tǒng)的研究[J]. 分析測(cè)試技術(shù)與儀器,2004(4):210-213.

        Wang Yutian, Wang Zhongdong, Guan Xiaojing. Research on a fiber-optic fluorescence spectroscopy system for detecting pesticide residues in carbaryl[J]. Analysis and Testing Technology and Instruments, 2004(4): 210-213. (in Chinese with English abstract)

        [8] 郭立泉,尹煥才,田晶晶. LED激發(fā)光源的熒光物質(zhì)快速檢測(cè)系統(tǒng)設(shè)計(jì)[J]. 傳感器與微系統(tǒng),2017,36(5):106-108.

        Guo Liquan, Yin Huancai, Tian Jingjing. Design of a rapid detection system for fluorescent substances based on LED excitation light source[J]. Sensors and Microsystems, 2017, 36(5): 106-108. (in Chinese with English abstract)

        [9] 龔志遠(yuǎn),李軼凡,劉燕德,等. 光源照射角度對(duì)蘋果糖度近紅外光譜檢測(cè)的影響研究[J]. 激光與光電子學(xué)進(jìn)展,2016,53(2):241-246.

        Gong Zhiyuan, Li Yifan, Liu Yande, et al. Research on the influence of light source irradiation angle onnear-infrared spectroscopy detection of apple sugar content[J]. Progress in Laser and Optoelectronics, 2016, 53(2): 241-246. (in Chinese with English abstract)

        [10] 孟夏,謝東輝,汪艷,等. 葉片多角度偏振光譜特性影響因素的實(shí)驗(yàn)研究[J]. 光譜學(xué)與光譜分析,2014,34(3):619-624.

        Meng Xia, Xie Donghui, Wang Yan, et al. Experimental study on the influence factors of the multi-anglepolarization spectrum characteristics of leaves[J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 619-624. (in Chinese with English abstract)

        [11] 鄭建鴻,吳瑞梅,熊俊飛,等. 基于光譜角算法的鮮茶葉表面農(nóng)藥殘留熒光高光譜圖像無(wú)損檢測(cè)研究[J]. 激光雜志,2016,37(6):57-60.

        Zheng Jianhong, Wu Ruimei, Xiong Junfei, et al. Research on non-destructive detection of pesticide residues on the surface of fresh tea using fluorescence hyperspectral images based on spectral angle algorithm[J]. Laser Journal, 2016, 37(6): 57-60. (in Chinese with English abstract)

        [12] 楊杰,吳凡. 粗糙表面可見(jiàn)光散射特性的實(shí)驗(yàn)研究[J]. 中國(guó)測(cè)試,2009,35(2):125-128.

        Yang Jie, Wu Fan. Experimental study on the visible light scattering characteristics of rough surfaces [J].China Test, 2009, 35(2): 125-128. (in Chinese with English abstract)

        [13] 蔡世炎,游文瑋,李耀群. 導(dǎo)數(shù)同步熒光法快速檢測(cè)香菇中的多菌靈[J]. 分析測(cè)試學(xué)報(bào),2007(1):117-119.

        Cai Shiyan, You Wenwei, Li Yaoqun. Derivative synchronous fluorescence method for rapid detection of carbendazim in shiitake mushrooms[J]. Chinese Journal of Analysis Testing, 2007(1): 117-119. (in Chinese with English abstract)

        [14] 許良,劉紅婕,黃進(jìn),等. 激光誘導(dǎo)時(shí)間分辨固體表面熒光光譜系統(tǒng)[J]. 強(qiáng)激光與粒子束,2012,24(8):1961-1964.

        Xu Liang, Liu Hongjie, Huang Jin, et al. Laser-induced time-resolved solid surface fluorescence spectroscopy system[J]. High Power Laser and Particle Beam, 2012, 24(8): 1961-1964. (in Chinese with English abstract)

        [15] 季仁東,趙志敏,張林,等. 蘋果汁中吡蟲(chóng)啉農(nóng)藥殘留熒光檢測(cè)研究[J]. 光譜學(xué)與光譜分析,2013,33(3):668-671.

        Ji Rendong, Zhao Zhimin, Zhang Lin, et al. Fluorescence detection of imidacloprid pesticide residues in apple juice[J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 668-671. (in Chinese with English abstract)

        [16] 王琳琳,于海業(yè),張蕾,等. 基于葉綠素?zé)晒夤庾V的生菜硝酸鹽含量檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):279-283.

        Wang Linlin, Yu Haiye, Zhang Lei, et al. Detection of nitrate content in lettuce based on chlorophyll fluorescence spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 279-283. (in Chinese with English abstract)

        [17] 王忠東,王玉田. 常用農(nóng)藥熒光特性的理論與實(shí)驗(yàn)[J]. 發(fā)光學(xué)報(bào),2005(1):124-128.

        Wang Zhongdong, Wang Yutian. Theories and experiments on the fluorescence characteristics of commonly used pesticides[J]. Acta Luminescence, 2005(1): 124-128. (in Chinese with English abstract)

        [18] 王澤. 植物農(nóng)藥殘留的三維熒光光譜特征提取及識(shí)別方法研究[D]. 西安:西安理工大學(xué),2018.

        Wang Ze. Research on Feature Extraction and Recognition Method of Three-dimensional Fluorescence Spectra of Plant Pesticide Residues[D]. Xi'an: Xi'an University of Technology, 2018. (in Chinese with English abstract)

        [19] 薛龍,黎靜,劉木華,等. 熒光光譜檢測(cè)臍橙表面敵敵畏殘留試驗(yàn)研究[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,33(2):394-398.

        Xue Long, Li Jing, Liu Muhua, et al. A Study on Detection of dichlorvosresidue on navel orange surface by means of fluorescence spectrum[J]. Acta Agriculturae Universitis Jiangxiensis, 2011, 33(2): 394-398. (in Chinese with English abstract)

        [20] 倪軍,王婷婷,姚霞,等. 作物生長(zhǎng)信息獲取多光譜傳感器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(5):207-212.

        Ni Jun, Wang Tingting, Yao Xia, et al. Design and experiments for multi-spectral sensor for rice and wheat growth information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 207-212. (in Chinese with English abstract)

        [21] 杜克釗,朱亞先,王萍,等. 固體表面熒光法測(cè)定吸附于白骨壤和木欖葉片上的蒽[J]. 分析試驗(yàn)室,2009,28(4):81-83.

        Du Kezhao, Zhu Yaxian, Wang Ping, et al. Determination of anthracene adsorbed on avicennia marina and aralia vulgaris leaves by solid surface fluorescence method[J]. Laboratory of Analysis, 2009, 28(4): 81-83. (in Chinese with English abstract)

        [22] Gong X Y, Tang M, Gong Z J, et al. Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling[J]. Food Chemistry, 2019, 295(15): 254-258.

        [23] 謝欣茹,楊波,潘帥,等. 多通道PCR熒光檢測(cè)儀的光學(xué)系統(tǒng)設(shè)計(jì)[J]. 光學(xué)技術(shù),2019,45(5):531-534,640.

        Xie Xinru, Yang Bo, Pan Shuai, et al. Optical system design of multi-channel PCR fluorescence detector[J]. Optics Technology, 2019, 45(5): 531-534, 640. (in Chinese with English abstract)

        [24] 郭培源. 光電檢測(cè)技術(shù)與應(yīng)用[M]. 北京:北京航空航天大學(xué)出版社,2015:114-115.

        [25] 孔孟晉,徐君,閻巍,等. 微型近紅外光譜儀低功耗系統(tǒng)的設(shè)計(jì)[J]. 分析儀器,2018(6):20-26.

        Kong Mengjin, Xu Jun, Yan Wei, et al. Design of low power consumption system of miniature near infrared spectrometer[J]. Analytical Instruments, 2018(6): 20-26. (in Chinese with English abstract)

        [26] 賀冬仙,胡娟秀. 基于葉片光譜透過(guò)特性的植物氮素測(cè)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):214-218.

        He Dongxian, Hu Juanxiu. Determination of plant nitrogen based on leaf spectrum transmission characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 214-218. (in Chinese with English abstract)

        [27] 鄒兵,侯加林,李民贊. 基于光譜學(xué)和ARM的番茄葉綠素檢測(cè)儀的開(kāi)發(fā)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(增刊2):223-227.

        Zou Bing, Hou Jialin, Li Minzan. Development of tomato chlorophyll detector based on spectroscopy and ARM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.2): 223-227. (in Chinese with English abstract)

        [28] 丁永前,李楊,譚星祥,等. 冠層反射光譜測(cè)量中主動(dòng)光源光譜穩(wěn)定性控制[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):284-290.

        Ding Yongqian, Li Yang, Tan Xingxiang, et al. Active light source spectral stability control in canopy reflectance spectrum measurement[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(6): 284-290. (in Chinese with English abstract)

        [29] 劉乃森,倪軍,董繼飛,等. 多光譜作物生長(zhǎng)傳感器溫度特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(21):157-164.

        Liu Naisen, Ni Jun, Dong Jifei, et al. Temperature characteristic experiment of multispectral crop growth sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 157-164. (in Chinese with English abstract)

        [30] 陳佳俊,孫俊,李亞婷,等. 反射式葉片葉綠素含量檢測(cè)儀的優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程,2020,10(6):28-35.

        Chen Jiajun, Sun Jun, Li Yating, et al. Optimization and experiment of reflection type leaf chlorophyll content detector[J]. Agricultural Engineering, 2020, 10(6): 28-35. (in Chinese with English abstract)

        Design and test of a portable detection instrument for pesticide residues on crop leaves

        Sun Jun, Tang Baowen, Zhou Xin, Yao Kunshan, Hu Shuangqi, Zhang Lin

        (212013,)

        Fluorescence has unique luminescence characteristics. The combination of excitation light and emission light can greatly reduce the interference of background signals and greatly improve the sensitivity of the detection system. Many scholars at home and abroad obtain the optimal excitation and emission wavelengths of the analyte based on the principle of photoluminescence of fluorescent substances, and have developed miniaturized, low-cost dedicated instruments. However, the current portable instruments which focus on detecting pesticide residues in the solution system cannot realize directly detection pesticide residues on the surface of vegetable leaves. In this study, a feasible model for pesticide residues and fluorescence intensity on the leaf surface was proposed, and a portable detection instrument for pesticide residues on the leaf surface was designed by optimizing the light path structure to suppress the interference of stray light on the leaf surface. Firstly, the best excitation wavelength and best emission wavelength of acetamiprid pesticide in standard solution and three plant leaves were determined as 350 and 500 nm, respectively. An LED with a central wavelength of 350 nm and a maximum drive current of 100 mA was selected as the excitation light source, and a photodiode with a peak response range from 480 to 580 nm was used as the photoelectric detection device. A filter with a center wavelength of 500 nm was used to only let through the emission wavelength of the acetamiprid pesticide pass to reduce the interference of the secondary spectrum. Then the optimal parameters of the optical path are determined. The fluorescence experiments results showed that the fluorescence intensity excited by acetamiprid pesticide on the leaf surface was the highest when the light Angle was 45°. By calculating the optical path size, it was found that the illumination of the blade was the largest when the direct distance from the LED laser source to the blade was 4.89 cm and the vertical distance was 3.46 cm. In addition, in view of the diffuse reflection problem of the light source illuminating the surface of the blade, a diffuse reflection device was designed to achieve the maximum absorption of light energy. The control circuit, driving circuit and detection circuit were designed according to the requirement of weak fluorescence signal detection. A signal detection system was designed with STM32 chip as the main control chip to collect the voltage signal of the detection circuit, and the pesticide residue value was calculated according to the working curve of pesticide residue value. The PWM wave was output to modulate the LED light source and the difference between the frequency of detecting light and the frequency of ambient light can suppress the interference of ambient light to the light source. Then, SPI and I2C communication protocols were used to communicate with AD acquisition chip and OLED display screen to realize real-time detection of pesticide residues and real-time display of pesticide residues. Finally, the calibration equation was established and a portable detector was designed to detect pesticide residues. The measuring instrument was calibrated and tested.The determination coefficient of the calibration equation reached 0.875, and the root mean square error is 0.405 mg/L. The portable fluorescence spectrometer designed in this study can quickly, accurately and non-destructively detect pesticide residues on the surface of leaves, which provided a reference for the development of a more universal portable detection instrument.

        crops;pesticides; leaves; fluorescence spectroscopy; optical system; detection equipment

        2021-02-10

        2021-03-25

        江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程(三期)資助項(xiàng)目(PAPD-2018-87);常州市社會(huì)發(fā)展科技支撐項(xiàng)目(CE20205031);江蘇大學(xué)農(nóng)業(yè)裝備學(xué)部項(xiàng)目(4121680001);江蘇省研究生科研與實(shí)踐創(chuàng)新計(jì)劃(SJCX19_0557)

        孫俊,教授,博士,博士生導(dǎo)師。研究方向?yàn)橛?jì)算機(jī)技術(shù)在農(nóng)業(yè)工程中的應(yīng)用。Email:sun2000jun@ujs.edu.cn

        10.11975/j.issn.1002-6819.2021.07.008

        S237

        A

        1002-6819(2021)-07-0061-07

        孫俊,唐寶文,周鑫,等. 作物葉片表面農(nóng)藥殘留的便攜式檢測(cè)儀器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):61-67. doi:10.11975/j.issn.1002-6819.2021.07.008 http://www.tcsae.org

        Sun Jun, Tang Baowen, Zhou Xin, et al. Design and test of a portable detection instrument for pesticide residues on crop leaves[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 61-67. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.008 http://www.tcsae.org

        猜你喜歡
        檢測(cè)
        QC 檢測(cè)
        “不等式”檢測(cè)題
        “一元一次不等式”檢測(cè)題
        “一元一次不等式組”檢測(cè)題
        “幾何圖形”檢測(cè)題
        “角”檢測(cè)題
        “有理數(shù)的乘除法”檢測(cè)題
        “有理數(shù)”檢測(cè)題
        “角”檢測(cè)題
        “幾何圖形”檢測(cè)題
        亚洲国产成人精品福利在线观看| 极品老师腿张开粉嫩小泬| 精品三级av无码一区| 久久久久99精品成人片试看| 国产精品一区二区AV不卡| 国产视频激情视频在线观看| 国产欧美一区二区精品久久久 | 两个人免费视频大全毛片| 男女视频一区二区三区在线观看| 97人伦影院a级毛片| 亚洲欧美日韩综合久久| 国产一起色一起爱| 亚洲av熟女传媒国产一区二区| 精品人妻大屁股白浆无码| 午夜福利电影| 国产 在线播放无码不卡| 一区二区在线观看精品在线观看| 国产人妻熟女高跟丝袜图片| 精品丝袜人妻久久久久久| 国产传媒剧情久久久av| 精品高清免费国产在线| 性高湖久久久久久久久| 综合五月网| 亚洲天堂一区二区三区视频| av无码精品一区二区三区| 国产在线不卡一区二区三区| 娇柔白嫩呻吟人妻尤物| 国内偷拍精品一区二区| 中文无码伦av中文字幕| 久久无码人妻一区二区三区午夜| 无码人妻少妇色欲av一区二区| 人妻被猛烈进入中文字幕| 久久久精品国产三级精品| 大学生高潮无套内谢视频| 亚洲国产中文在线二区三区免| 色婷婷久久99综合精品jk白丝| 日韩在线观看入口一二三四| 国产97色在线 | 亚洲| 亚洲欧洲一区二区三区波多野| 亚洲一区二区精品在线| 亚洲熟妇自偷自拍另欧美|