亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于RAdam卷積神經(jīng)網(wǎng)絡(luò)的水稻生育期圖像識(shí)別

        2021-06-28 00:49:34徐建鵬琚書(shū)存
        關(guān)鍵詞:水稻優(yōu)化模型

        徐建鵬,王 杰,徐 祥,琚書(shū)存

        ·農(nóng)業(yè)信息與電氣技術(shù)·

        基于RAdam卷積神經(jīng)網(wǎng)絡(luò)的水稻生育期圖像識(shí)別

        徐建鵬1,2,王 杰1,2,徐 祥1,琚書(shū)存1,2

        (1. 安徽省農(nóng)村綜合經(jīng)濟(jì)信息中心,合肥 230031;2. 安徽省農(nóng)業(yè)生態(tài)大數(shù)據(jù)工程實(shí)驗(yàn)室,合肥 230031)

        為了解決現(xiàn)階段水稻發(fā)育期信息的獲取主要依靠人工觀測(cè)的效率低、主觀性強(qiáng)等問(wèn)題,該研究提出一種基于Rectified Adam(RAdam)優(yōu)化器的ResNet50卷積神經(jīng)網(wǎng)絡(luò)圖像識(shí)別方法,開(kāi)展水稻關(guān)鍵生育期的自動(dòng)識(shí)別。連續(xù)2 a對(duì)12塊試驗(yàn)田的水稻物候特征進(jìn)行持續(xù)自動(dòng)拍攝,對(duì)采集的水稻圖像進(jìn)行預(yù)處理,得到水稻各發(fā)育期分類圖像數(shù)據(jù)集;采用ExG因子和大津法(Otsu)算法相結(jié)合的方法對(duì)水稻圖像分割,減小稻田背景干擾;對(duì)比分析了VGG16、VGG19、ResNet50和Inception v3四種模型下水稻生育期圖像分級(jí)識(shí)別的性能,選取性能較優(yōu)網(wǎng)絡(luò)模型并進(jìn)行了網(wǎng)絡(luò)參數(shù)調(diào)優(yōu);對(duì)比試驗(yàn)了不同優(yōu)化器下模型準(zhǔn)確率和損失值的變化,選取了RAdam優(yōu)化器。結(jié)果表明,采取基于RAdam優(yōu)化器卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建的模型,在真實(shí)場(chǎng)景下分類識(shí)別準(zhǔn)確率達(dá)到97.33%,網(wǎng)絡(luò)穩(wěn)定性高、收斂速度快,為水稻生育期自動(dòng)化觀測(cè)提供了有效方法。

        圖像識(shí)別;神經(jīng)網(wǎng)絡(luò);模型;水稻;RAdam;ResNet50;生育期

        0 引 言

        水稻是中國(guó)最重要的糧食作物之一,全國(guó)水稻種植面積約占糧食作物面積的30%,產(chǎn)量接近糧食總產(chǎn)量的一半。水稻的生育期監(jiān)測(cè)是指在水稻生育過(guò)程中,對(duì)各生長(zhǎng)發(fā)育時(shí)期的形態(tài)變化進(jìn)行記載的過(guò)程,反映了水稻的生長(zhǎng)狀態(tài)信息。農(nóng)業(yè)氣象服務(wù)業(yè)務(wù)通過(guò)分析作物各生育期與氣象條件之間的關(guān)系,幫助農(nóng)田管理者及時(shí)規(guī)劃田間管理活動(dòng)(如灌溉和施肥等),還可以為作物長(zhǎng)勢(shì)評(píng)估及估產(chǎn)提供重要的參考[1]。因此,對(duì)水稻生育期的觀測(cè)技術(shù)開(kāi)展研究具有重要意義。

        現(xiàn)階段水稻生育期信息的獲取主要依靠人工觀測(cè),觀測(cè)人員按照農(nóng)業(yè)氣象觀測(cè)規(guī)范中的定義和描述,對(duì)水稻進(jìn)行田間實(shí)測(cè),不僅效率低而且需耗費(fèi)大量的人力物力,無(wú)法滿足實(shí)時(shí)、快速的監(jiān)測(cè)需求。遙感具有近實(shí)時(shí)、大面積和快速無(wú)損的優(yōu)勢(shì),為農(nóng)作物物候期識(shí)別提供了有效的技術(shù)手段。劉丹等[2]利用衛(wèi)星遙感技術(shù)提取研究區(qū)水稻種植分布,分類精度達(dá)89.19%;孫華生等[3]利用遙感方法,根據(jù)水稻在移栽期、分蘗初期、抽穗期和成熟期的增強(qiáng)型的歸一化植被指數(shù)(Enhanced Vegetation Index,EVI)變化特征對(duì)生育期進(jìn)行識(shí)別,水稻各生長(zhǎng)發(fā)育期的絕對(duì)誤差大部分小于16 d。隨著以深度學(xué)習(xí)為代表的智能化技術(shù)在場(chǎng)景識(shí)別、物體分類等方面的研究越來(lái)越成熟,利用深度學(xué)習(xí)識(shí)別物體效率快、準(zhǔn)確度高[3],逐漸被用于農(nóng)作物物候特性的識(shí)別。白曉東[4]利用圖像識(shí)別開(kāi)展了水稻的移栽期、分蘗期和抽穗期自動(dòng)化觀測(cè)研究,自動(dòng)檢測(cè)結(jié)果與人工觀測(cè)記錄誤差基本在3 d以內(nèi);楊振忠等[5]開(kāi)展了基于機(jī)器學(xué)習(xí)結(jié)合植被指數(shù)閾值的水稻關(guān)鍵生育期識(shí)別的研究,構(gòu)建基于K近鄰分類(K-NearestNeighbor,KNN)算法的水稻生育期識(shí)別模型,對(duì)無(wú)人機(jī)數(shù)據(jù)的識(shí)別準(zhǔn)確率可達(dá)86.04%;Ikasari等[6]利用遙感技術(shù)和深度學(xué)習(xí)技術(shù)實(shí)現(xiàn)水稻生育期的識(shí)別,提出的采用多正則化、Dropout和批歸一化的多層神經(jīng)網(wǎng)絡(luò)算法(MultiLayer Perceptron,MLP)算法對(duì)該數(shù)據(jù)集識(shí)別的準(zhǔn)確率達(dá)到70.28%;Gupta等[7]將ResNet50預(yù)訓(xùn)練的卷積神經(jīng)網(wǎng)絡(luò)用于雜草和農(nóng)作物分類識(shí)別中,采取ResNet50神經(jīng)網(wǎng)絡(luò)對(duì)農(nóng)作物分類識(shí)別率達(dá)到95.23%。近年來(lái)隨著計(jì)算機(jī)技術(shù)和算法技術(shù)的快速發(fā)展,深度學(xué)習(xí)已成為圖像分類識(shí)別不可或缺的工具[8],其在作物物候觀測(cè)方面的研究越發(fā)廣泛[9],但大多采用單一學(xué)習(xí)器算法,各研究的識(shí)別率普遍不高[5]?;诰矸e神經(jīng)網(wǎng)絡(luò)的水稻生育期識(shí)別研究較少,將經(jīng)過(guò)調(diào)優(yōu)的ResNet50預(yù)訓(xùn)練的卷積神經(jīng)網(wǎng)絡(luò)用于水稻發(fā)育期識(shí)別研究鮮見(jiàn),且進(jìn)行研究的水稻生育期自動(dòng)觀測(cè)數(shù)量十分有限[9],總體上水稻關(guān)鍵生育期的觀測(cè)技術(shù)仍不成熟,不能滿足水稻生育期觀測(cè)業(yè)務(wù)服務(wù)需要。

        綜上,為提高水稻關(guān)鍵生育期圖像識(shí)別的精度和自動(dòng)識(shí)別的生育期范圍,探索適合水稻關(guān)鍵生育期分類識(shí)別的模型中有關(guān)參數(shù)的最優(yōu)設(shè)置,本研究以不同播期的水稻試驗(yàn)田數(shù)字圖像為研究對(duì)象,提出一種圖像分割與圖像分類相結(jié)合的水稻生育期自動(dòng)識(shí)別方法,將ResNet50網(wǎng)絡(luò)模型與Rectified Adam(RAdam)優(yōu)化器[10]結(jié)合,進(jìn)行水稻生育期自動(dòng)識(shí)別,以期部分代替人工完成對(duì)水稻生長(zhǎng)過(guò)程中部分生育期的觀測(cè),為開(kāi)發(fā)嵌入式的水稻物候特性設(shè)備提供模型支持。

        1 水稻圖像數(shù)據(jù)集

        1.1 數(shù)據(jù)集來(lái)源

        訓(xùn)練集和驗(yàn)證集均來(lái)源于安徽省農(nóng)業(yè)氣象中心合肥分中心實(shí)驗(yàn)基地的水稻試驗(yàn)田(117°03′26″E,31°57′20″N)的自動(dòng)采集數(shù)據(jù)。2019、2020年連續(xù)2 a在田字形12塊試驗(yàn)田(每塊試驗(yàn)田尺寸均為12 m×5 m)(如圖1所示),按照6個(gè)不同播期(分別為4月24日、4月29日、5月4日、5月9日、5月14日和5月19日)種植4種品種(分別為當(dāng)育粳10號(hào)、宣粳糯1號(hào)、創(chuàng)兩優(yōu)699和兩優(yōu)631)的一季稻,在長(zhǎng)方形試驗(yàn)田的兩端架設(shè)兩臺(tái)高清廣角攝像機(jī),拍攝水稻從移栽到收獲整個(gè)生長(zhǎng)過(guò)程(5月1日至10月31日)。攝像機(jī)選取的是海康威視(i)DS-2DF88,視頻輸出支持3 840×2 160 @25fps、2 100線、37倍光學(xué)變倍,最大支持300個(gè)預(yù)置位、18條巡航路徑,安裝立桿距離地面2.5 m,在每塊試驗(yàn)田每個(gè)播期田塊里面設(shè)置10個(gè)拍攝預(yù)置點(diǎn)。為最大限度避免太陽(yáng)直射帶來(lái)的光照強(qiáng)度顯著變化,設(shè)定每日08:00、16:00這2個(gè)時(shí)間點(diǎn),通過(guò)設(shè)置定時(shí)、定點(diǎn)、巡航拍攝水稻圖片和短視頻,并自動(dòng)上傳到中心數(shù)據(jù)服務(wù)器。

        采集的水稻數(shù)據(jù)圖像數(shù)據(jù)格式j(luò)pg、視頻數(shù)據(jù)格式mp4;通過(guò)2 a的試驗(yàn)和跟蹤拍攝水稻從苗圃移栽到水田之后的生育期圖像,數(shù)據(jù)庫(kù)積累了11 682張圖像、496 h視頻的數(shù)據(jù)資源,涵蓋了水稻的返青期、分蘗期、拔節(jié)期、孕穗期、抽穗期、乳熟期、成熟期7個(gè)生育期[11-12],確保了該數(shù)據(jù)訓(xùn)練的網(wǎng)絡(luò)能夠具有很好的魯棒性。其中返青期、分蘗期、拔節(jié)期、抽穗期和乳熟期是水稻生長(zhǎng)發(fā)育的關(guān)鍵階段[13],這5個(gè)生育期中的水稻生長(zhǎng)狀態(tài)對(duì)最終水稻的產(chǎn)量和品質(zhì)影響較大,水稻圖像如圖2所示,故本文著重對(duì)這5個(gè)生育期開(kāi)展識(shí)別研究。

        1.2 數(shù)據(jù)集擴(kuò)充

        為了增加訓(xùn)練數(shù)據(jù),使訓(xùn)練出的網(wǎng)絡(luò)具有更好的抗旋轉(zhuǎn)、平移和縮放不變性,訓(xùn)練前對(duì)訓(xùn)練數(shù)據(jù)集進(jìn)行數(shù)據(jù)增強(qiáng)操作[14],通過(guò)圖像的幾何變換,使用翻轉(zhuǎn)、旋轉(zhuǎn)、縮放、裁剪、平移、噪聲擾動(dòng)、截取幾類數(shù)據(jù)增強(qiáng)變化方法中的一種或多種組合來(lái)增加輸入數(shù)據(jù)的量[15]。擴(kuò)增后水稻圖像數(shù)據(jù)集共35 422張,其中訓(xùn)練集24 794張,驗(yàn)證集10 628張,各生育期數(shù)據(jù)集數(shù)量分布如表1所示。數(shù)據(jù)集包含了各種尺度的水稻圖片,以及高噪點(diǎn)圖片數(shù)據(jù),有利于增加網(wǎng)絡(luò)的魯棒性[16]。

        表1 不同生育期圖像數(shù)據(jù)數(shù)量

        2 水稻生育期識(shí)別方法

        2.1 圖像分割方法

        分析采集的圖像可知,不同生育期水稻圖片中背景存在較大差異,特別是在返青期、分蘗期,其圖片背景大面積為稻田,包含太多的干擾因素(水、土壤、垃圾等),不利于水稻生育期的特征信息提取。因而,本文采用ExG因子和大津法(Otsu)算法相結(jié)合的方法對(duì)水稻圖像進(jìn)行分割,保留包含生育期特征的信息,去除或減小背景的干擾[17-18]。ExG因子通過(guò)顏色分量運(yùn)算方法獲得,讓系統(tǒng)自動(dòng)窮舉顏色分量運(yùn)算結(jié)果,通過(guò)人的監(jiān)督判斷,獲得最佳的RGB顏色分量線性組合系數(shù)。RGB線性組合計(jì)算公式[19]見(jiàn)式(1)。

        式中(,)為線性組合運(yùn)算后的結(jié)果特征,(,)、(,)、(,)為圖像紅、綠、藍(lán)顏色分量在(,)處的灰度值,,,分別為顏色分量(,)、G(,)、(,)線性系數(shù),(,)表示顏色分量的二維數(shù)組變量。

        如果(,)≤0,則(,)=0;如果(,)≥255,則(,)= 255。這樣將所有特征值規(guī)則化到0~255范圍內(nèi)。通過(guò)分量運(yùn)算的顏色組合系數(shù)學(xué)習(xí),發(fā)現(xiàn)=-1,=2,=-1時(shí)效果好,這種組合對(duì)特定對(duì)象的光線和顏色變化具有很強(qiáng)的魯棒性,能夠滿足提取水稻植株圖像“綠色”特征的要求。故得到的灰度化因子為2--即ExG因子。本文采用此因子作為圖像分割指標(biāo)。

        水稻植株圖像綠色特征比較顯著,其ExG值與背景圖像ExG值差異明顯,兩者間存在一個(gè)最佳分割閾值。本文使用ExG因子對(duì)采集的圖像數(shù)據(jù)集進(jìn)行灰度化處理,再使用Otsu法獲取該閾值[20]。Otsu算法見(jiàn)式(2)

        式中為為圖像像素點(diǎn)的灰度值,threshold為使得灰度圖中所有像素類間方差最大的閾值。當(dāng)圖像中像素點(diǎn)灰度值大于該閾值時(shí),則認(rèn)為該像素點(diǎn)是水稻植株,否則屬于背景區(qū)域。

        2.2 圖像分類方法

        卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是圖像分類的首選方案[21],近幾年陸續(xù)出現(xiàn)了VGGNet、GoogLeNet、ResNet等多個(gè)經(jīng)典卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)[22]。

        VGG模型結(jié)構(gòu)簡(jiǎn)單,其中使用比較多的網(wǎng)絡(luò)結(jié)構(gòu)是VGG16和VGG19,VGG16包含13個(gè)卷積層和3個(gè)全連接層,VGG19包含16個(gè)卷積層和3個(gè)全連接層,兩者使用的都是3×3的卷積核和2×2的最大池化層,通過(guò)最大池化層依次減少每層的神經(jīng)元數(shù)量,最后三層分別是2個(gè)有4 096個(gè)神經(jīng)元的全連接層和一個(gè)softmax層。

        GoogleNet 模型,又稱Inception 模型,其引入了Inception結(jié)構(gòu),該結(jié)構(gòu)使用多個(gè)不同尺寸的卷積核和池化層,融合不同尺度特征的卷積核進(jìn)行網(wǎng)絡(luò)降維以及映射處理,在增加網(wǎng)絡(luò)深度和寬度的同時(shí)減少模型參數(shù)。

        ResNet50即有50層網(wǎng)絡(luò)的ResNet模型,首先有個(gè)輸入7×7×64的卷積層,然后經(jīng)過(guò)16(3+4+6+3)個(gè)構(gòu)建塊(Building Block),每個(gè)Block為3層,所以有48層,最后有個(gè)全連接層(Fully Connected Layers,F(xiàn)C),50層網(wǎng)絡(luò)僅指卷積和全連接層,而ReLU層和Pool層并沒(méi)有統(tǒng)計(jì)在內(nèi)[23]。

        ResNet50在內(nèi)存和時(shí)間上的計(jì)算要求比VGG低,準(zhǔn)確度比VGG和GoogleNet要高,計(jì)算效率也比VGG高,網(wǎng)絡(luò)結(jié)構(gòu)比GoogleNet簡(jiǎn)單。ResNet50模型中引入了殘差模塊,有效地解決了因神經(jīng)網(wǎng)絡(luò)層數(shù)加深導(dǎo)致的梯度彌散、梯度爆炸和退化問(wèn)題[24],其網(wǎng)絡(luò)模型結(jié)構(gòu)如圖3所示,網(wǎng)絡(luò)參數(shù)如表2所示。本文優(yōu)化了網(wǎng)絡(luò)模型網(wǎng)絡(luò)參數(shù),選用了Adam優(yōu)化器,使網(wǎng)絡(luò)模型更適用于水稻生育期圖像分類識(shí)別。

        2.3 RAdam優(yōu)化器

        網(wǎng)絡(luò)模型參數(shù)眾多,需要合適的優(yōu)化算法來(lái)進(jìn)行參數(shù)的學(xué)習(xí),Adam是適用最為廣泛的優(yōu)化器,適用于不同的深度學(xué)習(xí)網(wǎng)絡(luò),Adam算法原理是用指數(shù)滑動(dòng)平均去估計(jì)梯度每個(gè)分量的一階矩和二階矩,得到每步的更新量,繼而提供自適應(yīng)學(xué)習(xí)率[25]。但在訓(xùn)練初期二階矩的方差可能會(huì)無(wú)窮大,Adam 的更新算法便不再滿足。

        表2 卷積神經(jīng)網(wǎng)絡(luò)模型網(wǎng)絡(luò)參數(shù)

        注: conv1是第一個(gè)卷積層,conv2_x是第2個(gè)卷積模塊,conv3_x是第3個(gè)卷積模塊,conv4_x是第4個(gè)卷積模塊,conv5_x是第5個(gè)卷積模塊,Max Pool為最大池化層,AVE Pool為平均池化層。

        Note: conv1 is the first convolution layer, conv2_x is the second convolution module, conv3_x is the third convolution module, conv4_x is the fourth convolution module, conv5_x is the fifth convolution module, and Max Pool is Maximum pooling layer, AVE Pool is the average pooling layer.

        基于Adam的改進(jìn)后優(yōu)化器Rectified Adam(RAdam)[10],針對(duì)自適應(yīng)的學(xué)習(xí)率引入了一個(gè)修正項(xiàng),針對(duì)Adam的variance進(jìn)行修正,在訓(xùn)練初期將更新算法修正到隨機(jī)梯度下降(Stochastic Gradient Descent,SGD)的動(dòng)量(Momentum)算法,消除了在訓(xùn)練期間warmup所涉及手動(dòng)調(diào)優(yōu)的需要,對(duì)學(xué)習(xí)速率變化具有更強(qiáng)的魯棒性,并在各種數(shù)據(jù)集和卷積神經(jīng)網(wǎng)絡(luò)體系結(jié)構(gòu)中提供更好的訓(xùn)練精度和泛化。

        3 試驗(yàn)與結(jié)果分析

        3.1 試驗(yàn)過(guò)程

        本試驗(yàn)的硬件環(huán)境為內(nèi)存:16 G,CPU:Intel (R) Xeon (R) E7,GPU:NVIDIA Quadro P600,操作系統(tǒng)為Windows 10,選用的深度學(xué)習(xí)開(kāi)源架構(gòu)為Tensorflow,通過(guò)Tensorflow調(diào)用 GPU 實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)的并行運(yùn)算[26]。

        數(shù)據(jù)處理過(guò)程如下:

        1)網(wǎng)絡(luò)模型選定前,需要完成數(shù)據(jù)的準(zhǔn)備,并通過(guò)人工方式對(duì)每張圖片進(jìn)行分類標(biāo)注[27],將擴(kuò)充后數(shù)據(jù)集按7:3劃分成訓(xùn)練集和驗(yàn)證集2部分。然后對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行預(yù)處理,包括圖片尺寸重定義、像素去均值化與歸一化處理,本文將數(shù)據(jù)集中不同尺寸的圖片統(tǒng)一轉(zhuǎn)換為224像素×224像素×3通道[22,28],便于比較。

        2)采用ExG因子和Otsu算法相結(jié)合的方法對(duì)水稻圖像進(jìn)行分割處理,消除稻田背景干擾信息,最大化提取水稻生育期的特征信息。消除背景干擾后的圖像分割結(jié)果如圖4所示。

        圖4 稻田圖像分割示意圖

        3)采用VGG16、VGG19、Inception v3(GoogleNet)和ResNet50四種預(yù)訓(xùn)練的深度卷積網(wǎng)絡(luò)模型[7,29],對(duì)水稻生育期圖像分類進(jìn)行對(duì)比,尋找最優(yōu)卷積神經(jīng)網(wǎng)絡(luò)。開(kāi)展模型訓(xùn)練,設(shè)定不同條件下對(duì)比試驗(yàn),訓(xùn)練輪次設(shè)定20次,每4個(gè)輪次記錄訓(xùn)練結(jié)束后輸出的準(zhǔn)確率和損失值,并保存網(wǎng)絡(luò)模型。以ResNet50卷積神經(jīng)網(wǎng)絡(luò)為例,其訓(xùn)練流程如圖5所示。

        4)最優(yōu)模型參數(shù)調(diào)優(yōu)。網(wǎng)絡(luò)模型超參數(shù)包含學(xué)習(xí)率(learning rate)和批大?。╞atch size),學(xué)習(xí)率影響模型的收斂狀態(tài),批大小影響模型的泛化性能。在對(duì)水稻生育期圖像識(shí)別中,超參數(shù)設(shè)計(jì)參考相關(guān)模型在類似數(shù)據(jù)集上的設(shè)計(jì)以及在本研究數(shù)據(jù)集上進(jìn)行的系列試驗(yàn),對(duì)超參數(shù)進(jìn)行統(tǒng)一化處理[30-31]。比較調(diào)參前后最優(yōu)模型性能,確定最優(yōu)調(diào)參模型。

        5)采用Adam和RAdam兩種優(yōu)化器對(duì)超參數(shù)調(diào)優(yōu)后的模型進(jìn)行進(jìn)一步優(yōu)化,對(duì)比模型準(zhǔn)確率和損失值,選擇較優(yōu)優(yōu)化器。

        6)采用基于較優(yōu)優(yōu)化器的最優(yōu)模型識(shí)別水稻生育期,與人工觀測(cè)結(jié)果進(jìn)行對(duì)比。

        3.2 結(jié)果與分析

        3.2.1 最優(yōu)卷積神經(jīng)網(wǎng)絡(luò)模型的確定

        采用VGG16、VGG19、Inception v3(GoogleNet)和ResNet50四種深度卷積網(wǎng)絡(luò)模型獲得的水稻生育期圖像分類結(jié)果如表3所示。

        表3 不同網(wǎng)絡(luò)模型學(xué)習(xí)結(jié)果

        由表3可知,使用VGG16網(wǎng)絡(luò)模型的訓(xùn)練準(zhǔn)確率達(dá)到99.46%、驗(yàn)證準(zhǔn)確率達(dá)到94.76%,使用VGG19網(wǎng)絡(luò)模型的訓(xùn)練準(zhǔn)確率達(dá)到94.36%、驗(yàn)證準(zhǔn)確率達(dá)到89.43%,使用Inception v3網(wǎng)絡(luò)模型的訓(xùn)練準(zhǔn)確率達(dá)到98.70%、驗(yàn)證準(zhǔn)確率達(dá)到93.59%,使用ResNet50網(wǎng)絡(luò)模型的訓(xùn)練和驗(yàn)證準(zhǔn)確率分別是99.59%和96.88%??梢?jiàn),ResNet50訓(xùn)練模型性能明顯優(yōu)于其他3種訓(xùn)練模型。因而,本文初步選出ResNet50卷積神經(jīng)網(wǎng)絡(luò)對(duì)水稻生育期圖像進(jìn)行分類。

        3.2.2 ResNet50網(wǎng)絡(luò)模型參數(shù)調(diào)優(yōu)

        在ResNet50網(wǎng)絡(luò)模型超參數(shù)調(diào)優(yōu)中,學(xué)習(xí)率采用指數(shù)標(biāo)尺選取1.00×10-4、1.00×10-3和1.40×10-2組學(xué)習(xí)率,批大小選取16、32、64和128進(jìn)行對(duì)比試驗(yàn)[32-34]。網(wǎng)絡(luò)模型初始學(xué)習(xí)率為1.00×104、批大小為16,經(jīng)過(guò)多次試驗(yàn)調(diào)參后[35],最終確定學(xué)習(xí)率為1.00×10-4、批大小為32,學(xué)習(xí)對(duì)比結(jié)果如表4所示。可見(jiàn),調(diào)參后ResNet50網(wǎng)絡(luò)模型準(zhǔn)確率提高,損失值降低,模型的驗(yàn)證準(zhǔn)確率和損失值分別達(dá)到97.66%和0.009,且訓(xùn)練時(shí)間縮減了737 s,可見(jiàn),調(diào)參后模型性能更優(yōu),故本文將采用調(diào)參后的ResNet50卷積神經(jīng)網(wǎng)絡(luò)模型進(jìn)行水稻生育期圖像分類。

        表4 參數(shù)調(diào)優(yōu)前后學(xué)習(xí)結(jié)果比較

        3.2.3 不同優(yōu)化器的對(duì)比分析

        采用Adam和RAdam兩種優(yōu)化器后模型準(zhǔn)確率和損失值的變化如圖6所示,隨著迭代輪次的增加,loss值不斷減少,在迭代第4輪次時(shí)開(kāi)始收斂,并逐漸趨近于零。在前面3個(gè)輪次迭代訓(xùn)練,使用Adam優(yōu)化器模型收斂的慢,準(zhǔn)確率和損失值也沒(méi)有使用RAdam優(yōu)化器的模型表現(xiàn)得好。

        可見(jiàn),在水稻各生育期圖像識(shí)別訓(xùn)練中,ResNet50卷積神經(jīng)網(wǎng)絡(luò)模型采取RAdam優(yōu)化器的收斂速度快明顯優(yōu)于采用Adam優(yōu)化器,故本文采用RAdam優(yōu)化器。

        3.2.4 各水稻生育期識(shí)別結(jié)果驗(yàn)證

        為了驗(yàn)證在實(shí)際場(chǎng)景下模型對(duì)水稻各生育期的識(shí)別率,以人工方式拍攝了其他稻田的各生育期水稻圖片,同時(shí)收集了互利網(wǎng)公開(kāi)的水稻圖片,共計(jì)150張(每個(gè)生育期的圖片樣本均為30張),作為為模型驗(yàn)證樣本來(lái)進(jìn)行機(jī)器識(shí)別,與人工識(shí)別結(jié)果對(duì)比分析,結(jié)果見(jiàn)表5,5個(gè)生育期平均正確識(shí)別率達(dá)到97.33%,錯(cuò)誤識(shí)別樣本4個(gè),其中返青期、抽穗期、乳熟期的正確識(shí)別率達(dá)到100%,表明本文提出的基于RAdam優(yōu)化器的ResNet50方法,經(jīng)過(guò)參數(shù)調(diào)優(yōu)后具有較高的水稻生育期識(shí)別精度。

        表5 各生育期模型識(shí)別結(jié)果與人工實(shí)際觀測(cè)結(jié)果對(duì)比

        4 結(jié) 論

        本文提出一種卷積神經(jīng)網(wǎng)絡(luò)水稻生育期的視覺(jué)識(shí)別策略,首先構(gòu)建了水稻圖像數(shù)據(jù)集,對(duì)圖像進(jìn)了擴(kuò)充、分割等預(yù)處理,利用 ResNet50模型構(gòu)建了適合水稻關(guān)鍵生育期識(shí)別的網(wǎng)絡(luò)模型,并對(duì)影響模型性能的批大小等參數(shù)調(diào)優(yōu)、優(yōu)化器進(jìn)行了分析,結(jié)果表明:

        1)VGG16、VGG19、Inception v3和ResNet50四種卷積神經(jīng)網(wǎng)絡(luò)模型中,ResNet50模型的性能最佳;基于ResNet50模型,構(gòu)建并訓(xùn)練的水稻生育期識(shí)別模型可以較好的識(shí)別水稻5種關(guān)鍵生育期,訓(xùn)練中驗(yàn)證準(zhǔn)確率為97.66%。

        2)Adam、RAdam兩種優(yōu)化器下ResNet50模型識(shí)別水稻生育期的準(zhǔn)確率和損失值變化差異較大,RAdam穩(wěn)定性高,RAdam的收斂速度比Adam快。

        3)本文提出的方法對(duì)各水稻關(guān)鍵生育期的平均正確識(shí)別率達(dá)到97.33%,其中分蘗期與拔節(jié)期由于分類特征不明顯識(shí)別率較低,以后仍需對(duì)分類特征不明顯的水稻孕穗期和成熟期識(shí)別進(jìn)行進(jìn)一步研究。

        本研究對(duì)于深度學(xué)習(xí)在農(nóng)業(yè)氣象研究與服務(wù)領(lǐng)域的實(shí)際應(yīng)用具有重要意義,本研究所用方法對(duì)水稻其他物候特征和其他農(nóng)作物方面的應(yīng)用仍待繼續(xù)研究。

        [1]陸佳嵐,王凈,馬成,等. 長(zhǎng)江流域中稻產(chǎn)量和品質(zhì)性狀差異與其生育期氣象因子的相關(guān)性[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2020,36(6):1361-1372.

        Lu Jialan, Wang Jing, Ma Cheng, et al. Correlation between the differences in yield and quality traits among various types of middle rice and meteorological factors during growth period in the Yangtze River basin[J]. JAS, 2020, 36(6): 1361-1372. (in Chinese with English abstract)

        [2]劉丹,于成龍,李帥,等. 基于遙感的黑龍江省東部水稻種植信息提取[J]. 中國(guó)農(nóng)學(xué)通報(bào),2013,29(27):30-34.

        Liu Dan, Yu Chenglong, Li Shuai, et al. Rice planting extraction in northern heilongjiang province based on remote sensing[J]. Chinese Agricultural Science Bulletin, 2013, 29(27): 30-34. (in Chinese with English abstract)

        [3]孫華生,黃敬峰,彭代亮. 利用MODIS數(shù)據(jù)識(shí)別水稻關(guān)鍵生長(zhǎng)發(fā)育期[J]. 遙感學(xué)報(bào),2009,13(6):1122-1137.

        Sun Huasheng, Huang Jingfeng, Peng Dailiang. Detecting major growth stages of paddy rice using MODIS data[J]. Journal of Remote Sensing, 2009, 13(6): 1122-1137. (in Chinese with English abstract)

        [4]白曉東. 基于圖像的水稻關(guān)鍵發(fā)育期自動(dòng)觀測(cè)技術(shù)研究[D]. 武漢:華中科技大學(xué),2014.

        Bai Xiaodong. Research on Automatic Observation Technology of Rice Critical Development Period Based on Image[D]. Wuhang:Huazhong University of Science and Technology, 2014. (in Chinese with English abstract)

        [5]楊振忠,方圣輝,彭漪,等. 基于機(jī)器學(xué)習(xí)結(jié)合植被指數(shù)閾值的水稻關(guān)鍵生育期識(shí)別[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,25(1):76-85.

        Yang Zhenzhong, Fang Shenghui, Peng Yi, et al. Recognition of the rice growth stage by machine learning combined with vegetation index threshold[J]. Journal of China Agricultural University, 2020, 25(1): 76-85. (in Chinese with English abstract)

        [6]Ikasari I H, Ayumi V, Fanany M I, et al. Multiple regularizations deep learning for paddy growth stages classification from LANDSAT-8[C]//2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE, 2016: 512-517.

        [7]Gupta K, Rani R, Bahia N K. Plant-seedling classification using transfer learning-based deep convolutional neural networks[J]. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 2020, 11(4):25-40.

        [8]李小占,馬本學(xué),喻國(guó)威,等. 基于深度學(xué)習(xí)與圖像處理的哈密瓜表面缺陷檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(1):223-232.

        Li Xiaozhan, Ma Benxue, Yu Guowei, et al. Surface defect detection of Hami melon using deep learning and image processing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 223-232. (in Chinese with English abstract)

        [9]李穎,陳懷亮. 機(jī)器學(xué)習(xí)技術(shù)在現(xiàn)代農(nóng)業(yè)氣象中的應(yīng)用. 應(yīng)用氣象學(xué)報(bào),2020,31(3):257-266.

        Li Ying, Chen Huailiang. Review of machine learning approaches for modern agrometeorology[J]. J Appl Meteor Sci, 2020, 31(3): 257-266. (in Chinese with English abstract)

        [10]Liu L Y, Jiang H M, He P C, et al. On the variance of the adaptive learning rate and beyond[C/OL]. ICLR, 2020. 2020-04-17. arXiv:1908.03265v3

        [11]嚴(yán)美春,曹衛(wèi)星,羅衛(wèi)紅,江海東. 小麥發(fā)育過(guò)程及生育期機(jī)理模型的研究I. 建模的基本設(shè)想與模型的描述[J]. 應(yīng)用生態(tài)學(xué)報(bào),2000,11(3):355-359.

        Yan Meichun, Cao Weixing, Luo Weihong, et al. A mechanistic model of phasic and phenological development of wheat I. Assumption and description of the model[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 355-359. (in Chinese with English abstract)

        [12]蘇李君,劉云鶴,王全九. 基于有效積溫的中國(guó)水稻生長(zhǎng)模型的構(gòu)建[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):162-174.

        Su Lijun, Liu Yunhe, Wang Quanjiu. Rice growth model in China based on growing degree days[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 162-174. (in Chinese with English abstract)

        [13]孟亞利,曹衛(wèi)星,周治國(guó),等. 基于生長(zhǎng)過(guò)程的水稻階段發(fā)育與物候期模擬模型[J]. 中國(guó)農(nóng)業(yè)科學(xué),2003,36(11):1362-1367.

        Meng Yali, Cao Weixing, Zhou Zhiguo, et al. A process-based model for simulating phasic development and phenology in rice[J]. Scientia Agricultura Sinica, 2003, 36(11): 1362-1367. (in Chinese with English abstract)

        [14]韓江洪,袁稼軒,衛(wèi)星,等. 基于深度學(xué)習(xí)的井下巷道行人視覺(jué)定位算法[J]. 計(jì)算機(jī)應(yīng)用,2019,39(3):688-694.

        Han Jianghong, Yuan Jiaxuan, Wei Xing, et al. Pedestrian visual positioning algorithm for underground roadway based on deep learning[J]. Journal of Computer Applications, 2019, 39(3): 688-694. (in Chinese with English abstract)

        [15]王東方,汪軍. 基于遷移學(xué)習(xí)和殘差網(wǎng)絡(luò)的農(nóng)作物病害分類[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(4):199-207.

        Wang Dongfang, Wang Jun. Crop disease classification with transfer learning and residue networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(4): 199-207. (in Chinese with English abstract)

        [16]王靖宇,王霰禹,張科,等. 基于深度神經(jīng)網(wǎng)絡(luò)的低空弱小無(wú)人機(jī)目標(biāo)檢測(cè)研究[J]. 西北工業(yè)大學(xué)學(xué)報(bào),2018,36(2):258-263.

        Wang Jingyu, Wang Xianyu, Zhang Ke, et al. Small UAV target detection model based on deep neural network[J]. Northwestern Polytechnical University, 2018, 36(2): 258-263. (in Chinese with English abstract)

        [17]宋森森,賈振紅,楊杰,等. 結(jié)合Ostu閾值法的最小生成樹(shù)圖像分割算法[J]. 計(jì)算機(jī)工程與應(yīng)用,2019,55(9):178-183.

        Song Sensen, Jia Zhenhong, Yang Jie, et al. Image segmentation algorithm of minimum spanning tree combined with ostu threshold method[J]. CEA, 2019, 55(9): 178-183. (in Chinese with English abstract)

        [18]黃巧義,張木,李蘋(píng),等. 支持向量機(jī)和最大類間方差法結(jié)合的水稻冠層圖像分割方法[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2019,21(4):52-60.

        Huang Qiaoyi, Zhang Mu, Li Ping, et al. Rice canopy image segmentation using support vector machine and otsus method[J]. Journal of Agricultural Science and Technology, 2019, 21(4): 52-60. (in Chinese with English abstract)

        [19]劉帥兵,楊貴軍,景海濤,等.基于無(wú)人機(jī)數(shù)碼影像的冬小麥氮含量反演[J].農(nóng)業(yè)工程學(xué)報(bào),2019,35(11):75-85.

        Liu Shuaibing, Yang Guijun, Jing Haitao, et al.Retrieval of winter wheat nitrogen content based on UAV digital image[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019,35(11):75-85. (in Chinese with English abstract)

        [20]王見(jiàn),周勤,尹愛(ài)軍. 改進(jìn)Otsu算法與ELM融合的自然場(chǎng)景棉桃自適應(yīng)分割方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(14):173-180.

        Wang Jian, Zhou Qin, Yin Aijun. Self-adaptive segmentation method of cotton in natural scene by combining improved Otsu with ELM algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 173-180. (in Chinese with English abstract)

        [21]岑海燕,朱月明,孫大偉,等. 深度學(xué)習(xí)在植物表型研究中的應(yīng)用現(xiàn)狀與展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):1-16.

        Cen Haiyan, Zhu Yueming, Sun Dawei, et al. Current status and future perspective of the application of deep learning in plant phenotype research[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 1-16. (in Chinese with English abstract)

        [22]張瑞青,李張威,郝建軍,等. 基于遷移學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)花生莢果等級(jí)圖像識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):171-180.

        Zhang Ruiqing, Li Zhangwei, Hao Jianjun, et al. Image recognition of peanut pod grades based on transfer learning with convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 171-180. (in Chinese with English abstract)

        [23]郭敏鋼,宮鶴. 基于Tensorflow對(duì)卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)化研究[J]. 計(jì)算機(jī)工程與應(yīng)用,2020,56(1):158-164.

        Guo Mingang, Gong He. Optimization of convolutional neural network based on tensorflow[J]. CEA, 2020, 56(1): 158-164. (in Chinese with English abstract)

        [24]王丹丹,何東健. 基于R-FCN深度卷積神經(jīng)網(wǎng)絡(luò)的機(jī)器人疏果前蘋(píng)果目標(biāo)的識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):156-163.

        Wang Dandan, He Dongjian. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 156-163. (in Chinese with English abstract)

        [25]趙春江,文朝武,林森,等. 基于級(jí)聯(lián)卷積神經(jīng)網(wǎng)絡(luò)的番茄花期識(shí)別檢測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):143-152.

        Zhao Chunjiang, Wen Chaowu, Lin Sen, et al. Tomato florescence recognition and detection method based on cascaded neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 143-152. (in Chinese with English abstract)

        [26]張小莉,程光,張慰慈. 基于改進(jìn)深度卷積神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量分類方法. 中國(guó)科學(xué):信息科學(xué),2021,51(1):56-74.

        Zhang Xiaoli, Cheng Guang, Zhang Weici. Network traffic classification method based on improved deep convolutional neural network[J]. Sci Sin Inform, 2021, 51(1): 56-74. (in Chinese with English abstract)

        [27]高耀東,侯凌燕,楊大利. 基于多標(biāo)簽學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)的圖像標(biāo)注方法[J]. 計(jì)算機(jī)應(yīng)用,2017,37(1):228-232.

        Gao Yaodong, Hou Lingyan, Yang Dali. Automatic image annotation method using multi-label learning convolutional neural network[J]. Journal of Computer Applications, 2017, 37(1): 228-232. (in Chinese with English abstract)

        [28]王雨瀅,趙慶生,梁定康. 基于深度學(xué)習(xí)網(wǎng)絡(luò)的電氣設(shè)備圖像分類[J]. 科學(xué)技術(shù)與工程,2020,20(23):9491-9496.

        Wang Yuying, Zhao Qingsheng,Liang Dingkan. Electrical equipment image classification based on deep learning network[J]. Science Technology and Engineering, 2020, 20(23): 9491-9496. (in Chinese with English abstract)

        [29]黃雙萍,孫超,齊龍,等. 基于深度卷積神經(jīng)網(wǎng)絡(luò)的水稻穗瘟病檢測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(20):169-176.

        Huang Shuangping, Sun Chao, Qi Long, et al. Rice panicle blast identification method based on deep convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 169-176. (in Chinese with English abstract)

        [30]趙立新,侯發(fā)東,呂正超,等.基于遷移學(xué)習(xí)的棉花葉部病蟲(chóng)害圖像識(shí)別[J].農(nóng)業(yè)工程學(xué)報(bào),2020,36(7):184-191.

        Zhao Lixin, Hou Fadong, Lü Zhengchao, et al.Image recognition of cotton leaf diseases and pests based on transfer learning[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2020,36(7):184-191. (in Chinese with English abstract)

        [31]王東方,汪軍. 基于遷移學(xué)習(xí)和殘差網(wǎng)絡(luò)的農(nóng)作物病害分類[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(4):199-207.

        Wang Dongfang,Wang Jun.Crop disease classification with transfer learning and residual networks[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(4):199-207. (in Chinese with English abstract)

        [32]王丹丹,何東健. 基于R-FCN深度卷積神經(jīng)網(wǎng)絡(luò)的機(jī)器人疏果前蘋(píng)果目標(biāo)的識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):156-163.

        Wang Dandan, He Dongjian. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 156-163. (in Chinese with English abstract)

        [33]陸楷煜,夏春蕾,戴曙光,等. 特征融合在植物葉片識(shí)別中的應(yīng)用研究[J]. 軟件導(dǎo)刊,2020,19(10):71-75.

        Lu Kaiyu, Xia Chunlei, Dai Shuguang, et al. Application research on multi-feature fusion in plant leaf recognition[J]. Software Guide, 2020, 19(10): 71-75. (in Chinese with English abstract)

        [34]苗開(kāi)超,周建平,陶鵬,等. 自適應(yīng)混合卷積神經(jīng)網(wǎng)絡(luò)的霧圖能見(jiàn)度識(shí)別[J]. 計(jì)算機(jī)工程與應(yīng)用,2020,56(10):205-212.

        Miao Kaichao, Zhou Jianping, Tao Peng, et al. Visibility recognition of fog figure based on self-adaptive hybrid convolutional neural network[J]. CEA, 2020, 56(10): 205-212. (in Chinese with English abstract)

        [35]羅會(huì)蘭,易慧. 基于迭代訓(xùn)練和集成學(xué)習(xí)的圖像分類方法[J]. 計(jì)算機(jī)工程與設(shè)計(jì),2020,41(5):1301-1307.

        Luo Huilan, Yi Hui. Image classification method based on iterative training and ensemble learning[J]. Computer Engineering and Design, 2020, 41(5): 1301-1307. (in Chinese with English abstract)

        Image recognition for different developmental stages of rice by RAdam deep convolutional neural networks

        Xu Jianpeng1,2, Wang Jie1,2, Xu Xiang1, Ju Shucun1,2

        (1.,230031,; 2.,230031,)

        An improved Convolutional Neural Network (CNN) was proposed to replace the current manual observation of the rice development period for higher efficiency and accuracy. In this study, a CNN image recognition was established with 50 layers using a risk adaptive authorization mechanism (RAdam) optimizer. Five developmental stages of rice were selected to automatically detect, including regreening, tillering, jointing, heading, and milk stage. Two cameras were assumed in 12 test fields for two consecutive years, where two pre-set points were set in each test field. Images and videos of rice were taken continuously at 8:00 and 16:00 each day. The geometric transformation of image was also used to increase the amount of input data. Finally, 35422 datasets of grading images were obtained on rice development stages. Training and test datasets were divided at the ratio of 7:3, where the original 1920x1080 pixel image was processed into 224x224 pixel size. Each image was then classified and labelled manually. A combined ExG factor with Otsu threshold was utilized to segment the rice images, to avoid the interference of some factors (water, soil, and garbage) in the rice field on the characteristics of rice development period. Strong robustness was obtained when the light and color changed, indicating high requirements of extracting the “green” characteristics of rice plant images. The parallel operation of CNN was realized by Tensor flow GPU. Four pre-trained CNN models were selected to conduct comparative experiments, including VGG16, VGG19, ResNet50, and Inception v3. The initial learning rate was set to be 0.001. The training accuracies of the VGG16, VGG19, and Inception v3 network models were 99.46%, 94.36%, and 98.70%, respectively whereas the verification accuracies were 94.76%, 89.43%, and 93.59%, respectively. The training accuracy of the ResNet50 network model was about 5% higher than that of the VGG19 network model, also higher than those of the VGG16, and Inception v3 network models. The loss value of the ResNet50 network model was also about 90% lower than those of models. Thus, it was inferred that the ResNet50 model was better suitable for the identification of key developmental stages of rice. Nevertheless, the accuracy and loss of the ResNet50 model varied greatly under the Adam and RAdam optimizers. The RAdam optimizer was faster than Adam, indicating high stability and convergence speed. Specifically, the convergence speed for Adam was 11 s per step, while that for RAdam was 12 s per step. Multiple experiments were performed on the batch size and learning rate, and further to evaluate the performance of the ResNet50 model. The training time was reduced by 737 s, when the learning rate was set to be 0.001, and the batch size was 32. Subsequently, 5 experiments were performed on the ResNet50 network model to train the datasets of rice images during different developmental stages. The accuracies of the training and validation set were 99.53%, and 97.66%, respectively, when the training iteration reached the 18th round. Once the iterative training continued, the accuracies of the training and validation set remained stable. The constructed CNN model can be expected to recognize rice images in different developmental stages, with an average recognition accuracy of 97.33%, while high network stability and fast convergence speed. The finding can provide an effective way to automatically monitor the development stages of rice in intelligent agriculture.

        image recognition; neural networks; models; rice; RAdam; ResNet50; developmental stage

        徐建鵬,王杰,徐祥,等. 基于RAdam卷積神經(jīng)網(wǎng)絡(luò)的水稻生育期圖像識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(8):143-150.doi:10.11975/j.issn.1002-6819.2021.08.016 http://www.tcsae.org

        Xu Jianpeng, Wang Jie, Xu Xiang, et al. Image recognition for different developmental stages of rice by RAdam deep convolutional neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 143-150. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.08.016 http://www.tcsae.org

        2020-01-02

        2021-03-10

        安徽省重大科技專項(xiàng)(202003A06020016);科技助力經(jīng)濟(jì)2020氣象行業(yè)項(xiàng)目(KJZLJJ202002)

        徐建鵬,高級(jí)工程師,研究方向?yàn)闄C(jī)器學(xué)習(xí)、農(nóng)業(yè)信息化、農(nóng)業(yè)氣象等。Email:20333800@qq.com

        10.11975/j.issn.1002-6819.2021.08.016

        S126

        A

        1002-6819(2021)-08-0143-08

        猜你喜歡
        水稻優(yōu)化模型
        一半模型
        什么是海水稻
        超限高層建筑結(jié)構(gòu)設(shè)計(jì)與優(yōu)化思考
        水稻種植60天就能收獲啦
        軍事文摘(2021年22期)2021-11-26 00:43:51
        民用建筑防煙排煙設(shè)計(jì)優(yōu)化探討
        關(guān)于優(yōu)化消防安全告知承諾的一些思考
        一道優(yōu)化題的幾何解法
        重要模型『一線三等角』
        一季水稻
        文苑(2020年6期)2020-06-22 08:41:52
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        波多野结衣有码| 亚洲国产精品美女久久久| 亚洲国产精品成人一区二区在线| 国产乱码人妻一区二区三区| 一区二区三区人妻无码| 久久精品亚洲牛牛影视| 久久久诱惑一区二区三区| 国产精品一区二区三区在线观看| 亚洲精品第一国产综合精品| 无码国产69精品久久久久孕妇| 成年女人永久免费看片| 青青草视频在线视频播放| 午夜男女靠比视频免费| 亚洲最大成人网站| 白又丰满大屁股bbbbb| 中文字幕永久免费观看| 国产高清在线精品一区不卡| 2019nv天堂香蕉在线观看| 18黑白丝水手服自慰喷水网站| 最近中文av字幕在线中文| 果冻蜜桃传媒在线观看| 久久99热只有频精品8国语| 久久精品欧美日韩精品| 久久精品国产亚洲vr| 一区二区免费国产a在亚洲| 国产无套内射又大又猛又粗又爽| 无码精品a∨在线观看| 亚洲午夜看片无码| 成人性生交大片免费看l| 精品国产一区二区三区av性色| 在线精品免费观看| 中文字幕中文一区中文字幕| 亚洲最大免费福利视频网| 亚洲产国偷v产偷v自拍色戒| 成人永久福利在线观看不卡| 在线视频一区二区国产| 免费a级毛片无码免费视频120软件| 无遮无挡爽爽免费视频| 日韩在线不卡一区在线观看| 日本熟妇中出高潮视频| 国产精品久久久国产盗摄|