亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類具有擴(kuò)散和時(shí)滯的HIV模型的動(dòng)力學(xué)分析

        2021-06-23 06:19:58蒲武軍
        關(guān)鍵詞:平衡點(diǎn)時(shí)滯定理

        蒲武軍

        (隴南師范高等??茖W(xué)校 數(shù)學(xué)系, 甘肅 隴南 742500)

        近年來(lái),病毒已經(jīng)嚴(yán)重威脅到人類社會(huì)的健康,許多不同領(lǐng)域的學(xué)者都在利用各種方式致力于宿主病毒感染過(guò)程中的機(jī)制和動(dòng)力學(xué)行為研究,當(dāng)然,對(duì)于艾滋病病毒(HIV)的研究也不例外,許多應(yīng)用數(shù)學(xué)工作者提出了一系列的HIV模型,并進(jìn)行了詳細(xì)的研究,獲得了許多好的結(jié)果[1-4]。最近,文獻(xiàn)[5]提出了一個(gè)具有時(shí)滯的HIV模型:

        (1)

        討論了系統(tǒng)(1)各類平衡點(diǎn)的局部漸近穩(wěn)定性,研究了具有狀態(tài)和控制時(shí)滯的最優(yōu)控制問(wèn)題,并進(jìn)行了數(shù)值模擬。顯然,對(duì)于HIV模型的研究,時(shí)滯是一個(gè)不可忽視的因素,與此同時(shí),病毒粒子的擴(kuò)散更應(yīng)該受到重視,因此,探討具有擴(kuò)散的病毒模型便是其中的一個(gè)熱點(diǎn)問(wèn)題,并取得了一系列好的結(jié)果[6-10]。上述相關(guān)模型的研究,主要集中在感染率函數(shù)的變化以及免疫反應(yīng)的引入,感染率函數(shù)主要集中在雙線性函數(shù)、Holling-II型反應(yīng)函數(shù)、Beddington-DeAngelis反應(yīng)函數(shù)、Crowley-Martin反應(yīng)函數(shù)以及更一般的反應(yīng)函數(shù)方面,而且,許多時(shí)候人們忽視了病毒的流動(dòng)性,實(shí)際上病毒是可以自由移動(dòng)的,它們的運(yùn)動(dòng)遵循Fickian擴(kuò)散。受系統(tǒng)(1)和上述研究的直接啟發(fā),本文擬討論如下具有時(shí)滯的反應(yīng)擴(kuò)散HIV模型:

        (2)

        初值條件為

        Z(x,θ)=φ1(x,θ),I(x,θ)=φ2(x,θ),V(x,θ)=φ3(x,θ),

        (3)

        齊次Neumann邊界條件為

        (4)

        1 解的整體存在性和適定性

        F3(φ)(x)=kφ2(x,0)-αφ3(x,0),

        F4(φ)(x)=βφ2(x,0)φ4(x,0)-δφ4(x,0),

        則F在Γ上是局部Lipschitz的,于是系統(tǒng)(2)—(4)可改寫(xiě)成如下的抽象泛函微分方程:

        (5)

        其中φ=(Z,I,V,T)T,φ=(φ1,φ2,φ3,φ4)T,Aφ=(0,0,dVΔV,0)T。顯然,根據(jù)標(biāo)準(zhǔn)的存在性理論[11],系統(tǒng)(5)在[0,Tmax)上存在一個(gè)唯一的局部解,Tmax是系統(tǒng)(5)的最大存在時(shí)間[12],且0=(0,0,0,0)T顯然是系統(tǒng)(2)—(4)的下解,因此,Z(x,t)≥0,I(x,t)≥0,V(x,t)≥0,T(x,t)≥0。

        λ-γ(Z(x,t-τ)+I(x,t)+T(x,t)),

        2 平衡點(diǎn)的穩(wěn)定性分析

        設(shè)0=η1<η2<…<ηn<…是在Ω上具有齊次Neumann邊界條件的拉普拉斯算子-Δ的特征值,E(ηi)(i=1,2,…)是在C1(Ω)上對(duì)應(yīng)于特征值ηi的特征函數(shù)空間。{φij:j=1,2,…,dimE(ηi)}是E(ηi)的標(biāo)準(zhǔn)正交基,X=[C1(Ω)]4,Xij={hφij:h∈R4},則

        其中⊕代表子空間的直和。

        其中Q=diag(0,0,dV,0),U=(Z,I,V,T),

        (6)

        定理2 若R0<1,則系統(tǒng)(2)—(4)的未感染平衡點(diǎn)E0局部漸近穩(wěn)定;若R0>1,則E0不穩(wěn)定。

        證明未感染平衡點(diǎn)E0處的特征方程可化為

        (7)

        顯然,ξ1=-m,ξ2=-δ是方程(7)的兩個(gè)負(fù)實(shí)根,其余的根由方程

        (8)

        以下只需討論τ>0的情形。令ξ=iω,ω∈R,代入方程(8),分離實(shí)部和虛部可得

        (9)

        (10)

        將式(9)和式(10)兩端平方相加即得

        顯然,當(dāng)R0<1時(shí),ω2<0,矛盾。因此,特征方程(8)不存在純虛根,即當(dāng)R0<1時(shí),對(duì)任意的τ>0,未感染平衡點(diǎn)E0局部漸近穩(wěn)定。綜上,當(dāng)R0<1時(shí),對(duì)任意的τ≥0,未感染平衡點(diǎn)E0局部漸近穩(wěn)定。

        定理3 若R0<1,則系統(tǒng)(2)—(4)的未感染平衡點(diǎn)E0全局漸近穩(wěn)定。

        于是,

        定理4 若R1≤1

        于是

        定理5 若R1>1,則系統(tǒng)(2)—(4)的感染免疫平衡點(diǎn)E2全局漸近穩(wěn)定。

        于是

        猜你喜歡
        平衡點(diǎn)時(shí)滯定理
        J. Liouville定理
        帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
        A Study on English listening status of students in vocational school
        探尋中國(guó)蘋(píng)果產(chǎn)業(yè)的產(chǎn)銷平衡點(diǎn)
        電視庭審報(bào)道,如何找到媒體監(jiān)督與司法公正的平衡點(diǎn)
        “三共定理”及其應(yīng)用(上)
        在給專車服務(wù)正名之前最好找到Uber和出租車的平衡點(diǎn)
        一階非線性時(shí)滯微分方程正周期解的存在性
        Individual Ergodic Theorems for Noncommutative Orlicz Space?
        一類時(shí)滯Duffing微分方程同宿解的存在性
        久久久久人妻精品一区蜜桃| 国产精品又爽又粗又猛又黄| 日本a级特级黄色免费| 永久黄网站色视频免费看| 丰满五十六十老熟女hd| 国产成人aa在线观看视频| 中文字幕人妻被公喝醉在线| 欧美性生交大片免费看app麻豆| 亚洲成av人片一区二区| 免费看国产成年无码av| 91麻豆精品一区二区三区| 在线观看日本一区二区三区四区 | 久久亚洲黄色| 激情文学人妻中文字幕| 国产真实一区二区三区| 天天狠天天添日日拍| 成人国产精品999视频| 国产丝袜高跟美腿一区在线| 麻神在线观看免费观看| 欧美精品黑人粗大免费| av中文字幕综合在线| 富婆叫鸭一区二区三区| 蜜桃av在线免费网站| 国内精品久久久久影院一蜜桃| 国产精彩视频| 国产免费一区二区三区三| 亚洲国产成人精品无码区在线播放 | 91久久福利国产成人精品| 日本国产精品高清在线| 99在线精品免费视频| 中文字幕人妻偷伦在线视频| 亚洲国产一区二区三区在观看| 久久精品久99精品免费| 天天爽天天爽夜夜爽毛片| 热久久这里只有| 久久精品久久精品中文字幕| 日本边添边摸边做边爱喷水| 久热在线播放中文字幕| 亚洲精品国产主播一区二区| 亚洲色图在线免费观看视频| 亚洲av无码精品色午夜|