亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        非生物逆境鍛煉提高作物耐逆性的生理機(jī)制研究進(jìn)展

        2021-06-16 01:13:04王笑蔡劍周琴戴廷波姜東
        關(guān)鍵詞:逆境作物低溫

        王笑,蔡劍,周琴,戴廷波,姜東

        非生物逆境鍛煉提高作物耐逆性的生理機(jī)制研究進(jìn)展

        王笑,蔡劍,周琴,戴廷波,姜東

        南京農(nóng)業(yè)大學(xué)小麥區(qū)域創(chuàng)新中心/農(nóng)業(yè)農(nóng)村部作物生理生態(tài)與生產(chǎn)管理重點(diǎn)實(shí)驗(yàn)室,南京 210095

        非生物逆境(如,高溫、低溫、干旱、漬水脅迫等)是限制作物產(chǎn)量提升的重要因子,并且非生物逆境發(fā)生的頻率、程度以及持續(xù)時(shí)間隨著全球氣候變化呈顯著上升趨勢(shì)。因此,提高作物對(duì)非生物逆境的抗性,或采取緩解措施降低非生物逆境對(duì)作物產(chǎn)量和品質(zhì)形成的不利影響,對(duì)于確保作物穩(wěn)產(chǎn)及糧食安全有重要意義。逆境鍛煉(priming)是指植株經(jīng)過(guò)前期適度的逆境處理后,對(duì)再次發(fā)生的逆境脅迫表現(xiàn)出較強(qiáng)的抗/耐性,也稱為逆境脅迫記憶。與未經(jīng)過(guò)鍛煉植株相比,經(jīng)過(guò)鍛煉植株的信號(hào)調(diào)控物質(zhì)、次級(jí)代謝產(chǎn)物、脅迫保護(hù)性物質(zhì)等可以更快、更有效地對(duì)再次發(fā)生的逆境脅迫產(chǎn)生響應(yīng),從而增強(qiáng)植株耐逆性。根據(jù)再次逆境發(fā)生的類型及時(shí)間,逆境鍛煉主要包括當(dāng)代同種逆境鍛煉效應(yīng)(鍛煉階段的逆境和再次發(fā)生的逆境是同一種)、當(dāng)代交叉逆境鍛煉效應(yīng)(鍛煉階段的逆境和再次發(fā)生的逆境不是同一種)、跨代同種逆境鍛煉效應(yīng)(經(jīng)過(guò)逆境鍛煉的種子在子一代或子幾代的同種逆境鍛煉效應(yīng))、跨代交叉逆境鍛煉效應(yīng)(經(jīng)過(guò)逆境鍛煉的種子在子一代或子幾代的交叉逆境鍛煉效應(yīng))四大類型。本文重點(diǎn)圍繞高溫鍛煉、低溫鍛煉、干旱鍛煉及漬水鍛煉介導(dǎo)的上述四大類型鍛煉效應(yīng)的生理機(jī)制進(jìn)行了綜述,生理機(jī)制主要包括植株光合機(jī)構(gòu)響應(yīng)機(jī)制、抗氧化系統(tǒng)在清除活性氧減輕對(duì)細(xì)胞膜脂過(guò)氧化傷害機(jī)制、脅迫誘導(dǎo)的信號(hào)物質(zhì)(激素類物質(zhì)、Ca2+、過(guò)氧化氫、一氧化氮等)在誘導(dǎo)下游基因表達(dá)及生理生化過(guò)程機(jī)制。此外,表觀遺傳修飾如DNA甲基化、組蛋白修飾為長(zhǎng)期甚至傳代脅迫記憶提供了潛在機(jī)制。對(duì)作物逆境鍛煉機(jī)制的深入解析,可以找到對(duì)作物耐逆性獲得起關(guān)鍵調(diào)控作用的基因和蛋白,這樣在作物生產(chǎn)上,我們可以在生育前期,配合外源調(diào)控物質(zhì)誘導(dǎo)起關(guān)鍵作用的基因和蛋白,可通過(guò)人為方法提前刺激這種物質(zhì)在逆境來(lái)臨之前表達(dá),主動(dòng)誘導(dǎo)作物對(duì)關(guān)鍵時(shí)期逆境耐性的形成,從而有效緩解在產(chǎn)量形成關(guān)鍵生育時(shí)期發(fā)生的脅迫對(duì)作物產(chǎn)量的不利影響,因而具有重要的實(shí)際生產(chǎn)意義。

        非生物逆境;逆境鍛煉;當(dāng)代鍛煉;跨代鍛煉;生理機(jī)制;信號(hào)調(diào)控機(jī)制

        極端逆境如極端高溫、低溫、干旱、漬水等事件是限制作物生產(chǎn)的重要障礙因子[1],并且伴隨全球變暖,預(yù)測(cè)到2100年全球平均溫度可能會(huì)升高3.7—4.6℃[2],降雨的分布將會(huì)極不均衡,干旱區(qū)域更加干旱,雨量充沛的地區(qū)雨水會(huì)更多[3],并且極端逆境事件發(fā)生的頻率、程度以及持續(xù)時(shí)間也呈顯著上升趨勢(shì)[4]。預(yù)測(cè)到2050年高溫導(dǎo)致全球作物減產(chǎn)至少10%[5],澳大利亞小麥生長(zhǎng)季的平均溫度增加2℃會(huì)導(dǎo)致小麥減產(chǎn)50%左右[6],印度灌漿期高溫脅迫可導(dǎo)致小麥減產(chǎn)20%左右[7]。全球范圍內(nèi)從1980—2015年由于全球的干旱事件,小麥減產(chǎn)21%,玉米減產(chǎn)40%[8]。此外,全球農(nóng)田面積的10%—12%會(huì)遭受漬害,從1985—2010年間有記錄的漬害事件就發(fā)生了3 713次(http://floodobservatory. colorado.edu/),漬害導(dǎo)致2011年美國(guó)玉米和大豆減產(chǎn),造成經(jīng)濟(jì)損失達(dá)16億美元[9]。全國(guó)農(nóng)作物受災(zāi)面積6 426.98 千hm2,因干旱受災(zāi)面積16 085.87千hm2,2018年我國(guó)農(nóng)作物受災(zāi)面積達(dá)20 814.3千hm2,占農(nóng)作物總面積的12.5%,其中干旱成災(zāi)面積占總成災(zāi)面積的37%左右,洪澇成災(zāi)面積占總成災(zāi)面積的35%左右,低溫成災(zāi)面積占到28%左右(中國(guó)國(guó)家統(tǒng)計(jì)局2018統(tǒng)計(jì)年鑒)。因此,提高作物對(duì)非生物逆境的抗性,或采取緩解措施降低非生物逆境對(duì)作物產(chǎn)量和品質(zhì)形成的不利影響,對(duì)于確保作物豐產(chǎn)及糧食安全有重要意義。

        通過(guò)逆境鍛煉提高植株耐逆性是植物適應(yīng)或應(yīng)對(duì)逆境進(jìn)化而來(lái)的能力。對(duì)植物而言,沒(méi)有一個(gè)神經(jīng)系統(tǒng)和大腦提供記憶功能,并且不能像動(dòng)物那樣通過(guò)自身的移動(dòng)來(lái)適應(yīng)或躲避不良環(huán)境,因此植物進(jìn)化出復(fù)雜的遺傳和表觀遺傳機(jī)制來(lái)調(diào)整生長(zhǎng)發(fā)育適應(yīng)環(huán)境。逆境鍛煉(priming)是指植株經(jīng)過(guò)前期適度的逆境處理后,DNA序列不發(fā)生變化,植物會(huì)發(fā)生可逆的染色質(zhì)表觀修飾改變,當(dāng)植物再次面對(duì)嚴(yán)重的相同逆境脅迫或者不同逆境脅迫時(shí)會(huì)表現(xiàn)出較強(qiáng)的抗性[10],并且植物不僅可以啟動(dòng)他們自身的保護(hù)措施(當(dāng)代記憶效應(yīng)),而且可以將這種可行的保護(hù)措施傳遞給下一代(跨代記憶效應(yīng))[10-13]。鍛煉的效應(yīng)主要是指,與未經(jīng)過(guò)鍛煉植株相比,經(jīng)過(guò)鍛煉植株的信號(hào)調(diào)控物質(zhì)、次級(jí)代謝產(chǎn)物、脅迫保護(hù)性物質(zhì)等可以更快、更有效地對(duì)再次發(fā)生的逆境脅迫產(chǎn)生響應(yīng),從而增強(qiáng)植株耐逆性(圖1)。

        植物鍛煉效應(yīng)研究最早集中在生物脅迫誘導(dǎo)的鍛煉效應(yīng)。植物在病原菌亞致死劑量預(yù)處理后,植物對(duì)病原菌的抗性增強(qiáng)[14-19]。我們團(tuán)隊(duì)最早開(kāi)展了關(guān)于非生物逆境鍛煉誘導(dǎo)效應(yīng)的研究,并應(yīng)用于小麥的抗逆生產(chǎn)研究中。逆境鍛煉作為一種主動(dòng)的逆境應(yīng)對(duì)策略,在抗逆穩(wěn)產(chǎn)中具有較大的應(yīng)用潛力,也越來(lái)越受到關(guān)注[20]。根據(jù)再次發(fā)生的非生物脅迫的類型及時(shí)間,可將非生物逆境鍛煉類型分為四類:當(dāng)代同種逆境鍛煉效應(yīng)(鍛煉階段的逆境和再次發(fā)生的逆境是同一種)、當(dāng)代交叉逆境鍛煉效應(yīng)(鍛煉階段的逆境和再次發(fā)生的逆境不是同一種)、跨代同種逆境鍛煉效應(yīng)(經(jīng)過(guò)逆境鍛煉的種子在子一代或子幾代的同種逆境鍛煉效應(yīng))、跨代交叉逆境鍛煉效應(yīng)(經(jīng)過(guò)逆境鍛煉的種子在子一代或子幾代的交叉逆境鍛煉效應(yīng))。

        圖1 非生物逆境鍛煉提高植株耐逆性示意圖(參考文獻(xiàn)[11]改畫)

        光合作用對(duì)作物最后的生產(chǎn)能力貢獻(xiàn)很大,但同時(shí)光合機(jī)構(gòu)對(duì)非生物逆境脅迫非常敏感,逆境脅迫主要從氣孔導(dǎo)度、葉綠體電子傳遞、碳反應(yīng)過(guò)程相關(guān)酶活性等影響植株光合作用。逆境脅迫打破了光能吸收與利用的平衡,導(dǎo)致活性氧積累對(duì)細(xì)胞造成氧化傷害。植株抗氧化系統(tǒng)的激活可清除活性氧,減輕對(duì)細(xì)胞膜脂過(guò)氧化傷害并維持細(xì)胞膜穩(wěn)定性。脅迫誘導(dǎo)的信號(hào)物質(zhì)(激素類物質(zhì)、Ca2+、過(guò)氧化氫、一氧化氮等)、蛋白質(zhì)、RNAs及一些代謝產(chǎn)物被認(rèn)為是短期記憶因子,在植株再次遭遇脅迫時(shí)能迅速發(fā)揮積極作用,調(diào)控下游基因表達(dá)及生理生化過(guò)程抵御脅迫[21];而可遺傳的表觀遺傳修飾如DNA甲基化、組蛋白修飾為長(zhǎng)期甚至傳代脅迫記憶提供了潛在機(jī)制[21-24]。本文將主要圍繞高溫鍛煉、低溫鍛煉、干旱鍛煉及漬水鍛煉對(duì)作物后期再次遇到相同逆境脅迫或不同逆境脅迫耐性的影響及其機(jī)制展開(kāi)。

        1 當(dāng)代同種逆境鍛煉效應(yīng)與生理機(jī)制

        1.1 高溫鍛煉效應(yīng)與生理機(jī)制

        1.1.1 高溫鍛煉可提高作物耐熱性 不同時(shí)期高溫鍛煉均可提高作物耐熱性。經(jīng)萌動(dòng)熱激鍛煉過(guò)的小麥植株在花后高溫逆境下產(chǎn)量降低幅度顯著低于未經(jīng)萌動(dòng)熱激鍛煉處理,主要與其粒重下降幅度較低相關(guān)[25]。小麥幼苗在32/24℃條件下進(jìn)行2次高溫鍛煉,隨后進(jìn)行35/27℃高溫脅迫,發(fā)現(xiàn)經(jīng)過(guò)高溫鍛煉的植株耐熱性顯著增強(qiáng)[26-27]。在小麥營(yíng)養(yǎng)生長(zhǎng)時(shí)期(4葉1心和6葉1心期)進(jìn)行高溫鍛煉,發(fā)現(xiàn)經(jīng)過(guò)鍛煉植株可以有效減緩花后高溫脅迫對(duì)小麥產(chǎn)量的影響[26-27]。花前高溫鍛煉增加了莖稈果聚糖含量,并減輕了對(duì)果聚糖合成相關(guān)酶(蔗糖:蔗糖果糖基轉(zhuǎn)移酶和果聚糖:果聚糖果糖基轉(zhuǎn)移酶)活性的抑制,提高了籽粒淀粉含量,表明前期熱鍛煉促進(jìn)了小麥花后高溫逆境下干物質(zhì)從莖桿向籽粒的轉(zhuǎn)運(yùn),從而提高了千粒重[28]。

        1.1.2高溫鍛煉提高作物耐熱性的光合與抗氧化機(jī)制 經(jīng)過(guò)鍛煉的植株在后期高溫脅迫下表現(xiàn)出較高的光合和抗氧化能力。萌動(dòng)熱激鍛煉降低了高溫逆境對(duì)小麥葉片膜脂過(guò)氧化傷害,維持較高的葉片光合速率,緩解了高溫脅迫對(duì)小麥植株的損傷。經(jīng)過(guò)熱鍛煉的植株顯著上調(diào)了Rubisco激活酶B編碼基因,下調(diào)了葉綠素a/b結(jié)合蛋白編碼基因,說(shuō)明高溫脅迫下通過(guò)降低光能吸收從而保護(hù)光系統(tǒng)II免受激發(fā)能的損傷,提高了實(shí)際光化學(xué)效率。同時(shí),經(jīng)過(guò)鍛煉的植株提高了抗氧化酶SOD、CAT和GR活性以及編碼相關(guān)酶的基因表達(dá),降低了細(xì)胞膜傷害指數(shù)和膜脂過(guò)氧化產(chǎn)物含量,表明前期熱鍛煉緩解了后期高溫逆境對(duì)小麥旗葉光合機(jī)構(gòu)的傷害,提高了小麥旗葉光合性能及抗氧化系統(tǒng)清除能力[26-27]。

        1.1.3 熱激蛋白參與了高溫鍛煉介導(dǎo)作物耐熱性獲得 萌動(dòng)熱激鍛煉誘導(dǎo)了高溫脅迫信號(hào)的感知與轉(zhuǎn)導(dǎo)、脅迫響應(yīng)基因的表達(dá),包括編碼熱激蛋白、滲調(diào)蛋白、抗氧化過(guò)程和光合作用相關(guān)的基因,增強(qiáng)了小麥對(duì)花后高溫脅迫的耐性[25]。經(jīng)過(guò)熱鍛煉的擬南芥植株在隨后的熱脅迫中有更高的存活率,用T-DNA插入突變體研究了48個(gè)熱誘導(dǎo)基因,發(fā)現(xiàn)在較長(zhǎng)的恢復(fù)期中敲除突變體相比于野生型對(duì)熱脅迫更為敏感,表明HsfA2作為熱誘導(dǎo)型反式激活因子維持了的表達(dá)并延長(zhǎng)了擬南芥中對(duì)熱記憶的持續(xù)時(shí)間[29]。相較未經(jīng)鍛煉的植株,高溫鍛煉強(qiáng)烈誘導(dǎo)了基因表達(dá)并在恢復(fù)階段可以維持較高表達(dá)水平,基因在保護(hù)光系統(tǒng)II抗氧化損傷和熱應(yīng)激中起作用,經(jīng)過(guò)鍛煉的擬南芥植株表現(xiàn)出較高的鮮重和維持下胚軸伸長(zhǎng)的能力[30]。目前在模式植物上的研究較多,熱激蛋白在高溫鍛煉參與作物耐熱性上的研究還少有報(bào)道。

        1.1.4 高溫鍛煉提高作物耐熱性的表觀遺傳機(jī)制 表觀遺傳和可變剪切也介導(dǎo)了植物逆境應(yīng)答和脅迫記憶[31-32]。熱激記憶與H3K4me2和H3K4me3甲基化修飾的積累有關(guān),并且依賴于HsfA2轉(zhuǎn)錄因子調(diào)控,在熱鍛煉后、、基因積累H3K4me2和H3K4me3甲基化修飾,從而維持了熱記憶[33]。通過(guò)對(duì)miRNA分析發(fā)現(xiàn),熱記憶可能與有關(guān),靶向SPL轉(zhuǎn)錄因子,在高溫脅迫后基因會(huì)被miR156靶向下調(diào),從而讓植株可以盡快恢復(fù)生長(zhǎng),當(dāng)植株無(wú)法正常合成會(huì)表現(xiàn)出熱記憶丟失的現(xiàn)象[34]。熱鍛煉誘導(dǎo)的可變剪切可能是熱記憶的重要組成部分[35],在高溫脅迫下,未經(jīng)鍛煉植物對(duì)可變剪切有明顯的抑制作用,而經(jīng)過(guò)鍛煉植株對(duì)可變剪切的抑制作用會(huì)解除。

        1.2 低溫鍛煉效應(yīng)與生理機(jī)制

        1.2.1 低溫鍛煉效應(yīng) 小麥幼苗的前期經(jīng)過(guò)低溫鍛煉后,在后期低溫脅迫下具有較高的生物量積累以及較低的半致死率,表現(xiàn)較強(qiáng)的耐冷性[36]。在田間進(jìn)行低溫鍛煉試驗(yàn)也得到了類似結(jié)論,如小麥分蘗期進(jìn)行7 d低溫鍛煉,恢復(fù)14 d后進(jìn)行了5 d低溫脅迫處理,發(fā)現(xiàn)經(jīng)過(guò)低溫鍛煉的植株相對(duì)于未鍛煉的植株具有較高的產(chǎn)量,這主要與經(jīng)過(guò)鍛煉植株具有較高的分蘗存活率,從而維持了較高的穗數(shù)和穗粒數(shù)有關(guān)[37]。

        1.2.2 低溫鍛煉增強(qiáng)了作物細(xì)胞膜穩(wěn)定性及抗氧化能力 低溫鍛煉植株具有較高的光合能力和細(xì)胞膜穩(wěn)定性,從而增強(qiáng)植株對(duì)低溫脅迫耐性。在低溫脅迫下,未經(jīng)鍛煉植株質(zhì)膜Ca2 +-ATPase活性喪失,遭受冷害,而經(jīng)過(guò)低溫鍛煉,甜玉米質(zhì)膜Ca2 +-ATPase 在冷脅迫后仍保持高活性,增強(qiáng)了耐冷性[38]。生育前期經(jīng)過(guò)低溫鍛煉的植株相對(duì)于未鍛煉的植株具有較高的能量捕獲和電子傳遞能力,抑制了光合系統(tǒng)的氧化爆發(fā),減輕細(xì)胞膜脂過(guò)氧化傷害,有助于保持低溫脅迫下植株的光合碳同化能力和膜穩(wěn)定性[37]。經(jīng)過(guò)低溫鍛煉的植株在低溫脅迫下較未經(jīng)過(guò)預(yù)處理的植株具有較高的抗氧化酶活性,其編碼基因表達(dá)與酶活性表達(dá)趨勢(shì)一致[39]。

        1.2.3 低溫鍛煉提高作物耐冷性的信號(hào)調(diào)控機(jī)制 激素信號(hào)參與低溫鍛煉誘導(dǎo)的抗氧化過(guò)程和滲透調(diào)控過(guò)程。低溫鍛煉可激活水楊酸(SA)合成關(guān)鍵酶苯丙氨酸解氨酶的活性及其編碼基因的表達(dá)顯著上調(diào),從而誘導(dǎo)了內(nèi)源水楊酸SA合成,內(nèi)源SA積累后激活細(xì)胞壁過(guò)氧化物酶向質(zhì)外體釋放H2O2,H2O2作為信號(hào)誘導(dǎo)ABA的合成,ABA通過(guò)激活質(zhì)膜NADPH氧化酶進(jìn)一步促進(jìn)質(zhì)外體H2O2的積累,H2O2和ABA信號(hào)激活下游低溫脅迫下冷響應(yīng)基因的表達(dá)和抗氧化酶活性的提高,緩解低溫引起的氧化和脫水脅迫,保護(hù)小麥葉片光合機(jī)構(gòu),ABA和H2O2信號(hào)會(huì)形成一個(gè)正向的反饋回路參與調(diào)控SA介導(dǎo)的低溫鍛煉誘導(dǎo)小麥抗寒性的提高。低溫鍛煉和外源SA處理均可顯著提高低溫脅迫下小麥葉片P5CS活性和鳥氨酸轉(zhuǎn)氨酶(ornithine aminotransferase,OAT)表達(dá),顯著抑制吡咯啉-5-羧酸脫氫酶(Δ1-pyrroline-5-carboxylate dehydrogenase,P5CDH)的表達(dá),說(shuō)明SA參與低溫鍛煉下脯氨酸的合成,及抑制脯氨酸的降解,進(jìn)而誘導(dǎo)游離脯氨酸的積累。經(jīng)過(guò)鍛煉的小麥植株上調(diào)了WRKY基因()、熱休克轉(zhuǎn)錄因子()、線粒體替代氧化酶()、熱休克蛋白()的表達(dá)水平,表明低溫鍛煉可以上調(diào)低溫響應(yīng)相關(guān)基因表達(dá),從而提高抗氧化能力和抗氰化物的呼吸能力,提高植株耐冷性[36]。經(jīng)過(guò)低溫鍛煉的擬南芥植株具有更高的耐寒性,主要與3種阿拉伯糖苷的顯著上調(diào)有關(guān),3種糖苷參與了JAZ蛋白的降解,誘導(dǎo)MYC2轉(zhuǎn)錄因子參與調(diào)控,這些代謝物可能是保持冷記憶的因素之一[40]。低溫鍛煉記憶受到NO信號(hào)的調(diào)控,(硝酸還原酶缺失雙突變體)植株低溫耐受性較低,同時(shí)冷鍛煉使植物中的脯氨酸脫氫酶()基因表達(dá)上調(diào),導(dǎo)致植物中脯氨酸的積累少于野生型,說(shuō)明NR依賴的NO產(chǎn)生通過(guò)調(diào)節(jié)擬南芥中脯氨酸的積累提高耐冷性[41]。

        1.3 干旱鍛煉效應(yīng)

        1.3.1 干旱鍛煉提高了作物耐旱性 干旱鍛煉可有效緩解干旱脅迫對(duì)作物生長(zhǎng)的影響。干旱鍛煉可以促使小麥和煙草幼苗發(fā)生形態(tài)上的變化,增強(qiáng)其根冠比,從而更好地適應(yīng)干旱脅迫[42-43]。在苗期和拔節(jié)期進(jìn)行1次和2次干旱鍛煉,發(fā)現(xiàn)經(jīng)過(guò)前期干旱鍛煉的小麥植株在花后干旱脅迫下,可降低小麥減產(chǎn)幅度[44],在水稻干旱鍛煉研究中也有相似的研究結(jié)果[45]。此外,拔節(jié)期和抽穗期恢復(fù)供水可使苗期和孕穗期遭受不同程度干旱冬小麥株高、葉片數(shù)、葉面積以及干物質(zhì)等超過(guò)其相應(yīng)對(duì)照,表現(xiàn)出明顯的補(bǔ)償生長(zhǎng)效應(yīng)[46-47]。

        1.3.2 干旱鍛煉提高作物耐旱性的抗氧化及滲透調(diào)節(jié)生理機(jī)制 經(jīng)過(guò)干旱鍛煉的植株可維持較高的葉片光合能力和抗氧化酶活性,從而可以降低氧化脅迫傷害,增強(qiáng)植株耐旱性?;ㄇ敖?jīng)過(guò)干旱鍛煉的植株在花后干旱脅迫下具有較高的最大光合速率,主要是由于其較高的最大電子傳遞效率及較低的非光化學(xué)淬滅[44]。經(jīng)過(guò)干旱鍛煉的植株維持較高的脯氨酸和甜菜堿含量,降低滲透勢(shì),從而維持相對(duì)較高的植株水勢(shì),并且滲透調(diào)節(jié)物質(zhì)含量與脯氨酸合成關(guān)鍵酶編基因(吡咯啉-5-羧酸合成酶基因)及甜菜堿合成關(guān)鍵基因(甜菜堿醛脫氫酶基因)的表達(dá)趨勢(shì)一致[48]。對(duì)經(jīng)過(guò)干旱鍛煉和未經(jīng)過(guò)干旱鍛煉小麥植株的差異蛋白研究發(fā)現(xiàn),經(jīng)過(guò)干旱鍛煉和未鍛煉植株的差異蛋白主要與光合作用、脅迫防御、物質(zhì)代謝、分子伴侶和細(xì)胞結(jié)構(gòu)等過(guò)程相關(guān)[44]。與植物光合作用、脯氨酸合成等代謝路徑的差異基因也參與到了水稻的抗旱“記憶”當(dāng)中[49]。

        1.3.3 干旱鍛煉提高作物耐旱性的激素信號(hào)調(diào)控機(jī)制 激素信號(hào)物質(zhì)是介導(dǎo)干旱鍛煉誘導(dǎo)干旱脅迫的重要途徑之一。干旱鍛煉通過(guò)誘導(dǎo)擬南芥ABA快速合成,促進(jìn)細(xì)胞壁擴(kuò)張調(diào)整細(xì)胞壁結(jié)構(gòu),從而使植株積極應(yīng)對(duì)再次發(fā)生的干旱脅迫[50]。擬南芥在保衛(wèi)細(xì)胞中ABA含量及其合成相關(guān)基因、的表達(dá)能夠保持較高的水平,且ABA信號(hào)調(diào)控途徑的和在保衛(wèi)細(xì)胞的干旱記憶獲得中起重要作用[51]。經(jīng)過(guò)干旱鍛煉的小麥旗葉ABA濃度升高,這可能有利于營(yíng)養(yǎng)器官可溶性碳水化合物向籽粒中的轉(zhuǎn)移,這與干旱脅迫下經(jīng)過(guò)干旱鍛煉植株產(chǎn)量降幅較低結(jié)果一致。ABA和JA含量的平衡在水稻干旱脅迫記憶形成中有重要作用[49],JA通過(guò)依賴ABA的脫水脅迫響應(yīng)記憶基因調(diào)控干旱鍛煉效應(yīng)[52],經(jīng)過(guò)干旱鍛煉小麥植株,參與ABA和JA合成與代謝、及其信號(hào)調(diào)控途徑的基因顯著誘導(dǎo)表達(dá),并且ABA和JA抑制劑均降低了鍛煉植株的耐旱性,JA抑制劑降低了ABA積累,但ABA抑制劑對(duì)JA積累并無(wú)影響,JA抑制劑回補(bǔ)噴施ABA后可以恢復(fù)鍛煉的效應(yīng),但ABA抑制劑回補(bǔ)噴施JA后并沒(méi)有恢復(fù)鍛煉效應(yīng),說(shuō)明ABA和JA是干旱鍛煉誘導(dǎo)耐旱性所必須的,并且JA在ABA上游介導(dǎo)干旱鍛煉誘導(dǎo)小麥耐旱性獲得[53]。

        1.3.4 干旱鍛煉提高作物耐旱性的表觀遺傳機(jī)制 DNA甲基化參與到植株響應(yīng)干旱脅迫過(guò)程中,在脅迫記憶中發(fā)揮重要作用[54]。水稻植株進(jìn)行反復(fù)的干旱和復(fù)水處理后,通過(guò)轉(zhuǎn)錄組鏈特異性測(cè)序得到大量與水稻干旱“記憶”相關(guān)的候選差異表達(dá)基因,即表現(xiàn)出與第一次干旱脅迫時(shí)不同的變化趨勢(shì)。該研究獲得了6 885個(gè)干旱記憶轉(zhuǎn)錄本,以及238個(gè)干旱“記憶”核糖核酸,同時(shí)發(fā)現(xiàn)5 373個(gè)記憶基因都被DNA甲基化修飾,其中3 064個(gè)記憶基因的表達(dá)與DNA甲基化水平相關(guān)[49]。組蛋白修飾在干旱脅迫記憶當(dāng)中也發(fā)揮著重要的作用[55],反復(fù)的脫水脅迫過(guò)程中,與脅迫記憶相關(guān)的基因在復(fù)水階段,其表達(dá)雖然回到基礎(chǔ)表達(dá)水平,但是仍然保持著非常高的H3K4me3組蛋白修飾水平和RNA 聚合酶水平,說(shuō)明組蛋白修飾及RNA聚合酶II參與到脅迫記憶形成[52,56]。

        1.4 漬水鍛煉效應(yīng)

        1.4.1 漬水鍛煉提高了作物耐漬性 小麥營(yíng)養(yǎng)生長(zhǎng)期(七葉期、九葉期和抽穗期)多次進(jìn)行漬水鍛煉可提高其在花后漬水脅迫下的耐性?;ㄇ皾n水鍛煉可提高花后光合同化量,增加干物質(zhì)向籽粒的轉(zhuǎn)運(yùn)量,粒重增加,緩解了漬害造成的小麥產(chǎn)量損失[57]?;ㄇ皾n水鍛煉顯著調(diào)控了營(yíng)養(yǎng)器官的碳/氮轉(zhuǎn)運(yùn),最終顯著提高了花后漬水脅迫下的小麥籽粒產(chǎn)量,并影響了籽粒品質(zhì)[58]。漬水脅迫會(huì)導(dǎo)致土壤含氧量下降,大部分的試驗(yàn)通過(guò)缺氧來(lái)模擬漬水脅迫效應(yīng)。低溫預(yù)處理能提高后期缺氧脅迫下水稻根系的耐缺氧能力,但當(dāng)預(yù)處理時(shí)間超過(guò)12 h后,水稻根系的耐缺氧能力沒(méi)有進(jìn)一步增加[59]。羽扇豆幼苗經(jīng)低氧預(yù)處理18 h后,再進(jìn)行缺氧處理后,耐缺氧能力增強(qiáng)[60],在玉米上有相似的研究結(jié)果[61]。

        1.4.2 漬水提高作物耐漬性的能量代謝機(jī)制 低氧預(yù)處理可通過(guò)乙醇發(fā)酵途徑提高能量代謝的能力,增強(qiáng)其對(duì)后期更嚴(yán)重低氧脅迫的耐受性。缺氧預(yù)處理能提高缺氧脅迫時(shí)水稻根系的乙醇濃度、丙酮酸脫羧酶活性和乙醇脫氫酶活性,并誘導(dǎo)乙醇發(fā)酵來(lái)使根系維持較高的能量水平,使水稻根系的耐缺氧能力提高[59]。與未經(jīng)低氧預(yù)處理的羽扇豆幼苗相比,先前暴露于低氧環(huán)境的幼苗根系的乙醇脫氫酶活性增加,乙醇的合成量增多,促進(jìn)根系通氣組織的形成;同時(shí)低氧預(yù)處理使根系中乳酸脫氫酶的活性降低,降低了乳酸積累對(duì)根系造成的毒害[60]。經(jīng)低氧預(yù)處理的無(wú)氧培養(yǎng)基的玉米根系的能量代謝得到改善,這主要與乙醇脫氫酶活性的提高和乙醇脫氫酶的同工酶的導(dǎo)入有關(guān),提高了乙醇的生成率和發(fā)酵效率,促進(jìn)了玉米根尖無(wú)氧呼吸過(guò)程中的能量代謝[61]。

        1.4.3 漬水鍛煉提高作物耐漬性的光合與抗氧化機(jī)制 小麥營(yíng)養(yǎng)生長(zhǎng)期進(jìn)行漬水鍛煉,與未鍛煉處理相比,花前漬水鍛煉顯著提高了花后漬水逆境條件下小麥旗葉的葉綠素含量、最大光化學(xué)效率、實(shí)際光化學(xué)效率,提高了電子傳遞速率和光化學(xué)效率,最終提高了旗葉光合能力。同時(shí)花前漬水鍛煉提高了花后漬水脅迫下小麥旗葉的SOD、CAT、APX酶活性,而顯著降低了丙二醛含量和超氧陰離子的產(chǎn)生速率,減輕了活性氧對(duì)葉片的膜脂過(guò)氧化傷害[57]。蛋白質(zhì)組學(xué)分析發(fā)現(xiàn),卡爾文循環(huán)的關(guān)鍵酶Rubisco,乙烯合成前體ACC合成關(guān)鍵酶S-腺苷甲硫氨酸合成酶和抗壞血酸過(guò)氧化物酶的蛋白表達(dá)量在經(jīng)過(guò)鍛煉植株中較高,表明與能量代謝和應(yīng)激防御相關(guān)過(guò)程被漬水鍛煉顯著誘導(dǎo)[62]。

        作物對(duì)非生物逆境的響應(yīng)是十分復(fù)雜的,非生物逆境會(huì)改變植物細(xì)胞壁的延展性,破壞膜結(jié)構(gòu)穩(wěn)定性和完整性等,導(dǎo)致細(xì)胞膜上與光合和呼吸等關(guān)鍵生理過(guò)程相關(guān)的酶活性降低或喪失,從而嚴(yán)重影響植物光合、呼吸以及其他代謝過(guò)程。此外,非生物逆境會(huì)導(dǎo)致細(xì)胞內(nèi)大量活性氧的積累導(dǎo)致的過(guò)氧化脅迫,代謝失衡,影響植株生長(zhǎng),脅迫嚴(yán)重時(shí)甚至導(dǎo)致植株死亡。對(duì)作物進(jìn)行適度的逆境鍛煉,植株在感受到逆境信號(hào)后會(huì)通過(guò)鈣離子,活性氧信號(hào),激素信號(hào),糖信號(hào)等進(jìn)行信號(hào)傳遞,誘導(dǎo)下游抗逆基因表達(dá),主要包括一類是編碼蛋白的主要功能是分子伴侶、脅迫防御、滲透調(diào)節(jié)物質(zhì)合成等基因;另外一類是與編碼轉(zhuǎn)錄因子、編碼蛋白激酶及與肌醇磷脂代謝相關(guān)酶等的基因。進(jìn)而使植株在生理層面作出響應(yīng),包括維持細(xì)胞膜穩(wěn)定性、調(diào)控激素平衡、維持植株光合能力、增強(qiáng)抗氧化能力、增強(qiáng)滲透調(diào)節(jié)能力、加快代謝物的積累與轉(zhuǎn)運(yùn)等,最終調(diào)控植株的形態(tài)、物質(zhì)積累及產(chǎn)量等影響植株耐逆性獲得。

        鍛煉的效應(yīng)主要取決于鍛煉的程度、植株生長(zhǎng)發(fā)育時(shí)期以及鍛煉與再次發(fā)生逆境脅迫的時(shí)間間隔。鍛煉效應(yīng)及其模式需要針對(duì)不同的物種及逆境進(jìn)行優(yōu)化。如小麥鍛煉1 d后耐熱性就有所提高,3 d達(dá)到最好鍛煉效果,但時(shí)間延長(zhǎng)后耐熱性又下降,可能與長(zhǎng)時(shí)間持續(xù)高溫過(guò)多地消耗了植株體內(nèi)的養(yǎng)分和能量有關(guān)[63]。通過(guò)對(duì)比低溫鍛煉1 d和14 d對(duì)植株再次進(jìn)行再次脅迫時(shí),發(fā)現(xiàn)只有經(jīng)過(guò)14 d低溫鍛煉的植株通過(guò)誘導(dǎo)激活了電子傳遞,從而有效抵御了光損傷[64]。針對(duì)單子葉植物玉米和雙子葉番茄研究發(fā)現(xiàn),用生長(zhǎng)臨界溫度進(jìn)行低溫鍛煉能有效地提高冷敏感植物的抗冷能力。番茄幼苗經(jīng)12℃鍛煉7 d,玉米種苗經(jīng)11℃鍛煉8 d或15 d后,番茄幼苗和甜玉米種苗對(duì)2℃低溫脅迫的抗性明顯提高[38]。低溫抗性的誘導(dǎo)可能與植株真葉的形成有關(guān),連續(xù)低溫鍛煉相比不連續(xù)低溫鍛煉可以更好地提高植株耐寒性,14 d和21 d齡的擬南芥植株相比于7 d齡的植株具有更好的低溫鍛煉效果,經(jīng)過(guò)3 d低溫鍛煉的擬南芥其低溫記憶維持了3 d之后消失[65]。小麥分別在4葉期、6葉期和8葉期進(jìn)行高溫鍛煉,發(fā)現(xiàn)其對(duì)灌漿期高溫脅迫的緩解效應(yīng),在6葉期高溫鍛煉的緩解效應(yīng)最好,說(shuō)明鍛煉與再次發(fā)生脅迫的時(shí)間間隔也不一定是越短越好。對(duì)全國(guó)小麥主產(chǎn)區(qū)的110個(gè)小麥品種對(duì)干旱鍛煉的響應(yīng)是有敏感度的差異,有81個(gè)品種對(duì)干旱鍛煉敏感,29個(gè)品種對(duì)干旱鍛煉不敏感[66],一方面說(shuō)明不同品種對(duì)逆境鍛煉的響應(yīng)敏感性可能是有差異,另一方面說(shuō)明不同品種的逆境鍛煉模式可能是不同的,需要進(jìn)一步優(yōu)化鍛煉模式來(lái)誘導(dǎo)鍛煉效應(yīng)。

        2 交叉鍛煉效應(yīng)與生理機(jī)制

        植株在應(yīng)對(duì)非生物脅迫中表現(xiàn)出的相似的分子和轉(zhuǎn)錄水平上的響應(yīng)效應(yīng),各逆境的鍛煉和抗性記憶機(jī)理也應(yīng)該存在緊密聯(lián)系[67]。因此,一種脅迫鍛煉或記憶的獲得也可能參與到抵御其他脅迫的過(guò)程中。

        2.1 干旱鍛煉增強(qiáng)植株對(duì)高溫脅迫的耐性

        玉米幼苗經(jīng)干旱鍛煉后提高了其在后期高溫脅迫下的存活率,可能的機(jī)制是干旱預(yù)處理提高了幼苗在高溫脅迫下的抗氧化酶活性從而減少氧化損傷[68]。小麥在6葉期和拔節(jié)期進(jìn)行干旱鍛煉,增強(qiáng)了小麥對(duì)花后高溫脅迫的耐性,灌漿期高溫脅迫主要通過(guò)影響羧化效率限制光合作用,經(jīng)過(guò)鍛煉的植株中,有效緩解了籽粒灌漿過(guò)程中旗葉因熱脅迫引起的光抑制,維持較高的最大電子傳遞效率,降低了減產(chǎn)幅度[69]。干旱鍛煉能提高羊茅草的耐熱性,干旱鍛煉誘導(dǎo)的耐熱性的獲得與、、、、、、、、基因的上調(diào)表達(dá)密切相關(guān)[70],在高溫脅迫下,經(jīng)過(guò)干旱鍛煉的植株增加了磷脂和糖脂的積累,包括磷脂酸,磷脂酰膽堿,磷脂酰肌醇,磷脂酰甘油及二?;视偷冗@些物質(zhì),參與了細(xì)胞膜的穩(wěn)定性和信號(hào)的傳遞[71]。

        2.2 干旱鍛煉增強(qiáng)植株對(duì)低溫脅迫的耐性

        經(jīng)過(guò)適度干旱鍛煉的小麥植株在低溫脅迫時(shí)能夠較好地保持植株水分狀態(tài),維持較高的光合速率并能較快地激活抗氧化系統(tǒng),降低活性氧對(duì)光合系統(tǒng)的氧化損傷[72]。將黑麥幼苗干旱處理14 d或24 h均可以提高幼苗在隨后3℃低溫脅迫的抗性,這可能與經(jīng)過(guò)干旱處理的植株胚芽細(xì)胞中滲透壓、可溶性蛋白和磷脂的迅速增加,營(yíng)養(yǎng)物質(zhì)快速轉(zhuǎn)移到胚芽細(xì)胞原生質(zhì)有關(guān)[72]。干旱預(yù)處理降低了玉米在低溫下的傷害,經(jīng)過(guò)干旱鍛煉的玉米植株比未經(jīng)干旱鍛煉植株在低溫脅迫下表現(xiàn)出更高的凈光合速率,從而降低了產(chǎn)生活性氧含量,緩解了低溫脅迫的細(xì)胞膜脂過(guò)氧化傷害[73]。

        ABA和H2O2是干旱鍛煉誘導(dǎo)植株耐冷性形成中的重要信號(hào)物質(zhì)。經(jīng)過(guò)適度干旱鍛煉的小麥植株在低溫脅迫下其耐冷性增強(qiáng)與葉片及木質(zhì)部ABA含量升高有關(guān),且ABA濃度的增加與鍛煉植株中抗氧化酶的活性密切相關(guān)[74],說(shuō)明ABA可作為干旱鍛煉信號(hào)誘導(dǎo)小麥對(duì)低溫脅迫的抗性。同時(shí)干旱預(yù)處理后玉米葉片H2O2含量增加,參與了后期低溫脅迫下植株抗氧化酶活性的誘導(dǎo)及耐寒性的增強(qiáng)[73]。經(jīng)過(guò)干旱鍛煉的苜蓿具有更好的低溫耐受性,代謝組學(xué)分析發(fā)現(xiàn)可能與可溶性糖、氨基酸、脂類及類脂分子含量增加有關(guān),從而調(diào)控細(xì)胞膜的流動(dòng)性和穩(wěn)定性[75]。

        2.3 低氧鍛煉和機(jī)械損傷增強(qiáng)作物對(duì)低溫脅迫的耐性

        低溫處理前,先對(duì)水稻幼苗進(jìn)行漬水預(yù)處理(24 h),可提高根系乙醇脫氫酶的活性,使根系乙醇濃度增加,根系的呼吸代謝增強(qiáng),促進(jìn)了幼苗根系的生長(zhǎng)發(fā)育,最終提高了水稻根系對(duì)低溫脅迫的耐性[75]。拔節(jié)前機(jī)械損傷能夠通過(guò)強(qiáng)化抗氧化系統(tǒng)和光合系統(tǒng)的活性提高小麥拔節(jié)期低溫脅迫耐性。通過(guò)機(jī)械損傷模擬生產(chǎn)上鎮(zhèn)壓對(duì)小麥低溫脅迫的信號(hào)調(diào)控機(jī)制,發(fā)現(xiàn)對(duì)下部葉片機(jī)械損傷處理能夠提高上部未損傷葉片對(duì)低溫脅迫的耐性,NO和RBOH介導(dǎo)的H2O2能夠在機(jī)械損傷后系統(tǒng)性積累,H2O2在機(jī)械損傷信號(hào)通路中位于NO上游發(fā)揮作用,通過(guò)強(qiáng)化抗氧化系統(tǒng)和光合系統(tǒng)的相關(guān)酶活性,改善抗壞血酸-谷胱甘肽循環(huán)以及調(diào)節(jié)可溶性糖和游離氨基酸的含量等提高小麥新生葉片對(duì)低溫脅迫耐性[76]。

        2.4 其他類型的交叉鍛煉效應(yīng)

        低溫鍛煉增強(qiáng)植株對(duì)高溫脅迫的耐性。經(jīng)過(guò)低溫(0℃)預(yù)處理的大麥種子在高溫環(huán)境下(35℃)具有較高的發(fā)芽率,抗氧化酶活性與正常發(fā)芽(25℃)種子相比顯著增加,表明低溫鍛煉誘導(dǎo)了抗氧化酶活性從而提高了高溫耐受能力[77]。番茄幼苗置于低溫(10℃)冷鍛煉,15 d后高溫脅迫,未受冷鍛煉植株的葉肉細(xì)胞的葉綠體和線粒體明顯腫脹,類囊體空泡化,而經(jīng)過(guò)冷鍛煉的幼苗的葉肉細(xì)胞排列松散,葉綠體、線粒體等多種細(xì)胞器形態(tài)完整,提高了幼苗莖粗和健康指數(shù)促進(jìn)早期花芽分化過(guò)程,提高果實(shí)結(jié)實(shí)率[78]。

        高溫鍛煉和低氮鍛煉增強(qiáng)作物對(duì)干旱脅迫的耐性。前期熱激處理(45℃ 1.5 h)增加了棉花幼苗對(duì)后續(xù)漸進(jìn)式土壤干旱的抗性(40 d不澆水),熱激處理誘導(dǎo)了氨基酸和酰胺(主要是精氨酸、脯氨酸和天冬酰胺)的積累,增加了葉片細(xì)胞液滲透壓,提高葉片抗旱能力[79]。在干旱脅迫下,低氮處理植株可以增加電子傳遞進(jìn)行光呼吸和米勒途徑,降低光抑制,提高了葉片水勢(shì)和生長(zhǎng)速率,增強(qiáng)植株耐旱性[80]。

        3 跨代鍛煉效應(yīng)及生理機(jī)制

        植物對(duì)環(huán)境非生物脅迫的響應(yīng)并不僅局限于通過(guò)自身的生理代謝來(lái)應(yīng)對(duì)脅迫,而且可以將這種脅迫應(yīng)激響應(yīng)傳遞給下一代。父代遭遇的環(huán)境脅迫可以影響其種子內(nèi)儲(chǔ)藏淀粉的含量及組分、mRNA、蛋白質(zhì)、激素及其他初級(jí)和次級(jí)代謝產(chǎn)物,從而影響子代植株幼苗生長(zhǎng)及耐逆性形成。近年來(lái)的研究表明認(rèn)為跨代記憶效應(yīng)主要與表觀遺傳有關(guān)。然而跨代記憶也可能是不穩(wěn)定的,也有可能在連續(xù)世代遺傳過(guò)程中消失或者在連續(xù)世代遺傳過(guò)程中產(chǎn)生。如在擬南芥中,雖然一代之內(nèi)就可以檢測(cè)到干旱脅迫相關(guān)的甲基化變化,但是他們和干旱脅迫響應(yīng)基因的表達(dá)并不相關(guān),并且在連續(xù)的多代鍛煉試驗(yàn)中,并沒(méi)發(fā)現(xiàn)干旱脅迫可以影響跨代的甲基化的積累。在調(diào)查的葉綠素?zé)晒?、生物量、開(kāi)花時(shí)間、種子休眠時(shí)間、干旱下的存活率等指標(biāo)中,只發(fā)現(xiàn)種子休眠時(shí)間的提高[81],即,干旱鍛煉誘導(dǎo)的跨代脅迫記憶效應(yīng)可能只對(duì)種子休眠時(shí)間有影響。父代經(jīng)過(guò)干旱鍛煉的花生的子代與未經(jīng)過(guò)鍛煉的相比,只在第一年表現(xiàn)出較高產(chǎn)量,雖然田間出苗率與未經(jīng)鍛煉的相比,連續(xù)3年表現(xiàn)優(yōu)異,這說(shuō)明可能跨代脅迫記憶可能只存在子一代[82]。在春小麥的研究發(fā)現(xiàn),植株在第一代對(duì)CO2濃度升高的響應(yīng)并不敏感,但是連續(xù)2—3代的高CO2濃度處理可以有較高的生物量積累[83]。這可能與表觀遺傳修飾的可逆性,表觀基因組受環(huán)境因子的影響而改變,需要進(jìn)一步深入研究。后文主要圍繞跨代鍛煉效應(yīng)存在的生理機(jī)制進(jìn)行分析。

        3.1 高溫跨代效應(yīng)及其生理機(jī)制

        擬南芥對(duì)高溫的跨代適應(yīng)性可以持續(xù)至少2個(gè)世代。研究表明,F(xiàn)0及F1代經(jīng)歷過(guò)高溫脅迫的擬南芥植株,在F3代高溫處理下經(jīng)過(guò)鍛煉的植株生物量是未經(jīng)鍛煉植株的5倍[84]。傳代記憶機(jī)制目前在模式植物擬南芥上的研究較為深入。組蛋白去甲基化酶、染色質(zhì)重塑因子、轉(zhuǎn)錄因子、泛素連接酶和小分子RNAs共同組成的復(fù)雜的表觀調(diào)控網(wǎng)絡(luò)參與了植物對(duì)高溫的傳代記憶[85]。高溫能激活熱激轉(zhuǎn)錄因子heat shock transcription factor A2 (HsfA2)。HsfA2能直接結(jié)合H3K27me3去甲基化酶Relative of early flowering 6 (REF6)和染色質(zhì)重塑因子Brahma (BRM) 啟動(dòng)子上的熱激轉(zhuǎn)錄元件從而激活REF6和BRM的表達(dá)。REF6和BRM的上調(diào)表達(dá)反過(guò)來(lái)降低HSFA2位點(diǎn)上的H3K27me3修飾水平,從而降低H3K27me3對(duì)HSFA2轉(zhuǎn)錄的抑制作用。因此,REF6和HSFA2形成了一個(gè)正向反饋循環(huán)途徑來(lái)維持植物對(duì)高溫的傳代記憶[85]。在小麥灌漿期進(jìn)行高溫鍛煉獲得子代在花后遭遇高溫脅迫,與未鍛煉的植株相比,鍛煉的植株具有較高的籽粒產(chǎn)量,葉片光合能力及抗氧化酶活性[86]。通過(guò)轉(zhuǎn)錄組分析發(fā)現(xiàn)經(jīng)過(guò)高溫鍛煉的小麥后代植株中賴氨酸特異性組蛋白去甲基化酶1()的基因誘導(dǎo)表達(dá),與光合作用、能量產(chǎn)生以及蛋白質(zhì)轉(zhuǎn)運(yùn)和存儲(chǔ)相關(guān)蛋白的編碼基因表達(dá)趨勢(shì)一致,說(shuō)明跨代高溫記憶可能是由表觀遺傳的改變和信號(hào)轉(zhuǎn)導(dǎo)來(lái)誘發(fā)的,從而激發(fā)了熱脅迫相關(guān)防御機(jī)制[86]。

        3.2 低溫跨代效應(yīng)及其生理機(jī)制

        低溫會(huì)誘導(dǎo)跨代記憶的產(chǎn)生,其中一種典型的跨代低溫記憶現(xiàn)象為“春化作用”。春化作用是植物延長(zhǎng)低溫處理促進(jìn)開(kāi)花的過(guò)程,一旦分生組織受到長(zhǎng)時(shí)間的低溫處理,他們就會(huì)記住春化效應(yīng),并且這種記憶是穩(wěn)定的。擬南芥、小麥等一年生作物通常會(huì)經(jīng)歷春化作用,長(zhǎng)時(shí)間暴露于低溫環(huán)境可以通過(guò)H3K27me3甲基化修飾觸發(fā)(FLOWERING LOCUS C)基因的表觀遺傳沉默,使植物能在春季開(kāi)花,這種狀態(tài)一直持續(xù)到胚胎發(fā)育,胚胎發(fā)育早期抑制性修飾逐漸消失,活躍染色質(zhì)標(biāo)記H3K36me3建立,重新激活基因[87]。目前已有綜述概述了擬南芥以及溫帶禾本科植物(小麥、大麥以及短柄草)中春化作用的分子遺傳調(diào)控網(wǎng)絡(luò)、表觀遺傳修飾與核心蛋白修飾介導(dǎo)的記憶機(jī)制,春化作用的分子與表觀遺傳控制機(jī)理在雙子葉植物(如擬南芥)和單子葉植物(如小麥)完全不同[88-91]。在小麥和大麥等溫帶作物中,春化促進(jìn)開(kāi)花途徑包括VRN1、VRN2、VRN3和VRN-D4等春化基因的調(diào)控,其中VRN1編碼一個(gè)類似FRUITFULL的MADS-box轉(zhuǎn)錄因子,在春化過(guò)程中起到至關(guān)重要的促進(jìn)作用。在低溫處理前,H3K27me3標(biāo)記在TaVRN1及其大麥同源物中富集,這2個(gè)基因都受到抑制,冷誘導(dǎo)這2個(gè)基因都與H3K27me3的減少和H3K4me3的增加有關(guān)[92]。但低溫處理的種子后代對(duì)低溫脅迫下植株耐性的影響及其生理機(jī)制尚未有報(bào)道。

        3.3 干旱跨代效應(yīng)及其生理機(jī)制

        前代干旱鍛煉誘導(dǎo)了跨代植株對(duì)干旱脅迫的耐性。挑旗期重度干旱脅迫對(duì)后代在干旱脅迫及適宜水分條件下植株根系形態(tài)和拓?fù)浣Y(jié)構(gòu)均產(chǎn)生了跨代效應(yīng)。如干旱脅迫下,與未經(jīng)干旱鍛煉的植株后代相比,經(jīng)干旱鍛煉的植株根長(zhǎng)增加,毛細(xì)根數(shù)減少,植株耐旱性增強(qiáng)[93]。干旱脅迫下,與未經(jīng)前代干旱鍛煉的植株相比,經(jīng)連續(xù)1代、2代和3代干旱鍛煉的小麥植株表現(xiàn)出相對(duì)較高的旗葉水分狀況、促進(jìn)了花前貯藏物質(zhì)轉(zhuǎn)運(yùn)量、莖稈果聚糖再活化量及籽粒產(chǎn)量,表明前代干旱鍛煉對(duì)后代小麥灌漿期干旱脅迫有顯著的緩減效應(yīng)[94]。

        通過(guò)誘導(dǎo)DNA低甲基化或高甲基化誘導(dǎo)基因表達(dá)是作物干旱記憶的分子機(jī)制之一。Zheng等[22]從全基因組DNA甲基化的角度闡明了水稻多代(11代)干旱鍛煉對(duì)后代耐旱性的增強(qiáng)是由DNA甲基化狀態(tài)尤其是干旱應(yīng)答基因DNA甲基化狀態(tài)的改變介導(dǎo)。脯氨酸有助于穩(wěn)定光系統(tǒng)氧化還原平衡,清除活性氧,增強(qiáng)抗氧化酶活性;而甜菜堿有助于緩解干旱脅迫對(duì)光系統(tǒng)II的損傷。干旱鍛煉誘導(dǎo)后代小麥植株干旱脅迫下脯氨酸合成關(guān)鍵基因及甜菜堿合成關(guān)鍵基因表達(dá)量及對(duì)應(yīng)酶活性上調(diào),且經(jīng)前代干旱鍛煉的植株中及基因表達(dá)量的上調(diào)可能與干旱鍛煉誘導(dǎo)的啟動(dòng)子去甲基化相關(guān)[94]。在水稻中,干旱鍛煉能通過(guò)誘導(dǎo)脯氨酸合成關(guān)鍵基因(吡咯啉-5-羧酸合成酶基因()及鳥氨酸-δ-氨基轉(zhuǎn)移酶基因())DNA去甲基化提高后代植株干旱脅迫下基因表達(dá)量,進(jìn)而使脯氨酸積累增加,干旱鍛煉能通過(guò)誘導(dǎo)植株再次脅迫下脯氨酸積累增加從而提高植株耐旱性[95]。

        3.4 跨代交叉鍛煉效應(yīng)及生理機(jī)制

        干旱鍛煉可增強(qiáng)后代植株對(duì)高溫脅迫、鹽脅迫的耐性。在小麥灌漿期進(jìn)行干旱脅迫,收取籽粒于花后進(jìn)行了高溫脅迫,發(fā)現(xiàn)經(jīng)過(guò)干旱鍛煉的下一代植株在高溫脅迫下具有較強(qiáng)的光合能力和抗氧化能力,從而降低了高溫脅迫的小麥減產(chǎn)幅度。耐熱性增強(qiáng)還與經(jīng)過(guò)鍛煉的后代植株上調(diào)與信號(hào)感知和轉(zhuǎn)導(dǎo)、蛋白質(zhì)結(jié)構(gòu)穩(wěn)定、熱激蛋白、蔗糖合成相關(guān)蛋白的表達(dá)有關(guān)[96]。干旱鍛煉過(guò)的小麥也可以提高子代植株的耐鹽性,經(jīng)過(guò)干旱鍛煉的小麥子代植株在鹽脅迫下具有更高的產(chǎn)量,耐鹽性的提高可能與較高的滲透調(diào)節(jié)物質(zhì)積累,較低的MDA含量和Na+含量等相關(guān)[97]。

        CO2鍛煉增強(qiáng)了后代小麥植株對(duì)干旱脅迫耐性。CO2鍛煉的緩解效應(yīng)主要表現(xiàn)在CO2的多代處理效應(yīng),經(jīng)過(guò)連續(xù)2代CO2濃度處理的小麥?zhǔn)斋@種子在干旱脅迫下具有較高的葉片ABA含量,較高的氣孔導(dǎo)度和葉水勢(shì),從而可以緩解拔節(jié)期干旱脅迫導(dǎo)致的生物量積累下降和植株水分利用效率降低[98]。

        親代外源物質(zhì)噴施可增強(qiáng)后代植株對(duì)低溫脅迫的耐性。褪黑素鍛煉后的小麥植株的后代種子通過(guò)加速淀粉降解促進(jìn)種子萌發(fā),增強(qiáng)光合電子傳遞和抗氧化能力增強(qiáng)了幼苗對(duì)低溫脅迫耐性[99]。籽粒灌漿期外源ABA噴施可以作為后代小麥種子萌發(fā)和幼苗建成期間抗冷性的重要途徑。外源噴施ABA顯著地降低了粒重,低溫下經(jīng)過(guò)ABA噴施的后代小麥種子表現(xiàn)在較低的發(fā)芽率、發(fā)芽指數(shù)、胚根和胚芽鞘干重,而且淀粉酶活性和貯藏淀粉降解也受到抑制;ABA噴施的后代小麥種子和幼苗中均表現(xiàn)出較高的抗氧化酶活性,從而降低了低溫下的細(xì)胞膜脂過(guò)氧化傷害[100]。

        綜上,當(dāng)植株在早期感受到非生物逆境(如高溫、低溫、干旱、漬水等)鍛煉信號(hào)后,通過(guò)次級(jí)信號(hào)物質(zhì)(如ABA、H2O2、NO、Ca2+等)誘導(dǎo)關(guān)鍵蛋白激酶的修飾(如磷酸化、去磷酸化等),調(diào)控轉(zhuǎn)錄因子及逆境響應(yīng)相關(guān)基因表達(dá),誘導(dǎo)植株抗逆生理層面響應(yīng),增強(qiáng)植株對(duì)后期(再次)發(fā)生的同種或者不同種逆境的耐性。表觀遺傳機(jī)制(DNA甲基化、組蛋白修飾等)參與了作物跨代記憶效應(yīng)形成(圖2)。

        圖2 非生物逆境鍛煉誘導(dǎo)作物記憶效應(yīng)形成的潛在機(jī)制(參考文獻(xiàn)[21]改畫)

        4 研究展望

        4.1 鍛煉誘導(dǎo)作物耐逆性獲得的機(jī)制需要進(jìn)一步深入

        在當(dāng)代鍛煉效應(yīng)研究上,還有很多的問(wèn)題需要明確,包括鍛煉模式(鍛煉時(shí)期、鍛煉程度、鍛煉持續(xù)時(shí)間、不同基因型差異等)產(chǎn)生鍛煉效應(yīng)在不同作物上的優(yōu)化、不同脅迫交叉鍛煉之間的差異及共同點(diǎn)、生物脅迫和非生物脅迫記憶是否有交叉效應(yīng)等。隨著現(xiàn)在高通量測(cè)序技術(shù)的快速發(fā)展,采用多組學(xué)手段解釋作物耐性獲得機(jī)制經(jīng)會(huì)取得快速進(jìn)展,這將為不同鍛煉模式的篩選提供更為可靠的表型研究手段。

        不同交叉鍛煉效應(yīng)(如不同的逆境鍛煉對(duì)同一種逆境脅迫的抗性,或同一種逆境鍛煉對(duì)不同逆境脅迫的抗性等)的響應(yīng)機(jī)制的共同機(jī)制和個(gè)性機(jī)制如何?同時(shí),生物逆境鍛煉和非生物逆境鍛煉之間是否存在共性機(jī)制?這些機(jī)制的解析可為生產(chǎn)上作物生產(chǎn)過(guò)程中面臨的復(fù)雜多變的環(huán)境提供重要的理論基礎(chǔ)。在跨代記憶上,記憶效應(yīng)可以維持多久,幾代?其記憶維持或者記憶消失的機(jī)制是什么?脅迫的跨代記憶可能是不穩(wěn)定的,也有可能在2個(gè)連續(xù)世代遺傳而第三個(gè)世代消失。因此,有必要開(kāi)展研究逆境鍛煉的多代效應(yīng),同時(shí)跨代鍛煉效應(yīng)主要與表觀遺傳修飾有關(guān),尤其是在作物上跨代鍛煉效應(yīng)的表觀遺傳機(jī)制的解析對(duì)于闡明作物的逆境鍛煉效應(yīng)有重要的作用。

        目前關(guān)于逆境鍛煉及脅迫記憶相關(guān)機(jī)制的深入研究主要集中在擬南芥等模式植物上,包括當(dāng)代的鍛煉效應(yīng)及跨代的鍛煉效應(yīng)。模式植物的機(jī)制研究結(jié)果可為作物尤其是基因組龐大的小麥的相關(guān)研究提供理論基礎(chǔ),但也有可能兩者的機(jī)制完全不同,如前所述春化作用的分子與表觀遺傳修飾機(jī)制在擬南芥和小麥就完全不同[88-90]。因此,關(guān)于鍛煉效應(yīng)及其機(jī)制研究在主要農(nóng)作物上的研究有待進(jìn)一步深化。

        4.2 鍛煉效應(yīng)在作物生產(chǎn)上的應(yīng)用

        鍛煉效應(yīng)在傳統(tǒng)的農(nóng)作物管理上早有應(yīng)用,如“蹲苗”即采用苗期控水,抑制幼苗的莖葉徒長(zhǎng),促進(jìn)根系發(fā)育的技術(shù),可提高植株后期的抗逆能力。在小麥生產(chǎn)上對(duì)長(zhǎng)勢(shì)過(guò)旺田塊在起身期鎮(zhèn)壓后,可以抑制地上部生長(zhǎng),培育壯苗從而增強(qiáng)抵抗后期耐低溫等逆境的能力。但鍛煉的程度等需要量化才能更好地提高植株后期的抗逆能力及田間操作的可行性。同時(shí)非生物逆境的發(fā)生有很強(qiáng)的不確定性,對(duì)作物來(lái)講不同的生育時(shí)期均可能發(fā)生,并且非生物逆境鍛煉在田間實(shí)施上有一定難度,不好控制脅迫程度。為了便于在實(shí)際生產(chǎn)上使用,基于鍛煉生理機(jī)制的研究,可開(kāi)發(fā)相關(guān)的誘導(dǎo)劑或者保護(hù)劑使得噴施后能產(chǎn)生和非生物逆境鍛煉一致的效果,增強(qiáng)作物耐逆性維持小麥產(chǎn)量穩(wěn)定。目前的研究結(jié)果表明,ABA、JA、H2O2、NO等信號(hào)物質(zhì)參與了干旱鍛煉誘導(dǎo)植株耐旱性的形成[101-102];ABA、SA在低溫鍛煉誘導(dǎo)植株耐冷性的形成中有重要作用。這些關(guān)鍵的信號(hào)物質(zhì)可能是后期研發(fā)誘導(dǎo)劑等的重要組成成分。

        此外,干旱鍛煉效應(yīng)在實(shí)際生產(chǎn)上的應(yīng)用價(jià)值很大,如在新疆的生態(tài)條件下,發(fā)展以滴灌為核心的節(jié)水灌溉技術(shù)對(duì)于保障新疆小麥生產(chǎn)可持續(xù)發(fā)展具有重要意義。通過(guò)在新疆開(kāi)展多年小麥滴灌田間試驗(yàn)發(fā)現(xiàn),在每次灌水后的不同時(shí)間節(jié)點(diǎn)鉆取不同行和不同土層土壤測(cè)定土壤含水量,發(fā)現(xiàn)遠(yuǎn)離滴灌毛管的小麥行土壤水分時(shí)空變異大,遠(yuǎn)行小麥一生中遭遇多次水分虧缺,所截獲水分總量也遠(yuǎn)低于近行小麥。這也導(dǎo)致遠(yuǎn)行小麥產(chǎn)量明顯低于近行小麥,但是,遠(yuǎn)行小麥產(chǎn)量降低幅度遠(yuǎn)低于其截獲的水分總量的降幅,最終遠(yuǎn)行小麥植株水分利用效率顯著高于近行小麥[103],這種現(xiàn)象說(shuō)明了可能有類似于干旱鍛煉效應(yīng)存在緩解了產(chǎn)量的降低,這將為進(jìn)一步縮小遠(yuǎn)行和近行小麥產(chǎn)量差、提高整體產(chǎn)量和植株水分利用效率、降低滴灌毛管投入成本、創(chuàng)新新疆滴灌小麥高效節(jié)水節(jié)本增產(chǎn)技術(shù)提供了理論依據(jù)。

        總之,通過(guò)對(duì)作物抗逆鍛煉機(jī)制的深入解析,可以找到對(duì)作物耐逆性獲得起關(guān)鍵調(diào)控作用的基因和蛋白,這樣在作物生產(chǎn)上,我們可以在生育前期,配合外源調(diào)控物質(zhì)誘導(dǎo)起關(guān)鍵作用的基因和蛋白,可通過(guò)人為方法提前刺激這種物質(zhì)在逆境來(lái)臨之前的表達(dá),主動(dòng)誘導(dǎo)作物對(duì)關(guān)鍵時(shí)期逆境耐性的形成從而有效緩解在產(chǎn)量形成關(guān)鍵生育時(shí)期發(fā)生的脅迫對(duì)作物產(chǎn)量的不利影響,因而具有重要的實(shí)際生產(chǎn)意義。

        [1] WOLLENWEBER B, PORTER J R, SCHELLBERG J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science, 2003, 189(3): 142-150.

        [2] STOCKER T F, QIN D, PLATTNER G K, TIGNOR M M, ALLEN S K, BOSCHUNG J, NAUELS A, XIA Y, BEX V, MIDGLEY P M. Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change.Computational Geometry, 2013, 18(2): 95-123.

        [3] TRENBERTH K E. Changes in precipitation with climate change. Climate Research, 2011, 47: 123-138.

        [4] FIELD C, BARROS V, DOKKEN D, MACH K, MASTRANDREA M, BILIR T, CHATTERJEE M, EBI K, ESTRADA Y, GENOVA R. IPCC, 2014: Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects//Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, and New York,2014: 1132.

        [5] TAI A P, MARTIN M V, HEALD C L. Threat to future global food security from climate change and ozone air pollution. Nature Climate Change, 2014(9), 4: 817-821.

        [6] ASSENG S, FOSTER I, TURNER N C. The impact of temperature variability on wheat yields. Global Change Biology, 2011, 17(2): 997-1012.

        [7] GUPTA R, GOPAL R, JAT M, JAT R, SIDHU H, MINHAS P, MALIK R. Wheat productivity in Indo-Gangetic plains of India during 2010: Terminal heat effects and mitigation strategies. Private Circulation Only Conservation Agriculture, 2010, 14: 1-4.

        [8] DARYANTO S, WANG L, JACINTHE P-A. Global synthesis of drought effects on maize and wheat production.PloS One, 2016, 11(5): e0156362.

        [9] KAUR G, SINGH G, MOTAVALLI P P, NELSON K A, ORLOWSKI J M, GOLDEN B R. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 2020, 112(3): 1475-1501.

        [10] BRUCE T J A, MATTHES M C, NAPIER J A, PICKETT J A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science, 2007, 173(6): 603-608.

        [11] BALMER A, PASTOR V, GAMIR J, FLORS V, MAUCH-MANI B.The ‘prime-ome’: Towards a holistic approach to priming. Trends in Plant Science, 2015, 20(7): 443-452.

        [12] MOLINIER J, RIES G, ZIPFEL C, HOHN B. Transgeneration memory of stress in plants. Nature, 2006, 442(7106): 1046-1049.

        [13] L?MKE J, B?URLE I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 2017, 18(1): 124.

        [14] CONRATH U, PIETERSE C M J, MAUCH-MANI B. Priming in plant–pathogen interactions. Trends in Plant Science, 2002, 7(5): 210-216.

        [15] HILKER M, SCHWACHTJE J, BAIER M, BALAZADEH S, BAURLE I, GEISELHARDT S, HINCHA D K, KUNZE R, MUELLER-ROEBER B, RILLIG M C, ROLFF J, ROMEIS T, SCHMULLING T, STEPPUHN A, VAN DONGEN J, WHITCOMB S J, WURST S, ZUTHER E, KOPKA J. Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews of the Cambridge Philosophical Society, 2016, 91(4): 1118-1133.

        [16] CONRATH U, BECKERS G J M, FLORS V, GARCíA-AGUSTíN P, JAKAB G, MAUCH F, NEWMAN M-A, PIETERSE C M J, POINSSOT B, POZO M J, PUGIN A, SCHAFFRATH U, TON J, WENDEHENNE D, ZIMMERLI L, MAUCH-MANI B. Priming: Getting ready for battle. Molecular Plant-microbe Interactions: MPMI, 2006, 19(10): 1062-1071.

        [17] ENGELBERTH J, ALBORN H T, SCHMELZ E A, TUMLINSON J H. Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the USA, 2004, 101(6): 1781-1785.

        [18] TON J, D’ALESSANDRO M, VIOLAINE JOURDIE1 G J, DANIELLE KARLEN1 M H, MAUCH-MANI B, TURLINGS1 T C J. Priming by airborne signals boosts direct and indirect resistance in maize. The Plant Journal, 2007, 49(1): 16-26.

        [19] BECKERS G J, JASKIEWICZ M, LIU Y, UNDERWOOD W R, HE S Y, ZHANG S, CONRATH U. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in. The Plant Cell, 2009, 21(3): 944-953.

        [20] WANG X, LIU F, JIANG D. Priming: A promising strategy for crop production in response to future climate. Journal of Integrative Agriculture, 2017, 16(12): 60345-60347.

        [21] CHINNUSAMY V, ZHU J K. Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 2009, 12(2): 133-139.

        [22] ZHENG X, CHEN L, XIA H, WEI H, LOU Q, LI M, LI T, LUO L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Scientific Reports, 2017, 7(1): 1-13.

        [23] MIGICOVSKY Z, YAO Y, KOVALCHUK I. Transgenerational phenotypic and epigenetic changes in response to heat stress in. Plant Signaling and Behavior, 2014, 9(2): e27971.

        [24] HAUSER M T, AUFSATZ W, JONAK C, LUSCHNIG C. Transgenerational epigenetic inheritance in plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2011, 1809(8): 459-468.

        [25] ZHANG X, ZHOU Q, WANG X, CAI J, DAI T, CAO W, JIANG D. Physiological and transcriptional analyses of induced post-anthesis thermo-tolerance by heat-shock pretreatment on germinating seeds of winter wheat. Environmental and Experimental Botany, 2016, 131: 181-189.

        [26] WANG X, CAI J, JIANG D, LIU F, DAI T, CAO W. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology, 2011, 168(6): 585-593.

        [27] WANG X, CAI J, LIU F, DAI T, CAO W, WOLLENWEBER B, JIANG D. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiology and Biochemistry, 2013, 74: 185-192.

        [28] WANG X, CAI J, LIU F, JIN M, YU H, JIANG D, WOLLENWEBER B, DAI T, CAO W. Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. Journal of Cereal Science, 2012, 55(3): 331-336.

        [29] CHARNG Y Y, LIU H C, LIU N Y, CHI W T, WANG C N, CHANG S H, WANG T T. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in. Plant Physiology, 2007, 143(1): 251-262.

        [30] SEDAGHATMEHR M, MUELLER-ROEBER B, BALAZADEH S. The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in. Nature Communications, 2016, 7: 12439.

        [31] 陳威, 楊穎增, 陳鋒, 周文冠, 舒凱. 表觀遺傳修飾介導(dǎo)的植物脅迫記憶. 植物學(xué)報(bào), 2019, 54(6): 779-785.

        CHEN W, YANG Y Z, CHEN F, ZHOU W G, SHU K. Stress memory mediated by epigenetic modification in plants. Chinese Bulletin of Botany,2019, 54(6): 779-785. (in Chinese)

        [32] 李青芝, 李成偉, 楊同文. DNA甲基化介導(dǎo)的植物逆境應(yīng)答和脅迫記憶. 植物生理學(xué)報(bào), 2014, 50(6): 725-734.

        LI Q Z, LI C W, YANG T W. Stress response and memory mediated by DNA methylation in plants.Plant Physiology Journal,2014, 50(6): 725-734. (in Chinese)

        [33] L?MKE J, BRZEZINKA K, ALTMANN S, B?URLE I. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO Journal, 2016, 35(2): 162-175.

        [34] STIEF A, ALTMANN S, HOFFMANN K, PANT B D, SCHEIBLE W R, B?URLE I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell, 2014, 26(4): 1792-1807.

        [35] LING Y, SERRANO N, GAO G, ATIA M, MOKHTAR M, WOO Y H, BAZIN J, VELUCHAMY A, BENHAMED M, CRESPI M, GEHRING C, REDDY A S N, MAHFOUZ M M. Thermopriming triggers splicing memory in.Journal of Experimental Botany, 2018, 69(10): 2659-2675.

        [36] WANG W, WANG X, ZHANG J, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat. Plant Growth Regulation, 2020, 90(1): 109-121.

        [37] LI X, CAI J, LIU F, DAI T, CAO W, JIANG D. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiology and Biochemistry, 2014, 82: 34-43.

        [38] 簡(jiǎn)令成, 盧存福, 李積宏. 適宜低溫鍛煉提高冷敏感植物玉米和番茄的抗冷性及其生理基礎(chǔ). 作物學(xué)報(bào), 2005, 31(8): 971-976.

        JIAN L S, LU C F, LI J H. Increment of chilling tolerance and its physiological basis in chilling-sensitive corn sprouts and tomato seedlings after cold-hardening at optimum temperatures. Acta Agronomica Sinica2005, 31(8): 971-976. (in Chinese)

        [39] WANG W, WANG X, HUANG M, CAI J, ZHOU Q, DAI T, CAO W, JIANG D. Hydrogen peroxide and abscisic acid mediate salicylic acid-induced freezing tolerance in wheat. Frontiers in Plant Science, 2018, 9: 1137.

        [40] ZUTHER E, SCHAARSCHMIDT S, FISCHER A, ERBAN A, PAGTER M, MUBEEN U, GIAVALISCO P, KOPKA J, SPRENGER H, HINCHA D K. Molecular signatures associated with increased freezing tolerance due to low temperature memory in. Plant Cell and Environment, 2019, 42(3): 854-873.

        [41] ZHAO M G, CHEN L, ZHANG L L, ZHANG W H. Nitric reductase- dependent nitric oxide production is involved in cold acclimation and freezing tolerance in. Plant Physiology, 2009, 151(2): 755-767.

        [42] 黃國(guó)賓, 張曉海, 楊雙龍, 李軍營(yíng), 徐超華, 榮智媛, 楊利云, 龔明. 滲透調(diào)節(jié)參與循環(huán)干旱鍛煉提高煙草植株抗旱性的形成. 植物生理學(xué)報(bào), 2012, 48(5): 465-471.

        HUANG G B, ZHANG X H, YANG S L, LI J Y, XU C H, RONG Z Y, YANG L Y, GONG M. Involvement of osmotic regulation in enhancement of drought resistance in tobacco (L.) plants through circular drought-hardening. Plant Physiology Journal,2012, 48(5): 465-471. (in Chinese)

        [43] SELOTE D S, KHANNA-CHOPRA R. Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiologia Plantarum, 2006, 127(3): 494-506.

        [44] WANG X, VIGNJEVIC M, JIANG D, JACOBSEN S, WOLLENWEBER B. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (L.) var. Vinjett. Journal of Experimental Botany, 2014, 65(22): 6441-6456.

        [45] BAHUGUNA R N, TAMILSELVAN A, MUTHURAJAN R, SOLIS C A, JAGADISH S V K. Mild preflowering drought priming improves stress defences, assimilation and sink strength in rice under severe terminal drought. Functional Plant Biology, 2018, 45(8): 827-839.

        [46] 陳曉遠(yuǎn), 羅遠(yuǎn)培. 開(kāi)花期復(fù)水對(duì)受旱冬小麥的補(bǔ)償效應(yīng)研究. 作物學(xué)報(bào), 2001, 27(4): 512-516.

        CHEN X Y, LUO Y P. Study on the compensatory effect of rewatering during the flowering stage after previous water stress in winter wheat. Acta Agronomica Sinica,2001, 27(4): 512-516. (in Chinese)

        [47] 陳曉遠(yuǎn), 羅遠(yuǎn)培. 不同生育期復(fù)水對(duì)受旱冬小麥的補(bǔ)償效應(yīng)研究. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2002, 10(1): 35-37.

        CHEN X Y, LUO Y P. Compensatory effects of water-recovery during different growth durations on winter wheat under water stress. Chinese Journal of Eco-Agriculture, 2002, 10(1): 35-37. (in Chinese)

        [48] WANG X, MAO Z, ZHANG J, HEMAT M, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (L.). Environmental and Experimental Botany, 2019, 166: 103804.

        [49] LI P, YANG H, WANG L, LIU H, HUO A H, ZHANG C, LIU A, ZHU A, HU J, LIN Y. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Frontiers in Genetics, 2019, 10: 55.

        [50] HARB A, KRISHNAN A, AMBAVARAM M M, PEREIRA A. Molecular and physiological analysis of drought stress inreveals early responses leading to acclimation in plant growth. Plant Physiology, 2010, 154(3): 1254-1271.

        [51] VIRLOUVET L, FROMM M. Physiological and transcriptional memory in guard cells during repetitive dehydration stress. New Phytologist, 2015, 205(2): 596-607.

        [52] LIU N, AVRAMOVA Z. Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in. Epigenetics and Chromatin, 2016, 9(1): 8.

        [53] WANG X, LI Q, XIE J, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. Abscisic acid and jasmonic acid are involved in drought priming- induced tolerance to drought in wheat. The Crop Journal, 2020, 9(1): 120-132.

        [54] DUAN H, LI J, ZHU Y, JIA W, WANG H, JIANG L, ZHOU Y. Responsive changes of DNA methylation in wheat () under water deficit. Scientific Reports, 2020, 10(1): 7938.

        [55] DING Y, FROMM M, AVRAMOVA Z. Multiple exposures to drought ‘train’ transcriptional responses in. Nature Communications, 2012, 3: 740.

        [56] KIM J M, TO T K, ISHIDA J, MATSUI A, KIMURA H, SEKI M. Transition of chromatin status during the process of recovery from drought stress in. Plant and Cell Physiology, 2012, 53(5): 847-856.

        [57] LI C, JIANG D, WOLLENWEBER B, LI Y, DAI T, CAO W. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Science, 2011, 180(5): 672-678.

        [58] 李誠(chéng)永, 蔡劍, 姜東, 戴廷波, 曹衛(wèi)星. 花前漬水預(yù)處理對(duì)花后漬水逆境下?lián)P麥9號(hào)籽粒產(chǎn)量和品質(zhì)的影響. 生態(tài)學(xué)報(bào), 2011, 31(7): 1904-1910.

        LI C Y, CAI J, JIANG D, DAI T B, CAO W X. Effects of hardening by pre-anthesis waterlogging on grain yield and quality of post- anthesis waterlogged wheat (L. cv Yangmai 9). Acta Ecologica Sinica, 2011, 31(7): 1904-1910. (in Chinese)

        [59] KATO-NOGUCHI H. Anoxia tolerance in rice roots acclimated by several different periods of hypoxia. Journal of Plant Physiology, 2003, 160(5): 565-568.

        [60] GARNCZARSKA M, RATAJCZAK L. Hypoxia induces anoxia tolerance in roots and shoots of lupine seedlings. Acta Physiologiae Plantarum, 2003, 25(1): 47-53.

        [61] SAGLIO P H, DREW M C, PRADET A. Metabolic acclimation to anoxia induced by low (2-4 kpa partial-pressure) oxygen pretreatment (hypoxia) in root-tips of. Plant Physiology, 1988, 86(1): 61-66.

        [62] WANG X, HUANG M, ZHOU Q, CAI J, DAI T, CAO W, JIANG D. Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (L.). Environmental and Experimental Botany, 2016, 132: 175-182.

        [63] 周人綱, 樊志和, 李曉芝, 王占武, 韓煒. 高溫鍛煉對(duì)小麥細(xì)胞膜熱穩(wěn)定性的影響. 華北農(nóng)學(xué)報(bào), 1993, 10(1): 33-37.

        ZHOU R G, FAN Z H, LI X Z, WANG Z W, HAN W. The effect of heat acclimation on cellular membrane thermostability in wheat. Chinese Journal of Pesticide Science,1993, 10(1): 33-37. (in Chinese)

        [64] VAN BUER J, CVETKOVIC J, BAIER M. Cold regulation of plastid ascorbate peroxidases serves as a priming hub controlling ROS signaling inBMC Plant Biology, 2016, 16(1): 163-163.

        [65] LEUENDORF J E, FRANK M, SCHMüLLING T. Acclimation, priming and memory in the response ofseedlings to cold stress. Scientific Reports, 2020, 10(1): 689.

        [66] 李同華, 王笑, 蔡劍, 周琴, 戴廷波, 姜東, 不同小麥品種對(duì)干旱鍛煉響應(yīng)的綜合評(píng)價(jià). 麥類作物學(xué)報(bào). 2018, 38 (1): 65-73.

        LI T H, WANG X, CAI J, ZHOU Q, DAI T B, JIANG D. Comprehensive evaluation of drought priming on plant tolerance in different wheat cultivars. Journal of Triticeae Crops2018, 38(1): 65-73. (in Chinese)

        [67] MAHAJAN S, TUTEJA N. Cold, salinity and drought stresses: An overview, Archives of Biochemistry and Biophysics. 2005,444 (2): 139-158.

        [67] 康建宏, 吳宏亮, 黃靈丹. 干旱預(yù)處理的玉米幼苗對(duì)逆境的交叉適應(yīng)研究. 干旱地區(qū)農(nóng)業(yè)研究, 2008(6): 143-148.

        KANG J H, WU H L, HUANG L D. Cross adaptation of stress on maize seedlings under drought induced. Agricultural Research in the Arid Areas, 2008(6): 143-148. (in Chinese)

        [69] WANG X, VIGNJEVIC M, LIU F, JACOBSEN S, JIANG D, WOLLENWEBER B. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regulation, 2015, 75(3): 677-687.

        [70] ZHANG X, WANG X, ZHUANG L, GAO Y, HUANG B. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue () and. Physiologia Plantarum, 2019, 167(4): 488-501.

        [71] ZHANG X, XU Y, HUANG B. Lipidomic reprogramming associated with drought stress priming enhanced heat tolerance in tall fescue (). Plant, Cell and Environment, 2019, 42(3): 947-958.

        [72] SIMINOVITCH D. Twenty-four-hour induction of freezing and drought tolerance in plumules of winter rye seedlings by desiccation stress at room temperature in the dark. Plant Physiology, 1982, 69(1): 250-255.

        [73] AROCA R, IRIGOYEN J J, SáNCHEZ-DíAZ M J P P. Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiologia Plantarum,2003, 117(4): 540-549.

        [74] LI X, TOPBJERG H, JIANG D, LIU F. Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage. Plant and Soil, 2015, 393: 307-318.

        [75] H X, Z L, Z T, F H, X L. Metabolomic analyses reveal substances that contribute to the increased freezing tolerance of alfalfa (L.) after continuous water deficit. BMC Plant Biology, 2020, 20(1): 15.

        [76] SI T, WANG X, ZHAO C, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. The role of hydrogen peroxide in mediating the mechanical wounding-induced freezing tolerance in wheat.Frontiers in Plant Science, 2018, 9: 327-327.

        [77] MEI Y Q, SONG S Q. Response to temperature stress of reactive oxygen species scavenging enzymes in the cross-tolerance of barley seed germination. Journal of Zhejiang University Science B, 2010, 11(12): 965-972.

        [78] LI S L, XIA Y Z, SUN Z Q. Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress. Chinese Journal of Applied Ecology, 2016, 27(2): 477-483.

        [79] KUZNETSOV V, RAKITIN V, ZHOLKEVICH V. Effects of preliminary heat‐shock treatment on accumulation of osmolytes and drought resistance in cotton plants during water deficiency. Physiologia Plantarum, 2002, 107(4): 399-406.

        [80] GAO J, LUO Q, SUN C, HU H, WANG F, TIAN Z, JIANG D, CAO W, DAI T. Low nitrogen priming enhances photosynthesis adaptation to water-deficit stress in winter wheat (L.) seedlings. Frontiers in Plant Science, 2019, 10: 818.

        [81] GANGULY D R, CRISP P A, EICHTEN S R, POGSON B J. TheDNA methylome is stable under transgenerational drought stress. Plant Physiology, 175 (2017) 1893-1912.

        [82] RACETTE K, ZURWELLER B, TILLMAN B, ROWLAND D. Transgenerational stress memory of water deficit in peanut production. Field Crops Research, 2020, 248: 107712.

        [83] DERNER J D, TISCHLER C R, POLLEY H W, JOHNSON H B. Intergenerational above- and belowground responses of spring wheat (L.) to elevated CO2. Basic and Applied Ecology. 2004, 5 (2): 145-152.

        [84] WHITTLE C, OTTO S, JOHNSTON M O, KROCHKO J. Adaptive epigenetic memory of ancestral temperature regime in. Botany, 2009, 87(6): 650-657.

        [85] LIU J, FENG L, GU X, DENG X, QIU Q, LI Q, ZHANG Y, WANG M, DENG Y, WANG E. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in. Cell Research, 2019, 29(5): 379-390.

        [86] WANG X, XIN C, CAI J, ZHOU Q, DAI T, CAO W, JIANG D. Heat priming induces trans-generational tolerance to high temperature stress in wheat. Frontiers in Plant Science, 2016, 7: 501.

        [87] TAO Z, SHEN L, GU X, WANG Y, YU H, HE Y. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature, 2017, 551:124-128.

        [88] MICHAELS S, AMASINO R. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous mutations but not responsiveness to vernalization. The Plant Cell, 2001, 13(4): 935-941.

        [89] GAZZANI S, GENDALL A, LISTER C, DEAN C. Analysis of the molecular basis of flowering time variation inaccessions. Plant Physiology, 2003, 132(2): 1107-1114.

        [90] MICHAELS S, HE Y, SCORTECCI K, AMASINO R. Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 10102-10107.

        [91] YUAN W, LUO X, LI Z, YANG W, WANG Y, LIU R, DU J, HE Y. A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in. Nature Genetics, 2016, 48: 1527-1534.

        [92] OLIVER S, FINNEGAN E, DENNIS E, PEACOCK W, TREVASKIS B. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8386-8391.

        [92] NOSALEWICZ A, SIECI?SKA J, ?MIECH M, NOSALEWICZ M, WI?CEK D, PECIO A, WACH D. Transgenerational effects of temporal drought stress on spring barley morphology and functioning. Environmental and Experimental Botany, 2016, 131: 120-127.

        [94] WANG X, ZHANG X, CHEN J, WANG X, CAI J, ZHOU Q, DAI T, CAO W, JIANG D. Parental drought-priming enhances tolerance to post-anthesis drought in offspring of wheat. Frontiers in Plant Science, 2018, 9: 261.

        [95] ZHANG C, WANG N, ZHANG Y, FENG Q, YANG C, LIU B. DNA methylation involved in proline accumulation in response to osmotic stress in rice (). Genetics and Molecular Research, 2013, 12(2): 1269-1277.

        [96] ZHANG X, WANG X, ZHONG J, ZHOU Q, WANG X, CAI J, LI X, CAO W, JIANG D. Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat. Environmental and Experimental Botany, 2016, 127: 26-36.

        [97] TABASSUM T, FAROOQ M, AHMAD R, ZOHAIB A, WAHID A. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat. Plant Physiology and Biochemistry, 2017, 118: 362-369.

        [98] LI Y, LI X, YU J, LIU F. Effect of the transgenerational exposure to elevated CO2on the drought response of winter wheat: Stomatal control and water use efficiency. Environmental and Experimental Botany, 2017, 136: 78-84.

        [99] LI X, BRESTIC M, TAN D X, ZIVCAK M, ZHU X, LIU S, SONG F, REITER R J, LIU F. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO2and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. Journal of Pineal Research, 2018, 64(1): e12453.

        [100] LI X, JIANG H, LIU F, CAI J, DAI T, CAO W, JIANG D. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regulation, 2013, 71(1): 31-40.

        [101] 謝靜靜, 王笑, 蔡劍, 周琴, 戴廷波, 姜東. 苗期外源脫落酸和茉莉酸緩減小麥花后干旱脅迫的效應(yīng)及其生理機(jī)制. 麥類作物學(xué)報(bào), 2018, 38(2): 221-229.

        XIE J J, WANG X, CAI J, ZHOU Q, DAI T B, JIANG D. Effect of exogenous application of abscisic acid and jasmonic acid at seedling stage on post-anthesis drought stress and physiological mechanisms in wheat. Journal of Triticeae Crops, 2018, 38(2): 221-229. (in Chinese)

        [102] WANG X, ZHANG J, SONG J, HUANG M, CAI J, ZHOU Q, DAI T, JIANG D. Abscisic acid and hydrogen peroxide are involved in drought priming‐induced drought tolerance in wheat (L.). Plant Biology, 2020, 22(6).doi:10.1111/plb.13143.

        [103] LV Z, DIAO M, LI W, CAI J, ZHOU Q, WANG X, DAI T, CAO W, JIANG D. Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system. Agricultural Water Management, 2019, 212: 252-261.

        Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review

        Wang Xiao, Cai Jian, Zhou Qin, Dai Tingbo, Jiang Dong

        National Technique Innovation Center for Regional Wheat Production, Nanjing Agricultural University/Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing 210095

        Abiotic stress factors, including heat stress, cold stress, drought stress, waterlogging stress etc., are the limiting factors for plant growth and crop production. Moreover, the frequency, extent and duration of abiotic stresses have predicted to be increased with global climate change. Therefore, improving crops resistance to abiotic stress or finding strategy to reduce the adverse effects of abiotic stress on crop yield and quality is of great significance for ensuring stable crop production and food security. “Priming” by exposing plants to moderate stress in the early growth stage can induce plant resistance to a later severe stress episode which happened during critical stage of the plant growth. The priming is an adaptive strategy that primed plants could effectively mount a faster and/or stronger defense response and actively improve the defensive capacity of plants under stress, compared with non-primed plants. According to the reoccurred stress types, the priming can be generally separated to four types, including in-generational stress tolerance (the priming stimulus and the stress occurred at later stage are the same stress type), intra-generational cross tolerance (the priming stimulus and the stress occurred at later stage are different stress types), transgenerational stress tolerance (the priming stimulus and the stress occurred at next generations are the same stress type), and transgenerational cross tolerance (the priming stimulus and the stress occurred at next generations are different stress types). In this review, the main physiological mechanisms were discussed, including plant photosynthetic response mechanism, antioxidant mechanism, and osmotic regulation, signal transduction mechanisms (plant hormones, Ca2+, hydrogen peroxide, nitric oxide, etc.), and epigenetic modification mechanisms (DNA methylation, histone modification, etc.). Then, the perspectives for the further research on understanding the underlying mechanisms of stress priming and the application of priming effects in the crop production were suggested. After revealing the mechanisms of priming, the candidate genes and proteins which play key regulatory roles in the acquisition of crop stress tolerance are found. And then, we can stimulate the related genes and protein expression which can actively induce the formation of stress tolerance in the critical crops growth stage, thereby effectively alleviating the adverse effects of abiotic stress on crop yield during the critical stage, which is meaningful for the crop production.

        abiotic stress; priming; intra-generational priming; transgenerational priming; physiological mechanisms; signal transduction mechanisms

        10.3864/j.issn.0578-1752.2021.11.004

        2020-08-10;

        2020-10-12

        重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300107)、國(guó)家自然科學(xué)基金(31771693,U1803235)、國(guó)家現(xiàn)代小麥產(chǎn)業(yè)技術(shù)體系(CARS-03)、江蘇省協(xié)同創(chuàng)新中心(JCIC-MCP)

        王笑,E-mail:xiaowang@njau.edu.cn。通信作者姜東,E-mail:jiangd@njau.edu.cn

        (責(zé)任編輯 楊鑫浩)

        猜你喜歡
        逆境作物低溫
        低溫也能“燙傷”嗎
        超越逆境
        做人與處世(2022年6期)2022-05-26 10:26:35
        How adversity makes you stronger逆境如何讓你更強(qiáng)大
        基于低溫等離子體修飾的PET/PVC浮選分離
        作物遭受霜凍該如何補(bǔ)救
        四種作物 北方種植有前景
        內(nèi)生微生物和其在作物管理中的潛在應(yīng)用
        零下低溫引發(fā)的火災(zāi)
        無(wú)人機(jī)遙感在作物監(jiān)測(cè)中的應(yīng)用與展望
        低溫休眠不是夢(mèng)
        久草视频华人在线观看| 久久精品国产www456c0m| 欧美末成年videos在线观看| 男女高潮免费观看无遮挡| 日韩av在线手机免费观看| 精品亚洲国产成人蜜臀av| 人妻精品动漫h无码网站| 免费av在线国模| 亚洲av一二三四又爽又色又色| 青青草亚洲视频社区在线播放观看| 曰欧一片内射vα在线影院| 在线视频一区色| 日韩在线精品视频观看| 男女啪啪视频高清视频| 一本色道久久88综合日韩精品 | 国产91网址| 亚洲在线一区二区三区| 日本av一区二区三区视频| 亚洲国产精品va在线播放| 亚洲中文字幕久久精品蜜桃| 少妇一区二区三区精选| 亚洲国产精品无码久久一线| 99精品热这里只有精品| 99riav精品国产| 国产女女精品视频久热视频| 亚洲国产精品久久久性色av| 偷偷夜夜精品一区二区三区蜜桃| 无码人妻久久一区二区三区蜜桃| 女人做爰高潮呻吟17分钟| 国产成人精品男人的天堂网站| 一区二区三区蜜桃av| 窝窝午夜看片| 无码一区二区三区AV免费换脸 | 在厨房被c到高潮a毛片奶水| 成人小说亚洲一区二区三区| 欧美成人网视频| 国产91色综合久久高清| 最近在线更新8中文字幕免费| 久久福利资源国产精品999| 中文字幕人妻一区二区二区| 欧美综合天天夜夜久久|