董靖川,郭健鑫,劉?喆,譚志蘭,王太勇
具有軸向動(dòng)態(tài)約束的NURBS路徑進(jìn)給速度規(guī)劃
董靖川,郭健鑫,劉?喆,譚志蘭,王太勇
(天津大學(xué)機(jī)械工程學(xué)院,天津 300354)
在傳統(tǒng)速度規(guī)劃方法中,軸向加速度約束通常是定值約束,不能充分發(fā)揮機(jī)床軸向加減速性能,影響加工效率.對(duì)此提出了一種新的考慮軸向加速度動(dòng)態(tài)約束的進(jìn)給速度規(guī)劃算法.首先,對(duì)NURBS曲線路徑進(jìn)行弧長(zhǎng)自適應(yīng)二分離散處理,獲得弧長(zhǎng)參數(shù)和采樣點(diǎn).之后,構(gòu)建切向速度、加速度、加加速度約束和軸向加速度動(dòng)態(tài)約束的優(yōu)化模型,對(duì)采樣點(diǎn)的多約束模型進(jìn)行兩次線性規(guī)劃求解,得到采樣點(diǎn)的優(yōu)化進(jìn)給速度.通過兩次線性規(guī)劃和軸向轉(zhuǎn)矩參考處理,計(jì)算各軸在不同速度下的加速度上下極限動(dòng)態(tài)約束,在提高加工效率同時(shí)沒有增加搜索最優(yōu)值的約束條件,具有較高計(jì)算效率.最后,對(duì)采樣點(diǎn)進(jìn)行樣條擬合得到進(jìn)給速度規(guī)劃曲線.與傳統(tǒng)定值約束規(guī)劃對(duì)比實(shí)驗(yàn)的結(jié)果表明,所提算法犧牲最大輪廓誤差2.63%,使加工時(shí)間降低了16.34%,提高加工效率的同時(shí)并沒有犧牲較大精度,證明了算法的可行性和有效性.
NURBS曲線路徑;進(jìn)給速度規(guī)劃;線性規(guī)劃;軸向動(dòng)態(tài)約束
非均勻有理B樣條(non-uniform rational B-splines,NURBS)具有精確的形狀表達(dá)和控制能力,在計(jì)算機(jī)輔助設(shè)計(jì)和數(shù)據(jù)交換領(lǐng)域成為了標(biāo)準(zhǔn)[1].在數(shù)控加工領(lǐng)域,NURBS參數(shù)插補(bǔ)相比傳統(tǒng)的線性插補(bǔ),提供更加平滑和連續(xù)的運(yùn)動(dòng),提高進(jìn)給速度和加工精度[2-3],并且還能減少CAD/CAM和數(shù)控系統(tǒng)之間數(shù)據(jù)傳輸負(fù)擔(dān),已經(jīng)成為現(xiàn)代高檔機(jī)床的標(biāo)志.
目前,帶前瞻和相應(yīng)約束的加減速控制規(guī)劃[4-6]是高效進(jìn)給速度規(guī)劃的一種方式.Yeh等[7]和Xu等[8]基于弓高誤差和曲率進(jìn)行自適應(yīng)進(jìn)給速度規(guī)劃,算法能保證加工效率和加工精度,但沒有考慮機(jī)床的運(yùn)動(dòng)學(xué)性能.Heng等[9]等提出了一種基于梯形加減速連續(xù)平滑進(jìn)給策略.劉獻(xiàn)禮等[10]提出了一種基于S型加減速尋回NURBS 插補(bǔ)實(shí)時(shí)算法.Dong等[5]提出一種具有前瞻規(guī)劃單元模塊的S型加減速連續(xù)平滑進(jìn)給規(guī)劃算法.但基于切向速度方向的加減速規(guī)劃方式仍有以下不足:速度約束極限只在幾何(曲率)極值點(diǎn)處,沒有對(duì)其他位置進(jìn)行約束,尤其是曲率大的區(qū)域;沒有考慮各軸的運(yùn)動(dòng)學(xué)約束,在機(jī)床實(shí)際使用中各軸動(dòng)態(tài)參數(shù)往往不匹配,無法充分發(fā)揮機(jī)床的加工能力;速度函數(shù)嵌入數(shù)控系統(tǒng)當(dāng)中,導(dǎo)致速度規(guī)劃曲線相對(duì)固定,速度規(guī)劃不夠靈活充分.
進(jìn)給速度規(guī)劃問題可以看作是具有多運(yùn)動(dòng)約束條件下的最小循環(huán)時(shí)間問題[11-13],是一個(gè)值得研究且復(fù)雜的非線性優(yōu)化[14]問題.最優(yōu)規(guī)劃起初應(yīng)用在飛行器和機(jī)器人[15-16]軌跡規(guī)劃領(lǐng)域,之后有學(xué)者在數(shù)控加工領(lǐng)域引入了時(shí)間最優(yōu)速度規(guī)劃.Zhou等[17]建立了最小時(shí)間進(jìn)給的線性數(shù)學(xué)模型,利用線性規(guī)劃算法(LP)求解,但未考慮軸加加速度約束;Liu等[18]對(duì)此進(jìn)行了改進(jìn).Ye等[19]建立了時(shí)間最優(yōu)進(jìn)給速度的非線性數(shù)學(xué)模型,并利用近似解來提高計(jì)算效率,進(jìn)行多次LP求解.但在大部分文獻(xiàn)報(bào)道中軸向加速度約束都取為定值,文獻(xiàn)[20-21]指出了軸向動(dòng)態(tài)特性,將軸向加速度約束設(shè)為定值,約束不夠精準(zhǔn).Zhang?等[20]考慮軸向動(dòng)態(tài)特性引入構(gòu)建了驅(qū)動(dòng)電壓約束,但同時(shí)也增加了搜索最優(yōu)值約束條件,無形中增大了算法的開銷且沒有考慮加加速度約束.
針對(duì)以上問題,本文從時(shí)間最優(yōu)角度開發(fā)了一種具有軸向動(dòng)態(tài)約束且兼顧算法效率的進(jìn)給速度規(guī)劃算法.
在為伺服控制器生成指令位置前,應(yīng)首先在線或離線規(guī)劃與編程N(yùn)URBS參數(shù)路徑相關(guān)聯(lián)的進(jìn)給速度曲線.由于曲線參數(shù)和弧長(zhǎng)之間的非線性關(guān)系,對(duì)于一般NURBS的參數(shù)曲線來說,不能求得弧長(zhǎng)的解析解[2].?dāng)?shù)值方法可應(yīng)用于求解NURBS弧長(zhǎng),如梯形公式、Simpson公式和Gauss-Lobatto積分公式.考慮計(jì)算效率和計(jì)算精度采用Simpson方式.
基于弧長(zhǎng)自適應(yīng)二分法的NURBS離散方法通過兩個(gè)弧長(zhǎng)限制參數(shù),在獲得采樣點(diǎn)同時(shí),較高精度計(jì)算出采樣點(diǎn)之間的弧長(zhǎng)參數(shù).在式(4)約束下,給定合適值,可控制大曲率區(qū)域采樣點(diǎn)密集,但在直線或者曲率較小的區(qū)域,約束會(huì)失效.如圖1(a)所示,NURBS直線(長(zhǎng)為84.86mm)僅在參數(shù)限制下獲得6個(gè)采樣點(diǎn),嚴(yán)重影響計(jì)算精度,在參數(shù)共同限制下,可獲得217個(gè)采樣點(diǎn)保證了計(jì)算精度.加入式(5)約束,控制直線或者曲率較小的區(qū)域內(nèi)的采樣點(diǎn)密度.圖1(b)為蝴蝶形NURBS軌跡在和共同約束下獲得的采樣點(diǎn)情況,弧長(zhǎng)為382.86mm,采樣點(diǎn)數(shù)目為1828.
得到每個(gè)采樣點(diǎn)的速度極限集合
數(shù)控機(jī)床的每個(gè)軸一般是由伺服電機(jī)連接滾珠絲杠傳動(dòng)機(jī)構(gòu)驅(qū)動(dòng).伺服驅(qū)動(dòng)系統(tǒng)中執(zhí)行器輸出轉(zhuǎn)矩必然受到限制.假設(shè)進(jìn)給軸是理想的二階動(dòng)態(tài)系統(tǒng),忽略電氣時(shí)間常數(shù)和庫倫摩擦的影響,進(jìn)給軸轉(zhuǎn)矩動(dòng)態(tài)平衡[21]滿足
由式(15)和(19),則考慮切向速度、加速度、加加速度約束和軸向加速度動(dòng)態(tài)約束的進(jìn)給速度優(yōu)化的數(shù)學(xué)模型表示為
采用線性規(guī)劃方式對(duì)多約束進(jìn)給速度優(yōu)化的數(shù)學(xué)模型(20)求解.模型中(a)和(b)約束條件是線性的可直接應(yīng)用成熟的線性規(guī)劃算法求解.考慮算法效率,線性規(guī)劃求解算法采用內(nèi)點(diǎn)法.約束條件(c)和(d)不能直接應(yīng)用,需要線性化.本文采用兩次線性規(guī)劃求解模型,步驟如下.
提出的算法主要有3個(gè)部分:NURBS曲線預(yù)處理處理、兩次線性規(guī)劃、進(jìn)給速度樣條擬合.主要工作包括:對(duì)NURBS曲線進(jìn)行弧長(zhǎng)自適應(yīng)二分獲取采樣點(diǎn)以及計(jì)算弧長(zhǎng)參數(shù);構(gòu)建約束模型;數(shù)值計(jì)算模型中的所需參數(shù);對(duì)模型進(jìn)行兩次線性規(guī)劃;對(duì)采樣點(diǎn)的進(jìn)給速度樣條擬合.算法流程圖如圖2所示.
算法概述步驟如下.
圖2?進(jìn)給速度規(guī)劃算法流程
實(shí)驗(yàn)平臺(tái)如圖3所示,軸向進(jìn)給機(jī)構(gòu)是由永磁同步伺服電機(jī)(PMSM)基于驅(qū)動(dòng)滾珠絲杠副實(shí)現(xiàn)工作臺(tái)移動(dòng),伺服電機(jī)型號(hào)為三菱HC-UFS13,伺服驅(qū)動(dòng)器為三菱MR-J2S-10A.控制器算法是在Matlab/ Simulink軟件中開發(fā)的,軸控制器模型如圖4所示,由外部的位置環(huán)和內(nèi)部的速度環(huán)組成,位置環(huán)是比例(P)型控制器,速度環(huán)是一個(gè)比例積分(PI)型控制器.實(shí)時(shí)控制部分采用Simulink Desktop Real-Time庫實(shí)現(xiàn),保證實(shí)時(shí)性能.計(jì)算機(jī)和定制接口板通過以太網(wǎng)UDP協(xié)議交換實(shí)時(shí)數(shù)據(jù).定制的接口板配備了ARM STM32F407ZGT6微控制處理器,用來連接實(shí)時(shí)控制計(jì)算機(jī)和伺服驅(qū)動(dòng)器.將驅(qū)動(dòng)器設(shè)置為轉(zhuǎn)矩控制模式,控制器產(chǎn)生轉(zhuǎn)矩模擬信號(hào)指令并采集反饋的電機(jī)編碼器信號(hào),在控制器中實(shí)現(xiàn)閉環(huán)控制.
圖3?實(shí)驗(yàn)平臺(tái)
圖4?軸控制器模型
為了驗(yàn)證算法的可行性和有效性,選取3階蝴蝶形狀NURBS參數(shù)曲線路徑作為實(shí)例進(jìn)行實(shí)驗(yàn)驗(yàn)證,如圖5所示,曲線有低曲率區(qū)和高曲率區(qū),曲線變化相對(duì)復(fù)雜.實(shí)驗(yàn)參數(shù)預(yù)置如表1所示,表中各軸慣性質(zhì)量和黏性摩擦通過系統(tǒng)辨識(shí)獲得.規(guī)劃結(jié)果通過NURBS插補(bǔ)生成時(shí)間-位置序列,將其作為伺服指令輸入進(jìn)行實(shí)驗(yàn)驗(yàn)證,下個(gè)插補(bǔ)點(diǎn)通過式(22)計(jì)算.
圖5?蝴蝶形NURBS軌跡
表1?實(shí)驗(yàn)參數(shù)
Tab.1?Test parameters
圖6(a)~(c)分別為C1和C2的進(jìn)給速度、切向加速度和切向加加速度規(guī)劃曲線,可以看出切向的運(yùn)動(dòng)學(xué)被約束在極限之內(nèi).圖6(d)和圖6(e)分別為C1、C2的軸加速度和軸加速度規(guī)劃曲線,其中C2各軸的加速度基本被約束在相應(yīng)動(dòng)態(tài)約束極限內(nèi),與C1相比,C2動(dòng)態(tài)約束規(guī)劃在低速下可規(guī)劃相對(duì)更大的加速度值.圖7為實(shí)驗(yàn)C1、C2各軸的實(shí)際速度和加速度曲線,可以看出在曲線極值處C2實(shí)際速度和加速度值比C1的值更大,證明了本文所提的具有軸向動(dòng)態(tài)約束的規(guī)劃算法的有效性.
弧長(zhǎng)數(shù)值積分誤差限制參數(shù)和弧長(zhǎng)微段限制參數(shù),兩者參數(shù)數(shù)值選取越小,獲得采樣點(diǎn)數(shù)目越多,計(jì)算精度會(huì)提高,但也會(huì)帶來較大計(jì)算開銷.圖8為不同采樣點(diǎn)規(guī)劃圖像,可以看出合理的采樣點(diǎn)數(shù)目可以較好表達(dá)出速度變化,并且最終規(guī)劃的時(shí)間誤差在2%之內(nèi),綜合考慮計(jì)算精度和計(jì)算效率,選取本文的兩者參數(shù)(數(shù)據(jù)點(diǎn)為1828,規(guī)劃時(shí)間為6.51s).
圖9(a)為C1和C2的運(yùn)動(dòng)過程振動(dòng)信號(hào),并統(tǒng)計(jì)其均方根值(root mean square,RMS),其中C1為0.0116,C2為0.0129.圖9(b)為C1和C2的實(shí)際運(yùn)動(dòng)軌跡,圖9(c)為C1和C2的實(shí)際運(yùn)動(dòng)軌跡和參考軌跡之間輪廓誤差,表2為統(tǒng)計(jì)C1和C2的輪廓誤差的最大值(maximum,MAX)和RMS值.其中,實(shí)驗(yàn)C1加工時(shí)間為7.784s,C2的加工時(shí)間為6.512s,與C1傳統(tǒng)定值約束相比,所提算法輪廓誤差MAX升高2.63%,RMS升高5.57%,加工時(shí)間降低16.34%,提高了加工效率同時(shí)并沒有犧牲較大的精度.實(shí)驗(yàn)C2算法在2.2GHz CPU的PC機(jī)上運(yùn)行,規(guī)劃蝴蝶形軌跡,采樣點(diǎn)數(shù)目為1828,算法計(jì)算時(shí)間約為2.20s,遠(yuǎn)小于實(shí)際加工時(shí)間,為在線規(guī)劃提供了可能性.
表2?C1和C2輪廓誤差對(duì)比統(tǒng)計(jì)
圖9?C1和C2的精度對(duì)比
本文針對(duì)NURBS參數(shù)曲線路徑,為充分發(fā)揮機(jī)床軸向加減速性能,提出一種新的具有軸向動(dòng)態(tài)約束的進(jìn)給速度規(guī)劃算法.通過實(shí)驗(yàn)分析和驗(yàn)證得出以下結(jié)論.
(1) 在預(yù)處理階段,對(duì)NURBS加工路徑進(jìn)行弧長(zhǎng)自適應(yīng)二分離散處理,通過弧長(zhǎng)限制參數(shù),在離散化過程同時(shí),獲得較高精度弧長(zhǎng)參數(shù).
(2) 在規(guī)劃階段,提出一種新的考慮軸向動(dòng)態(tài)約束算法解決方案.在具有一般運(yùn)動(dòng)學(xué)約束條件(切向速度、加速度、加加速度)的基礎(chǔ)上,通過兩次線性規(guī)劃和轉(zhuǎn)矩參考處理,在沒有增加搜索最優(yōu)值的條件下引入軸向加速度動(dòng)態(tài)約束.該方案有效利用了進(jìn)給電機(jī)的潛力,提高加工效率同時(shí)具有較高計(jì)算效率.
[1] Piegl L,Tiller W. The NURBS Book[M]. New York:Springer,1997.
[2] Min Liu,Huang Yu,Yin Ling,et al. Development and implementation of a NURBS interpolator with smooth feedrate scheduling for CNC machine tools[J]. International Journal of Machine Tools and Manufacture,2014,87:1-15.
[3] 何改云,陶?浩,王太勇,等. 連續(xù)時(shí)間周期化的NURBS曲線插補(bǔ)及其速度規(guī)劃[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2018,51(8):844-853.
He Gaiyun,Tao Hao,Wang Taiyong,et al. Continuous to periodic time NURBS curve interpolation and its speed planning[J]. Journal of Tianjin University:Science and Technology,2018,51(8):844-853(in Chinese).
[4] 羅福源,游有鵬,尹?涓. NURBS曲線S形加減速雙向?qū)?yōu)插補(bǔ)算法研究[J]. 機(jī)械工程學(xué)報(bào),2012,48(5):147-156.
Luo Fuyuan,You Youpeng,Yin Juan. Research on the algorithm of NURBS curve bidirectional optimization Interpolation with S-type acceleration and deceleration control[J]. Chinese Journal of Mechanical Engineering,2012,48(5):147-156(in Chinese).
[5] Dong Jingchuan,Wang Taiyong,Li Bo,et al. Smooth feedrate planning for continuous short line tool path with contour error constraint[J]. International Journal of Machine Tools and Manufacture,2014,76:1-12.
[6] 李?浩,吳文江,韓文業(yè),等. 基于自適應(yīng)前瞻和預(yù)測(cè)校正的實(shí)時(shí)柔性加減速控制算法[J]. 中國機(jī)械工程,2019,30(6):690-699.
Li Hao,Wu Wenjiang,Han Wenye,et al. Real-time flexible acceleration and deceleration control algorithm based on adaptive look-ahead and predictor-corrector method[J]. China Mechanical Engineering,2019,30(6):690-699(in Chinese).
[7] Yeh S S,Hsu P L. Adaptive-feedrate interpolation for parametric curves with a confined chord error[J]. Computer-Aided Design,2002,34(3):229-237.
[8] Xu Zhiming,Chen Jincheng,F(xiàn)eng Zhengjin. Performance evaluation of a real-time interpolation algorithm for NURBS curves[J]. International Journal of Advanced Manufacturing Technology,2002,20(4):270-276.
[9] Heng M,Erkorkmaz K. Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability[J]. International Journal of Machine Tools and Manufacture,2010,50(3):281-293.
[10] 劉獻(xiàn)禮,周肖陽,李茂月,等. NURBS曲線S形加減速尋回實(shí)時(shí)插補(bǔ)算法[J]. 機(jī)械工程學(xué)報(bào),2017,53(3):183-192.
Liu Xianli,Zhou Xiaoyang,Li Maoyue,et al. The real-time algorithm of NURBS curve retriever interpolation with S-type acceleration and deceleration control [J]. Chinese Journal of Mechanical Engineering,2017,53(3):183-192(in Chinese).
[11] Zhang Q,Li S R. Efficient computation of smooth minimum time trajectory for CNC machining[J]. The International Journal of Advanced Manufacturing Technology,2013,68(1):683-692.
[12] Guo Jianxin,Zhang Qiang,Gao Xiaoshan,et al. Time optimal feedrate generation with confined tracking error based on linear programming[J]. Journal of Systems Science and Complexity,2015,28(1):80-95.
[13] 浦玉學(xué),舒鵬飛,蔣?祺,等. 工業(yè)機(jī)器人時(shí)間-能量最優(yōu)軌跡規(guī)劃[J]. 計(jì)算機(jī)工程與應(yīng)用,2019,55(22):86-90.
Pu Yuxue,Shu Pengfei,Jiang Qi,et al. Time-energy optimum trajectory planning for industrial robot[J]. Computer Engineering and Applications,2019,55(22):86-90(in Chinese).
[14] Zhang Qiang,Li Shurong,Guo Jianxin,et al. Time-optimal path tracking for robots under dynamics constraints based on convex optimization[J]. Robotica,2016,34(9):2116-2139.
[15] 羅?翔,沈?潔,毛玉良,等. 存在驅(qū)動(dòng)飽和約束下的機(jī)器人時(shí)間最優(yōu)實(shí)時(shí)運(yùn)動(dòng)規(guī)劃研究[J]. 機(jī)器人,2001(1):26-30.
Luo Xiang,Shen Jie,Mao Yuliang,et al. Real-time motion planning research of robots due to the limited actuation power[J]. Robotics,2001(1):26-30(in Chinese).
[16] 徐海黎,解祥榮,莊?健,等. 工業(yè)機(jī)器人的最優(yōu)時(shí)間與最優(yōu)能量軌跡規(guī)劃[J]. 機(jī)械工程學(xué)報(bào),2010,46(9):19-25.
Xu Haili,Xie Xiangrong,Zhuang Jian,et al. Global time-energy optimal planning of industrial robot trajectories[J]. Chinese Journal of Mechanical Engineering,2010,46(9):19-25(in Chinese).
[17] Zhou Jianfeng,Sun Yuwen,Guo Dongming. Adaptive feedrate interpolation with multiconstraints for five-axis parametric toolpath[J]. The International Journal of Advanced Manufacturing Technology,2014,71(9/10/11/12):1873-1882.
[18] Liu Huan,Liu Qiang,Yuan Songmei. Adaptive feedrate planning on parametric tool path with geometric and kinematic constraints for CNC machining[J]. The International Journal of Advanced Manufacturing Technology,2017,90(5/6/7/8):1889-1896.
[19] Ye Peiqing,Zhang Yong,Xiao Jianxin,et al. A novel feedrate planning and interpolating method for parametric toolpath in Frenet-Serret frame[J]. The International Journal of Advanced Manufacturing Technology,2019,101(5):1915-1925.
[20] Zhang Yong,Ye Peiqing,Zhao Mingyong,et al. Dynamic feedrate optimization for parametric toolpath with data-based tracking error prediction[J]. Mechanical Systems and Signal Processing,2019,120:221-233.
[21] Dong J,Stori J A. Optimal feed-rate scheduling for high-speed contouring[J]. J Manuf Sci E:T ASME,2007,129(1):63-76.
[22] Mathews J H,F(xiàn)ink K D. Numerical Methods Using MATLAB[M]. Upper Saddle River:Prentice Hall,1999.
Feedrate Planning of a NURBS Path with Dynamic Axial Constraints
Dong Jingchuan,Guo Jianxin,Liu Zhe,Tan Zhilan,Wang Taiyong
(School of Mechanical Engineering,Tianjin University,Tianjin 300354,China)
In conventional feedrate planning,the axial acceleration constraint is usually a fixed value constraint,which cannot efficiently use the acceleration capacity of the axes of the machine tools and affects the machining effeciency. A new feedrate planning algorithm considering the dynamic constraint of axial acceleration is proposed. First,the non-uniform rational B-splines curve path is processed by adaptive dichotomous discretization to acquire the arc length parameters and sampling points. Then the optimizing model is constructed with the tangential velocity,acceleration,jerk,and dynamic axial acceleration constraints. A two-stage linear programing is applied to the multi-constraint optimizing model on the sampling points to find the points’ optimal velocity. The dynamic constraints of the upper and lower limits of the acceleration of each axis at different velocities are obtained through the two-stage linear programing and the reference axial torque,which improves the processing efficiency without increasing the constraint condition of searching the optimal value,thus ensuring high computation efficiency. Finally,the sample points are fitted with a spline to obtain the feedrate planning curve. In a comparative experiment with the conventional fixed constraint planning,the proposed algorithm sacrifices 2.63% of the maximum contour error,reduces the processing time by 16.34%,and improves the processing efficiency without sacrificing much precision,which proves the feasibility and effectiveness of the algorithm.
NURBS path;feedrate planning;linear programing;dynamic axial constraint
TP273
A
0493-2137(2021)09-0890-09
10.11784/tdxbz202006045
2020-06-16;
2020-09-24.
董靖川(1983—??),男,博士,高級(jí)工程師,jcdong@tju.edu.cn.
郭健鑫,jxguo@tju.edu.cn.
國家自然科學(xué)基金資助項(xiàng)目(51605328).
Supported by the National Natural Science Foundation of China(No. 51605328).
(責(zé)任編輯:王曉燕)