龔中良,張 鎮(zhèn)
非均質(zhì)物料鏈式組合稱重定量算法優(yōu)化與試驗
龔中良,張 鎮(zhèn)
(中南林業(yè)科技大學(xué)機電工程學(xué)院,長沙 410004)
非均質(zhì)物料質(zhì)量差異較大且不可分割,組合稱重定量過程中組合對象不確定,存在組合稱重定量精度與組合速度的矛盾。該研究針對鏈式組合稱重定量系統(tǒng),提出以定量精度及組合效率為目標,對組合樣本數(shù)和抽樣數(shù)進行優(yōu)化分析,達到保證組合稱重定量精度下,減少數(shù)據(jù)計算量以提高組合定量速度的目的。研究表明,在相同允許組合誤差下,增大組合樣本數(shù)可提高組合成功概率,但組合計算量隨組合樣本數(shù)增加而呈指數(shù)增加。通過對服從正態(tài)分布(100, 102)的質(zhì)量數(shù)據(jù)進行10 000輪組合計算發(fā)現(xiàn),當(dāng)組合定量目標質(zhì)量為500 g,允許組合誤差為0.1 g時,組合計算時間較短的組合樣本數(shù)為14。并對優(yōu)化組合樣本數(shù)和抽樣數(shù)的組合算法進行了鏈式組合稱重定量試驗驗證。試驗結(jié)果表明,在物料質(zhì)量標準差≤30 g,允許定量組合誤差為0.1 g時,優(yōu)化后的組合算法與優(yōu)化前遍歷組合算法在定量組合成功概率總體上保持在95%左右,且優(yōu)化后的算法組合計算時間減少了40%。研究結(jié)果可為非均質(zhì)物料鏈式組合稱重定量系統(tǒng)的研制提供參考。
算法;優(yōu)化;鏈式組合稱重;非均質(zhì)物料;定量精度;效率;誤差分析
由于單體稱重定量組合速度低下,難以滿足市場定量稱重的需求[1-3],隨之出現(xiàn)的組合稱重定量裝置可提供快速,準確、可靠的操作[4-5],在食品定量稱重上發(fā)揮著重要作用[6-10],尤其是在農(nóng)產(chǎn)品定量稱重方面。國內(nèi)外眾多學(xué)者對不同物料組合稱重定量算法做了大量研究,并取得一定的成果,如Keraita等[11]對組合秤提出一種基于位運算的組合算法;Imahori等[12]提出使用動態(tài)編程來編寫主控邏輯,以加速組合速度。唐志祥等[13]對組合秤進行了較初步的介紹和組合工作原理探究;鄧志輝等[14]針對不同物料的給料性能之間的差異,進行仿真試驗研究,對于不同的物料,選取出較佳組合秤漏斗總數(shù)配置和組合算法,但是組合速度沒有得到大幅提升;劉乘等[15]對組合秤進行了模型仿真研究,主要通過固定每次稱重單元數(shù)和每次參與組合的單元數(shù)來探究不同運行模式下的組合狀態(tài);安世奇等[16]對物料組合順序進行排序遍歷;穆慶霖[17]將組合算法拆分為組合計算和組合控制兩部分來進行組合計算和組合邏輯控制。以上研究對顆粒狀均質(zhì)物料適應(yīng)性較好,可滿足生產(chǎn)需求;對非均質(zhì)個體物料,組合稱重定量性能卻不盡人意。由于非均質(zhì)物料具有不可分割性,流動性差,質(zhì)量相對較大且分布不均勻等特點[18],如仍采用像粉狀或者顆粒狀物料一樣緩慢振動式加料,則單個物料對組合結(jié)果影響較大,勢必對加料穩(wěn)定性以及定量組合算法快速性、精確性提出更高要求。為解決非均質(zhì)物料組合稱重定量存在的組合定量精度與組合計算速度之間的矛盾,本文針對鏈式組合稱重定量系統(tǒng),以定量精度及組合效率為目標,對非均質(zhì)物料鏈式組合稱重誤差進行了分析,探討組合樣本數(shù)和抽樣數(shù)對組合定量誤差、組合計算速度及定量組合成功概率的影響,并進行了試驗驗證,以期為非均質(zhì)物料鏈式組合稱重定量系統(tǒng)開發(fā)提供參考。
鏈式組合稱重定量系統(tǒng)由輸送機構(gòu)和控制系統(tǒng)組成,輸送機構(gòu)為鏈式組合稱重定量裝置,如圖1所示。該裝置可連續(xù)稱重而不影響機器運行動態(tài)[19],物料盤固定安裝在鏈條上,通過鏈傳動帶動物料盤運動,在傳送鏈輸送過程中完成數(shù)據(jù)采集、數(shù)據(jù)處理、數(shù)據(jù)組合計算、數(shù)據(jù)輸出等功能。
物料盤直立且不施加側(cè)向力時,物料盤整體可看作懸臂梁結(jié)構(gòu),運用力矩公式可得物料實際質(zhì)量和測得質(zhì)量之間的關(guān)系。如圖2所示,設(shè)物料支撐架點為力矩參考點,物料的重力1(N)相對于點的力臂設(shè)為1(m),物料盤整體及稱重墊片的重力2(N)相對于點的力臂設(shè)為2(m),稱重傳感器所測得質(zhì)量為(kg),相對于點的力臂設(shè)為0(m)。由力矩平衡得:
式中為重力加速度,m/s2;1=。為物料的實際質(zhì)量,kg。
則物料的實際質(zhì)量為
1.物料盤 2.稱臺墊片 3.稱重傳感器 4.稱重支架 5.光電傳感器 6.卸料執(zhí)行器 7.物料 8.物料收集箱 9.鏈條 10.鏈輪 11.傳動電機
1.Material tray 2.Weighing platform gasket 3.Weighing sensor 4.Weighing bracket 5.Photoelectric sensor 6.Unloading actuator 7.Material 8.Material collection box 9.Chain 10.Sprocket 11.Drive motor
圖1 鏈式組合稱重定量裝置結(jié)構(gòu)圖
Fig.1 Structural schematic diagram of chain quantitative combination weighing device
注:1為物料的重力(N),2為物料盤整體及稱重墊片的重力(N),為力矩參考點,0為稱重傳感器所測得質(zhì)量相對于點的力臂(m),1為物料的重力相對于點的力臂(m),2為物料盤整體及稱重墊片的重力相對于點的力臂(m)。
Note:1is the gravity of the material (N),2is the gravity of the whole material tray and the weighing pad (N),is the moment reference point,0is the arm of the mass measured by the weighing sensor relative to point(m),1is the arm of the gravity of the material relative to point(m),2is the arm of the gravity of the whole material tray and the weighing pad relative to point(m)
1.稱重傳感器 2.物料盤 3.物料 4.稱重墊片 5.支撐架
1.Weighing sensor 2.Material tray 3.Material 4.Weighing gasket 5.Support frame
圖2 稱重傳感器受力分析圖
Fig.2 Force analysis diagram of weighing sensor
鏈式組合稱重定量系統(tǒng)工作流程如圖3所示。首先鏈傳動連帶物料盤向前傳送進料,物料盤依次經(jīng)過稱重區(qū)域的稱重墊片到達不同鏈位處,稱重傳感器安裝在稱重墊片的下方進行質(zhì)量數(shù)據(jù)的采集[20],通過光電傳感器觸發(fā)稱重傳感器采集信號并記錄定位每個物料盤的位置,物料盤在傳送鏈運轉(zhuǎn)下依次被輸送到不同鏈位對應(yīng)的卸料執(zhí)行器處,當(dāng)采集到的質(zhì)量數(shù)據(jù)個數(shù)達到設(shè)定好的組合樣本數(shù)時,系統(tǒng)開始進行定量組合計算,如果定量組合結(jié)果滿足誤差要求,則表示組合成功,驅(qū)動對應(yīng)鏈位的卸料執(zhí)行器進行卸料[21],把物料盤裝載的物料卸下,卸料過程鏈傳動保持繼續(xù)傳輸;如果組合失敗,卸料執(zhí)行器不動作,傳送鏈繼續(xù)傳送物料,稱重傳感器繼續(xù)采集物料質(zhì)量數(shù)據(jù),進行下一次的組合,依次運行,直至接收到暫?;蛘咄V怪噶睢?/p>
誤差主要包括稱重傳感器誤差和組合定量誤差。稱重傳感器誤差[22-24]主要由系統(tǒng)誤差和隨機誤差組成,其中系統(tǒng)誤差可以通過誤差補償來修正[25-26],隨機誤差在組合定量時可部分抵消。此外,由于隨機誤差的量級遠小于組合定量誤差,因此本文不考慮稱重傳感器誤差的影響;組合定量誤差為非均質(zhì)物料組合后與定量值之間的差值,與組合樣本數(shù),抽樣數(shù)及組合方式密切相關(guān),而這些因素對組合算法具有重要影響。
組合計算一般采用2種算法[27-28]。一種是速度優(yōu)先型算法,即在遍歷所有組合,在運算過程中,第一次出現(xiàn)滿足組合定量誤差的結(jié)果就表示組合成功,這種算法的優(yōu)點就是速度較快。當(dāng)組合樣本數(shù)為8個進行組合時,組合時間平均為80 ms,允許組合誤差為±0.2%,但組合定量誤差在允許組合誤差內(nèi)隨機性較大;另一種是精度優(yōu)先型算法,通過遍歷所有可能的組合,在這些定量組合成功的結(jié)果中找尋組合定量誤差最小的組合作為最后結(jié)果,這樣雖然精度有所提高,但是組合計算時間增加。當(dāng)組合樣本數(shù)為8個進行組合時,允許組合誤差為±0.2%,平均需要120 ms,它每次組合定量結(jié)果均為本輪誤差最小的組合。當(dāng)組合樣本數(shù)更大時,組合時間還會更長。為了同時滿足較高的組合定量精度及組合速度要求,本文對組合樣本數(shù)和抽樣數(shù)進行了優(yōu)化分析。
當(dāng)組合樣本數(shù)為時,遍歷所有可能的組合,組合次數(shù)共有:
當(dāng)樣本數(shù)和抽樣數(shù)分別以1為步長,從1取到20時,對應(yīng)的組合次數(shù)如圖4所示。
由圖4可知,當(dāng)樣本數(shù)一定時,組合次數(shù)隨著抽樣數(shù)的增加先增加后減小,且呈對稱分布,在中間達到最大值;當(dāng)抽樣數(shù)一定時,組合次數(shù)隨著樣本數(shù)的增加而增加,抽樣數(shù)為樣本數(shù)一半時,趨勢尤為明顯,在樣本數(shù)大于15左右快速增加;組合次數(shù)的驟增,定量組合成功概率將越大,精度也將可能越高,但樣本數(shù)的增加,將導(dǎo)致組合算法的計算量呈指數(shù)增長,系統(tǒng)運算時間也會大大增加。為了平衡組合定量的準確性和組合運算時間,需對樣本數(shù)和抽樣數(shù)進行優(yōu)化選擇。
由圖5可知,組合成功概率和組合計算時間隨著樣本數(shù)的增加而增加,當(dāng)允許組合誤差為0.05 g時,組合成功概率增加速度呈近似線性增加,在樣本數(shù)為16時,組合成功概率才能達到95%以上;當(dāng)允許組合誤差為0.10~1.00 g時,組合成功概率隨著樣本數(shù)的增加呈現(xiàn)先保留快速后緩慢增加的趨勢。這是因為前期樣本數(shù)增大,數(shù)據(jù)組合次數(shù)隨之增大,而誤差范圍相對較大,故符合誤差范圍的組合較多,組合成功概率呈較快增加,組合計算時間增加緩慢;到后期由于數(shù)據(jù)量驟增,所需的組合計算時間快速增加,而組合成功概率由于前期增加過快,后面趨于飽和,故緩慢趨近于1;此時,當(dāng)樣本數(shù)增加到14時,組合成功概率已經(jīng)達到96%以上,組合計算時間為20 s左右,當(dāng)樣本數(shù)繼續(xù)增加到16時,組合成功概率達到99%以上,但是組合計算時間上升到之前的3倍60 s左右。綜合考慮組合成功概率和組合計算時間,當(dāng)允許組合誤差為0.05 g時,為保證組合成功概率,樣本數(shù)應(yīng)選擇16以上為佳;當(dāng)允許組合誤差為0.10 g時,選擇樣本數(shù)為14較佳。
根據(jù)前文對抽樣數(shù)的論證,該試驗對其進行驗證。設(shè)計試驗質(zhì)量數(shù)據(jù)傳遞規(guī)律按照鏈式移位進入稱重傳感器。選擇組合樣本數(shù)為14,物料質(zhì)量分布服從正態(tài)分布(100,2),為物料質(zhì)量標準差,組合定量的目標質(zhì)量為500 g,優(yōu)化選取抽樣數(shù)。測試在10 000輪組合計算下對不同標準差和不同誤差范圍內(nèi)的組合成功概率的影響,并將其改進前組合算法進行對比,結(jié)果如表1。改進前的組合算法為從小到大進行順序遍歷組合的算法。試驗結(jié)果為組合成功概率、組合計算時間和時間縮短比例。具體試驗步驟如下:
1)程序依次產(chǎn)生14個服從正態(tài)分布的隨機數(shù);
2)對數(shù)據(jù)進行異常值的剔除;本試驗樣本數(shù)為14,故采用公式(5)中22和22對數(shù)據(jù)進行剔除,選定顯著值指標為=0.05,查臨界值表得臨界值為0(14,0.05)=0.546;
4)在14個數(shù)據(jù)中進行個數(shù)據(jù)組合計算,如果組合結(jié)果滿足允許誤差,則組合成功,組合成功對應(yīng)物料數(shù)據(jù)清0;否則組合失敗,一次組合結(jié)束。
5)繼續(xù)生成1個正態(tài)分布數(shù)據(jù)按鏈傳動規(guī)則依次傳遞進來,14個位置依次移位,直到14個位置對應(yīng)的數(shù)據(jù)都不為0,再繼續(xù)進行下一次組合,即步驟2),如此循環(huán)直至結(jié)束。
表1 改進前后組合算法的組合成功概率和組合計算時間對比
為驗證優(yōu)化后組合算法性能,搭建試驗平臺如圖6所示。以砂糖橘作為物料,其符合非均質(zhì)物料質(zhì)量分布特性,單個物料質(zhì)量對整體組合稱重定量影響大等特點。經(jīng)測試單個砂糖橘質(zhì)量范圍服從正態(tài)分布(34,62)。組合定量目標質(zhì)量為100 g,組合樣本數(shù)為14。試驗結(jié)果如表2所示。
表2 砂糖橘定量組合試驗結(jié)果
由表2可知,砂糖橘組合定量試驗中,允許組合誤差為0.1~1.0 g時,優(yōu)化后的定量組合算法的組合成功率可達到95%以上,組合計算時間在1.5 ms以內(nèi),滿足系統(tǒng)使用要求。
本文以鏈式組合稱重定量系統(tǒng)為基礎(chǔ),對組合定量誤差進行分析,提出以精度—效率為目標,選定組合樣本數(shù)和抽樣數(shù)進行數(shù)學(xué)分析及優(yōu)化,得到最佳的參數(shù)。并通過試驗驗證,具體結(jié)論如下:
1)組合成功概率隨著組合樣本數(shù)的增加而增加,但組合計算量也呈指數(shù)增加。綜合考慮組合成功概率與組合速度,發(fā)現(xiàn)當(dāng)允許組合誤差為0.1 g時,較優(yōu)的組合樣本數(shù)為14;
2)通過理論分析得到的抽樣數(shù)能保證定量組合計算精度和組合成功概率;
3)在物料分布標準差一定時,誤差越小,組合精度越高,但其組合成功概率會降低,組合計算時間也會增長;
4)改進后的組合算法在保證組合成功概率的情況下,組合計算時間較傳統(tǒng)組合算法減少了40%左右。
[1]張麗妹,高占寶,尹志兵. 基于等效系統(tǒng)的動態(tài)稱重數(shù)據(jù)處理[J]. 測控技術(shù),2013,32(6):33-35,43.
Zhang Limei, Gao Zhanbao, Yin Zhibing. Dynamic weighing data processing based on equivalent system [J]. Measurement and Control Technology, 2013, 32(6): 33-35, 43. (in Chinese with English abstract)
[2]葉志剛. 影響移動定量包裝精度的因素及對策[J]. 石油化工自動化,2013,49(6):72-74.
Ye Zhigang. Factors and countermeasures affecting the accuracy of mobile quantitative packaging[J]. Petrochemical Industry Automation, 2013, 49(6): 72-74. (in Chinese with English abstract)
[3]張春友,吳曉強. 新型智能組合秤稱重系統(tǒng)[J]. 自動化儀表,2015,36(4):88-90.
Zhang Chunyou, Wu Xiaoqiang. New intelligent combination scale weighing system[J]. Automation Instrumentation, 2015, 36(4): 88-90. (in Chinese with English abstract)
[4]Clark N M. Multi-head weighting apparatus: U.S. Patent 9217661[P]. 2015-12-22.
[5]Keraita J N, Kim K H. A study on the optimum scheme for determination of operation time of line feeders in automatic combination weighers[J]. Journal of Mechanical Science and Technology, 2006, 20(10): 1567-1575.
[6]PNarkhede P, Dhawale R, Karthikeyan B. Microcontroller based multihead weigher[J]. Indian Journal of Science and Technology, 2016, 9(30): 1-5
[7]張俊,熊家慧,郭愛云. 定量包裝控制系統(tǒng)的設(shè)計與實現(xiàn)[J]. 包裝工程,2016,37(13):134-139.
Zhang Jun, Xiong Jiahui, Guo Aiyun. Design and implementation of quantitative packaging control system[J]. Packaging Engineering, 2016, 37(13): 134-139. (in Chinese with English abstract)
[8]權(quán)小青. 我國智能組合秤市場發(fā)展分析[J]. 衡器,2012,41(12):1-3.
Quan Xiaoqing. Analysis on the development of my country's intelligent combination weigher market[J]. Weighing Apparatus, 2012, 41(12): 1-3. (in Chinese with English abstract)
[9]張加營,張鳳,馬云天. 一種智能定量包裝秤[J]. 衡器,2015,44(12):12-13.
Zhang Jiaying, Zhang Feng, Ma Yuntian. An intelligent quantitative packaging scale[J]. Weighing Apparatus, 2015, 44(12): 12-13. (in Chinese with English abstract)
[10]張西良,毛翠云,路欣. 粉粒狀農(nóng)用產(chǎn)品混合式自動定量包裝研究[J]. 農(nóng)業(yè)工程學(xué)報,2003,19(2):121-125.
Zhang Xiliang, Mao Cuiyun, Lu Xin. Research on mixed automatic quantitative packaging of powdered and granular agricultural products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(2): 121-125. (in Chinese with English abstract)
[11]Keraita J N, Kim K H. A weighing algorithm for multihead weighers[J]. International Journal of Precision Engineering and Manufacturing, 2007, 8(1): 21-26.
[12]Imahori S, Karuno Y, Nagamochi H, et al. Kansei engineering, humans and computers: Efficient dynamic programming algorithms for combinatorial food packing problems[J]. International Journal of Biometrics, 2011, 3(3): 228-245.
[13]唐志祥. 包裝計量組合秤工作原理初探[J]. 廣東工學(xué)院學(xué)報,1994(1):45-52.
Tang Zhixiang. Preliminary study on the working principle of the packaging and measuring combination weigher[J]. Journal of Guangdong Institute of Technology, 1994(1): 45-52. (in Chinese with English abstract)
[14]鄧志輝,張西良,劉劍敏,等. 組合秤組合模型對定量誤差影響研究[J]. 機械設(shè)計與制造,2006(3):108-110.
Deng Zhihui, Zhang Xiliang, Liu Jianmin, et al. Research on the influence of combination model of combination weigher on quantitative error[J]. Machine Design and Manufacturing, 2006(3): 108-110. (in Chinese with English abstract)
[15]劉乘,李彩娟,沈訓(xùn)樂. 組合秤仿真及優(yōu)化研究[J]. 包裝工程,2011,32(3):53-56,59.
Liu Cheng, Li Caijuan, Shen Xunle. Simulation and optimization of combination weigher[J]. Packaging Engineering, 2011, 32(3): 53-56, 59. (in Chinese with English abstract)
[16]安世奇,孫瑞. 多功能組合秤控制系統(tǒng)設(shè)計及優(yōu)化算法研究[J]. 電子測量技術(shù),2019,42(7):108-112.
An Shiqi, Sun Rui. The design and optimization algorithm of the control system of the multifunctional combination weigher[J]. Electronic Measurement Technology, 2019, 42(7): 108-112. (in Chinese with English abstract)
[17]穆慶霖. 組合秤的稱重系統(tǒng)設(shè)計及優(yōu)化[D]. 青島:青島科技大學(xué),2020.
Mu Qinglin. Design and Optimization of Weighing System of Combination Scale[D]. Qingdao: Qingdao University of Science and Technology, 2020. (in Chinese with English abstract)
[18]鄧志輝,張西良. 組合秤物料給料性能對定量誤差影響研究[J]. 中國計量,2005(9):52-54.
[19]Li B, Li Y, Wang H, et al. Compensation of automatic weighing error of belt weigher based on BP neural network[J]. Measurement, 2018, 129: 625-632.
[20]李光梅,魏新華,李法德,等. 水果綜合分選機稱重模塊的設(shè)計與實現(xiàn)[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(2):96-100.
Li Guangmei, Wei Xinhua, Li Fade, et al. Design and implementation of weighing module of fruit comprehensive sorting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 96-100. (in Chinese with English abstract)
[21]康寧波,強鋒,吳龍國,等. 基于電磁式同步執(zhí)行機構(gòu)的鮮棗分級機設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(7):254-260.
Kang Ningbo, Qiang Feng, Wu Longguo, et al. Design and experiment of synchronization actuator system based on electromagnetism for fresh jujube classifier[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 254-260. (in Chinese with English abstract)
[22]閆文吉,陳紅亮,陳洪敏,等. 硅壓阻式壓力傳感器測量誤差在線補償方法研究[J]. 儀器儀表學(xué)報,2020,41(6):59-65.
Yan Wenji, Chen Hongliang, Chen Hongmin, et al. Research on on-line compensation method for the measurement error of silicon piezoresistive pressure[J]. Chinese Journal of Scientific Instrument, 2020, 41(6): 59-65. (in Chinese with English abstract)
[23]謝永華,孟凡虎. 雙孔平行梁式稱重傳感器非線性校正研究[J]. 現(xiàn)代科學(xué)儀器,2010(6):64-66,70.
Xie Yonghua, Meng Fanhu. Research on nonlinear correction of double-hole parallel beam load cell[J]. Modern Scientific Instruments, 2010(6): 64-66, 70. (in Chinese with English abstract)
[24]李巨韜,郭偉,王建. 平行梁式電容傳感器極板耦合角位移計算和分析[J]. 傳感技術(shù)學(xué)報,2013,26(4):492-497.
Li Jutao, Guo Wei, Wang Jian. Calculation and analysis of coupling angular displacement of parallel beam capacitive sensor plates[J]. Journal of Sensor Technology, 2013, 26(4): 492-497. (in Chinese with English abstract)
[25]朱鵬飛,黃松和,梅菊. 組合秤稱重傳感器大變形致非線性誤差分析[J]. 包裝工程,2015,36(23):103-106,115.
Zhu Pengfei, Huang Songhe, Mei Ju. Analysis of nonlinear error caused by large deformation of load cell of combination weigher[J]. Packaging Engineering, 2015, 36(23): 103-106, 115. (in Chinese with English abstract)
[26]章勝. 普洱餅茶連續(xù)生產(chǎn)線中毛茶自動定量裝置研究[D].昆明:昆明理工大學(xué),2016.
Zhang Sheng. Research on the Automatic Quantitative Device of Maocha in the Continuous Production Line of Pu'er Cake Tea[D]. Kunming: Kunming University of Science and Technology, 2016. (in Chinese with English abstract)
[27]孫前明. 組合稱重微機控制系統(tǒng)的研究與開發(fā)[D]. 鎮(zhèn)江:江蘇大學(xué),2002.
Sun Qianming. Research and Development of Combined Weighing Microcomputer Control System[D]. Zhenjiang: Jiangsu University, 2002. (in Chinese with English abstract)
[28]孫瑞. 多功能組合秤控制系統(tǒng)設(shè)計及優(yōu)化算法研究[D]. 青島:青島科技大學(xué),2019.
Sun Rui. Multifunctional Combination Weigher Control System Design and Optimization Algorithm Research[D]. Qingdao: Qingdao University of Science and Technology, 2019. (in Chinese with English abstract)
[29]張西良,鄧志輝,李萍萍. 組合秤組合性能分析與仿真研究[J]. 農(nóng)業(yè)機械學(xué)報,2005,36(12):64-66,46.
Zhang Xiliang, Deng Zhihui, Li Pingping. Combination performance analysis and simulation study of combination weigher[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(12): 64-66, 46. (in Chinese with English abstract)
[30]王林,孫芳. 利用狄克松判別法剔除觀測數(shù)據(jù)粗差[J]. 江西測繪,2016(4):18-20.
Optimization and experiments of non-uniform objects quantitative combination algorithm based on chain transmission
Gong Zhongliang, Zhang Zhen
(,,410004,)
Effective mass of non-uniform objects varies differently and indivisibly, thereby making the combined object uncertain during the combined weighing and quantification process. Thus, there is a great contradiction between the quantitative accuracy of combined weighing and combined speed. In this study, a chain-drive combination weighing and quantitative system was proposed, where the precision-efficiency was treated as the combined operation target. A combined error of influence parameters was analyzed to evaluate the accuracy of combined weighing quantification. Besides, the number of combined samples and sampling were optimized to reduce the combined calculation time with a high combined quantitative speed. The results indicated that the number of combined samples increased the probability of combination success. However, the amount of combined calculation increased exponentially with the increase of the number of combined samples. Thus, the number of combined samples needed to be optimized for the tradeoff between the combined error and calculation time. A normal distribution was followed after 10 000 rounds of combined calculation on the quality data, where the mean value was equal to 100, and the variance was 102. It was found that the number of combined samples was 14 with the shorter calculation time when the target mass of combined quantification was 500 g and the allowable combined error was ±0.1 g. Moreover, the sampling numbers needed to be screened for the high requirements of combined error, due to the characteristics of non-uniform objects. In addition, a simulation experiment was designed to explore the influence of the total sampling number on the combined error and calculation time. The test results showed that the improved and previous combination maintained the success probability of quantitative combination at about 95% when the standard deviation of weight distribution was less than 30 g and the combined quantitative error was less than 0.1-1.0 g. The calculation time of the optimized combination was reduced by 40%, compared with the conventional one. The findings can provide a sound reference for the potential development of a chain combined weighing and quantitative system for non-uniform objects.
algorithm; optimization; chain quantitative combination weighing; non-uniform materials; quantitative accuracy; efficiency; error analysis
龔中良,張鎮(zhèn). 非均質(zhì)物料鏈式組合稱重定量算法優(yōu)化與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(5):310-316. doi:10.11975/j.issn.1002-6819.2021.05.036 http://www.tcsae.org
Gong Zhongliang, Zhang Zhen. Optimization and experiments of non-uniform objects quantitative combination algorithm based on chain transmission[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 310-316. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.036 http://www.tcsae.org
2020-08-09
2021-02-09
湖南省科技計劃重點研發(fā)項目(2016NK2151);湖南省科技計劃重點研發(fā)項目(2018NK2066)
龔中良,博士,教授,研究方向為機電一體化技術(shù)與應(yīng)用。Email:739472786@qq.com
10.11975/j.issn.1002-6819.2021.05.036
TH715; TP391.9
A
1002-6819(2021)-05-0310-07