畢繼紅 謝宇航 趙云 霍琳穎
1.天津大學(xué)建筑工程學(xué)院 300350
2.濱海土木工程結(jié)構(gòu)與安全教育部重點(diǎn)實(shí)驗(yàn)室(天津大學(xué)) 300072
近年來我國的可再生能源發(fā)展迅速,風(fēng)力發(fā)電裝機(jī)容量逐年提高,對風(fēng)電塔的高度和性能也提出了更高的要求。目前我國風(fēng)機(jī)主要采用鋼制塔筒結(jié)構(gòu)體系,但對于高度超過100m的風(fēng)電塔,采用純鋼制塔架存在鋼材消耗大、運(yùn)輸施工復(fù)雜等問題[1]。因此下部采用預(yù)制或現(xiàn)澆筑混凝土塔筒來代替部分鋼制塔筒的組合結(jié)構(gòu)塔架逐漸成為超高風(fēng)力發(fā)電塔的主流。由于鋼結(jié)構(gòu)塔架和鋼筋混凝土基礎(chǔ)相連接的部位易產(chǎn)生應(yīng)力集中現(xiàn)象,在遭遇臺風(fēng)時塔架的破壞位置多數(shù)發(fā)生在連接段基底[2],因此連接段的設(shè)計(jì)至關(guān)重要。
灌漿套筒連接結(jié)構(gòu)一般為外側(cè)鋼管、內(nèi)側(cè)鋼管以及中間的灌漿組成的統(tǒng)一整體,目前主要應(yīng)用于海洋結(jié)構(gòu)中。相比傳統(tǒng)的連接方式,灌漿套筒連接具有容易控制誤差、減少構(gòu)件疲勞破壞、可以防止水對鋼管的侵蝕等優(yōu)點(diǎn)[3],但在陸上風(fēng)電塔中的應(yīng)用和研究都很少,缺乏相應(yīng)的理論指導(dǎo)。對于灌漿套管連接段,鋼制塔架所受的荷載主要通過壓力傳遞給基礎(chǔ)部分[4],因此,對于塔架的連接段接觸壓進(jìn)行分析具有重要的理論意義和工程價值。
目前單樁風(fēng)電灌漿套管設(shè)計(jì)規(guī)范主要有美國石油協(xié)會(API)規(guī)范[5]、英國健康與安全執(zhí)行局(HSE)規(guī)范[6]和挪威船級社(DNV GL)規(guī)范[7]?,F(xiàn)有規(guī)范對于這種新型灌漿結(jié)合部設(shè)計(jì)并不能完全適用,存在以下問題:(1)對大直徑灌漿套管、高強(qiáng)灌漿材料的研究并不充分。API 規(guī)范及HSE規(guī)范主要基于早期的中低強(qiáng)度水泥材料灌漿套管試驗(yàn),且試驗(yàn)試件直徑均小于80cm,對于大直徑灌漿套管并不可靠;(2)現(xiàn)有規(guī)范主要適用于海上風(fēng)電單樁基礎(chǔ)。灌漿連接較少應(yīng)用于陸上組合結(jié)構(gòu)風(fēng)電塔結(jié)合部,其相比海洋結(jié)構(gòu)多了外側(cè)混凝土部分,而現(xiàn)有研究均未考慮外側(cè)混凝土對灌漿連接段受力的影響。綜上有必要對該結(jié)構(gòu)灌漿連接段進(jìn)行有限元及理論分析。
本文充分考慮材料特性,使用有限元軟件ABAQUS建立了150m 高組合結(jié)構(gòu)塔架模型,重點(diǎn)分析了灌漿連接段受力,并與傳統(tǒng)的灌漿連接接觸壓分布公式結(jié)果對比,得到了該新型結(jié)構(gòu)的接觸壓分布規(guī)律;最后推導(dǎo)了該結(jié)構(gòu)在外力作用下的最大平均接觸壓公式,為工程實(shí)際提供了理論參考。
本文基于德國2018 年蓋爾多夫風(fēng)電-抽水蓄能發(fā)電組合結(jié)構(gòu)為建模背景[8],該項(xiàng)目采用了灌漿連接以改善連接部位的受力性能。結(jié)構(gòu)形式如圖1 所示,相比傳統(tǒng)海洋結(jié)構(gòu)灌漿套管結(jié)構(gòu),該結(jié)構(gòu)增加了外側(cè)混凝土部分,通過灌漿套管連接段將上部鋼制塔段和下部混凝土塔段連接成整體,并將上部鋼塔段傳遞下來的軸力、剪力、彎矩均勻地傳遞到下部混凝土塔段。
組合結(jié)構(gòu)塔架采用灌漿連接段的主要目的是將上部鋼筒所受的荷載從過渡段均勻傳遞到樁體。彎矩、軸力及扭矩都主要通過機(jī)械咬合、摩擦及接觸壓傳遞。機(jī)械咬合主要是由于部件表面不平整產(chǎn)生,在設(shè)計(jì)中通常不考慮[7];摩擦力在傳遞荷載的過程中所起到的作用直接與接觸壓大小有關(guān),因此對連接段的接觸壓大小進(jìn)行評估是十分重要的,是判斷塔架發(fā)生破壞的重要標(biāo)準(zhǔn)。
圖1 組合塔筒灌漿連接段示意Fig.1 Schematic diagram of grouted connection section of hybrid tower
1.幾何模型及網(wǎng)格劃分
本節(jié)算例中,模型總高度57.0m。其中:外側(cè)混凝土基礎(chǔ)高50m,厚度tc=2.6m;外側(cè)鋼筒長L =7m,半徑Rtp=2.4m,厚度ts=0.01m;高強(qiáng)灌漿混凝土段長L =7m,厚度tg=0.14m;鋼塔段長14m,厚度tp=0.048m。
本文采用有限元分析軟件ABAQUS進(jìn)行建模分析。鋼塔段及外側(cè)鋼筒是鋼管材料,采用ABAQUS四節(jié)點(diǎn)縮減積分殼單元S4R來模擬。外側(cè)混凝土及連接處的灌漿材料采用八節(jié)點(diǎn)線性縮減積分實(shí)體單元C3D8R來模擬。
由于結(jié)構(gòu)形狀及荷載的對稱性,建立半模型以提高計(jì)算效率。劃分網(wǎng)格時,按照DNV 規(guī)范推薦,將灌漿部件沿厚度方向分為3 份,與鋼塔、灌漿及外側(cè)鋼筒相比,外側(cè)混凝土體積較大,在外側(cè)采用較大尺寸單元以減少網(wǎng)格數(shù)。高度方向,考慮連接段端部的應(yīng)力集中現(xiàn)象,在連接段上下應(yīng)力集中區(qū)域內(nèi)進(jìn)行網(wǎng)格加密。連接段沿圓周方向劃分為60 份,分析模型如圖2 所示。
圖2 有限元模型示意Fig.2 Schematic diagram of the finite element model
2.本構(gòu)關(guān)系
內(nèi)側(cè)鋼塔段與外側(cè)鋼筒使用SM520 鋼材,為各向同性線彈性材料,彈性模量Es=205GPa,泊松比γs=0.3。灌漿材料為超高強(qiáng)混凝土,按經(jīng)驗(yàn)取各向同性線彈性本構(gòu),彈性模量Eg=46GPa,泊松比γg=0.2。外側(cè)混凝土取各向同性線彈性本構(gòu),彈性模量Ec=25GPa,泊松比γc=0.2。
3.加載方式、約束及相互作用
上部荷載通過鋼塔傳遞至灌漿套管連接段,因此在有限元計(jì)算時,在鋼塔段頂端施加外荷載。極端荷載情況下,彎矩設(shè)計(jì)值M =151000kN·m,剪力設(shè)計(jì)值F =1900kN,將荷載設(shè)計(jì)值的一半通過參考點(diǎn)耦合加載在鋼塔頂端截面。
基礎(chǔ)底面完全固定,約束對稱面Y向位移及繞X軸、Z軸的轉(zhuǎn)動。
模型中的相互作用包括外側(cè)鋼筒與外側(cè)混凝土、外側(cè)鋼筒與灌漿、灌漿與鋼塔段三部分。其中外側(cè)鋼筒與外側(cè)混凝土設(shè)置為綁定約束,其他采用面-面接觸。接觸對的法向?qū)傩跃捎肁BAQUS中的拉格朗日接觸,即“硬接觸”。接觸面之間只能傳遞壓力不能傳遞拉力,一旦受拉則兩接觸面直接分離,支持接觸面法線方向的壓縮及切線方向的摩擦。
連接段接觸壓分布如圖3 所示,將圖中剪力指向的方向定義為0°,灌漿連接段中間位置高度定義為0。從云圖中可以看出接觸壓的分布規(guī)律:在彎矩和剪力荷載同時作用下,灌漿部分受到的接觸壓在上下部分存在明顯變化。除邊緣應(yīng)力集中部分,在θ =0°處,連接段接觸壓從上到下逐漸減??;在θ =180°處,連接段接觸壓從上到下逐漸變大。最大接觸壓出現(xiàn)在云圖的右上方和左下方位置。
圖3 連接段接觸壓(單位: MPa)Fig.3 The contact pressure of connection(unit:MPa)
DNV規(guī)范[7]假設(shè)灌漿連接段接觸壓豎向分布如圖4 所示,并給出了灌漿連接段最大接觸壓參考公式:
式中:σ 為最大接觸壓;L 為灌漿連接段長度;Rp為鋼塔外徑;μ 為連接段摩擦系數(shù);M0為彎矩荷載。
圖5 給出了有限元分析和規(guī)范公式分別計(jì)算出的灌漿內(nèi)側(cè)單元接觸壓沿高度方向的分布結(jié)果,其中橫軸表示接觸壓,豎軸表示連接段位置。對比可得:在θ =180°處,接觸壓分布與DNV規(guī)范基本相同;在θ =0°處,接觸壓應(yīng)力集中現(xiàn)象明顯,接觸壓分布范圍并非從連接段上端到灌漿連接段中間位置,而是有所減小,與DNV規(guī)范假定存在較大差異。DNV 規(guī)范公式主要應(yīng)用于海洋結(jié)構(gòu),該類型單樁基礎(chǔ)結(jié)構(gòu)從外到內(nèi)分別為外側(cè)鋼筒-灌漿-塔基礎(chǔ),并不包含外側(cè)混凝土。推測造成以上差別的原因是由于外側(cè)混凝土存在引起了上部接觸壓沿高度分布不均。
圖4 傳統(tǒng)灌漿套管結(jié)構(gòu)接觸壓分布Fig.4 Force state of traditional grouted connection
圖5 接觸壓在高度方向上的分布Fig.5 Distribution of contact pressure in the vertical direction
因此,現(xiàn)有規(guī)范并不適用于該類新型鋼-混組合結(jié)構(gòu)塔筒灌漿連接段受力,需進(jìn)行理論分析以求得適合該類型灌漿連接段接觸壓分布的理論公式。
現(xiàn)有規(guī)范中灌漿連接段內(nèi)力計(jì)算理論均基于接觸壓以中心高度為界,上下均勻分布,如圖4所示,但該新型組合結(jié)構(gòu)灌漿連接段接觸壓沿高度方向分布規(guī)律顯然與傳統(tǒng)假設(shè)不同。本節(jié)在有限元計(jì)算的基礎(chǔ)上總結(jié)了接觸壓分布規(guī)律,并進(jìn)一步推導(dǎo)了該結(jié)構(gòu)最大平均接觸壓公式。
為進(jìn)一步研究外側(cè)混凝土厚度對接觸壓沿高度方向分布的具體影響,以外側(cè)混凝土厚度tc為變量,其他參數(shù)不變進(jìn)行了一系列計(jì)算。在第2節(jié)有限元模型基礎(chǔ)上,通過改變外側(cè)混凝土厚度在tc=0.3m ~2.6m 范圍內(nèi)建立了11 個計(jì)算模型,并通過ABAQUS計(jì)算提取了灌漿連接段接觸壓沿豎向分布結(jié)果。分析計(jì)算結(jié)果可知,下側(cè)受壓區(qū)接觸壓分布隨外側(cè)混凝土厚度變化不大,除邊緣應(yīng)力集中范圍均與圖4 下側(cè)接觸壓分布相同,基本與DNV 規(guī)范分布規(guī)律一致;而上側(cè)受壓區(qū)接觸壓分布范圍受外側(cè)混凝土厚度變化影響明顯。當(dāng)外側(cè)混凝土厚度tc不同時,取外側(cè)混凝土厚度分別為0.3m、2.6m 兩條接觸壓曲線為例,上部受壓段接觸壓分布長度L0明顯不同,如圖6 所示,主要表現(xiàn)為接觸壓分布高度隨外側(cè)混凝土厚度變大而縮短。將數(shù)值計(jì)算結(jié)果L0與外側(cè)混凝土厚度tc進(jìn)行回歸分析,得到公式:
圖7 描述了上側(cè)受壓段接觸壓分布范圍L0與外側(cè)混凝土厚度tc的關(guān)系。由圖可知,外側(cè)混凝土厚度由300mm 增加到1600mm 時,接觸壓分布隨外側(cè)混凝土厚度變化很大;外側(cè)混凝土厚度大于1600mm 時,增大厚度對于接觸壓的分布影響并不明顯。
圖6 上側(cè)受壓段接觸壓分布對比Fig.6 Distribution of contact pressure on the upper section
圖7 上側(cè)接觸壓分布高度與外側(cè)混凝土厚度關(guān)系Fig.7 Relationship between the height of the upper contact pressure distribution and the outer concrete thickness
為了簡化計(jì)算,主要基于受力平衡、不考慮變形協(xié)調(diào),即假定灌漿體非均勻承壓時鋼管無變形。作用在鋼制塔筒上的剪切力Q0和力矩M0主要由連接段的接觸壓以及接觸產(chǎn)生的豎向與水平摩擦力傳遞給下部結(jié)構(gòu)。鋼制塔筒的豎向受力狀態(tài)如圖8,水平向受力狀態(tài)如圖9 所示[9]。此應(yīng)力狀態(tài)下,鋼制塔筒右側(cè)、左側(cè)受到灌漿壓力分別為N1和N2。連接段上、下端的最大平均接觸壓分別為σ1和σ2。取鋼塔連接段最下端截面為受力分析對象,可得到下列等式:
式中:L為灌漿連接段長度;Rp為鋼塔外徑;σ1為連接段上側(cè)最大平均接觸壓;σ2為連接段下側(cè)最大平均接觸壓;x為上側(cè)受壓段長度比例系數(shù)L0/L。
圖8 灌漿段鋼塔豎向受力狀態(tài)Fig.8 Vertical force state of steel tower in grouted section
圖9 灌漿段鋼塔水平向受力狀態(tài)Fig.9 Horizontal force state of steel tower in grouted section
圖9 中虛線為產(chǎn)生水平方向摩擦力的接觸壓,大小為:
塔筒所受水平向摩擦力大小為:
由鋼塔最下端截面的剪力平衡得:
由灌漿壓力N1、N2在連接段產(chǎn)生的彎矩可以表示為:
豎向摩擦力產(chǎn)生的彎矩可以表示為:
水平向摩擦力產(chǎn)生的彎矩為:
假定連接段內(nèi)作用的剪力Q0一定,根據(jù)鋼塔連接段下端中間位置力矩平衡,可以得到:
通過式(7)~式(11)可以得出:
上側(cè)受壓段最大平均接觸壓為:
下側(cè)受壓段最大平均接觸壓為:
由式(2)描述了接觸壓的分布規(guī)律,式(12)、式(13)分別求出了上下側(cè)最大平均接觸壓大小,由此可以求出完整的接觸壓沿高度分布。如圖10所示,以外側(cè)混凝土厚度tc分別為600mm、1600mm、2600mm為例,對比θ =0°和θ =180°位置的接觸壓有限元計(jì)算結(jié)果、DNV規(guī)范公式結(jié)果以及本節(jié)推導(dǎo)公式計(jì)算結(jié)果。除上下端部應(yīng)力集中范圍外,有限元的分析結(jié)果與本節(jié)推導(dǎo)的解析結(jié)果基本一致,由此說明了理論分析是正確的。由圖10 可知,依照DNV規(guī)范計(jì)算的最大接觸壓結(jié)果比有限元分析結(jié)果偏小。因此,在該類灌漿連接段如果直接使用DNV 規(guī)范中以接觸壓為基礎(chǔ)推導(dǎo)的承載能力極限狀態(tài)下的局部最大接觸壓、拉伸應(yīng)力等公式,計(jì)算值都會比真實(shí)值偏小。
圖10 灌漿段接觸壓豎向分布Fig.10 The contact pressure of connection
本文針對鋼-混組合結(jié)構(gòu)發(fā)電塔結(jié)構(gòu)的過渡段受力問題,研究了新型灌漿連接形式中連接段接觸壓的分布及大小。通過有限元軟件ABAQUS模擬灌漿連接段并進(jìn)行了理論計(jì)算,得出以下結(jié)論:
1.與傳統(tǒng)海上風(fēng)電灌漿套管相比,由于外側(cè)混凝土的存在,該新型結(jié)構(gòu)灌漿連接段接觸壓在豎向的分布明顯不同,隨著外側(cè)混凝土變厚,連接段上側(cè)受壓部分接觸壓分布區(qū)域變小。但當(dāng)外側(cè)混凝土達(dá)到一定厚度后,外側(cè)混凝土厚度的變化對接觸壓的影響將趨于穩(wěn)定。
2.在掌握接觸壓分布規(guī)律的基礎(chǔ)上,推導(dǎo)了上下兩側(cè)最大接觸壓的計(jì)算公式。通過有限元模擬與計(jì)算結(jié)果對比驗(yàn)證了本文推導(dǎo)公式的正確性。
3.由公式對比分析可知,以往規(guī)范對于該新型結(jié)構(gòu)灌漿連接段并不適用,可能會高估該結(jié)構(gòu)連接段的承載能力。本文的成果為鋼-混組合結(jié)構(gòu)連接段設(shè)計(jì)提供了一定的參考。