亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        接種叢枝菌根真菌對辣椒積累轉(zhuǎn)運鎘的影響

        2021-04-19 22:28:56牟玉梅邢丹周鵬宋拉拉吳康云胡明文蓋霞普
        南方農(nóng)業(yè)學(xué)報 2021年1期
        關(guān)鍵詞:叢枝菌根真菌辣椒

        牟玉梅 邢丹 周鵬 宋拉拉 吳康云 胡明文 蓋霞普

        摘要:【目的】明確叢枝菌根真菌對辣椒植株積累轉(zhuǎn)運鎘(Cd)的影響,為阻控Cd向辣椒植株地上部轉(zhuǎn)移和植物修復(fù)的應(yīng)用提供參考依據(jù)。【方法】采用盆栽試驗,以辣研201為試材,對其接種根內(nèi)根生囊霉(Rhizophagus intraradices)和摩西管柄囊霉(Funneliformis mosseae),比較接種與未接種的土壤、辣椒根系與地上部Cd含量變化,從而探究接種根內(nèi)根生囊霉和摩西管柄囊霉對辣椒植株積累轉(zhuǎn)運Cd的影響?!窘Y(jié)果】與來接種處理相比,接種根內(nèi)根生囊霉和摩西管柄囊霉后土壤中Cd總量顯著提高10.80%和9.98%(P<0.05,下同),土壤中Cd各形態(tài)含量占比發(fā)生變化,殘渣態(tài)Cd含量提高79.82%和95.44%,而酸溶態(tài)Cd含量占比的遷移風險降低32.19%和29.45%。接種Ri和Fm后辣椒根系Cd含量分別顯著增加39.57%和53.13%,根系富集系數(shù)顯著分別提高33.15%和40.68%;而地上部Cd含量分別降低15.02%和9.30%,地上部富集系數(shù)分別顯著降低24.35%和18.91%;辣椒體內(nèi)Cd轉(zhuǎn)運系數(shù)分別顯著下降30.15%和33.72%?;诘湫拖嚓P(guān)分析可知,典型權(quán)重較大的殘渣態(tài)Cd含量對土壤Cd含量變化起正向作用,辣椒根系Cd富集系數(shù)與體內(nèi)Cd轉(zhuǎn)運系數(shù)對辣椒Cd含量變化起反向作用;基于典型載荷與交叉載荷分析可知,土壤中酸溶態(tài)Cd低則移除程度弱、殘渣態(tài)Cd高則滯留程度強,因而辣椒積累轉(zhuǎn)運Cd能力差。【結(jié)論】接種從枝菌根真菌可調(diào)控辣椒地上部與根系間Cd的分配,一定程度上可控制土壤中的Cd由根部向地上部轉(zhuǎn)移。

        關(guān)鍵詞: 辣椒;叢枝菌根真菌;鎘;富集能力;轉(zhuǎn)運能力

        中圖分類號: S641.3? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2021)01-0172-08

        Abstract:【Objective】To investigate the effects of arbuscular mycorrhizal fungi on cadmium(Cd) accumulation and transport in Capsicum annum L.(pepper), so as to provide reference for the application of preventing Cd transfer to the above-ground part of pepper and phytoremediation. 【Method】The experiment was carried out with Layan 201 as the material and planted in pot, pepper was inoculated Rhizophagus intraradices and Funneliformis mosseae respectively. Analyzed the variation of Cd content in soil with and without inoculation, pepper root and aboveground part, and explored and discussed the effects of inoculating R. intraradices and F. mosseae on accumulation and transport Cd in pepper. 【Result】Compared with the non-inoculation treatment,? the total content of Cd in soil with the R. intraradices and F. mosseae inoculated significantly increased by 10.80% and 9.98%(P<0.05, the same below), and the proportion of Cd in different forms in soil changed. The residual Cd increased by 79.82% and 95.44%. While, with regard of the proportion of acid-so-luble Cd, the migration risk decreased by 32.19% and 29.45%. With R. intraradices and F. mosseae inoculated in soil, Cd content in the root system increased by 39.57% and 53.13%, and Cd enrichment coefficient in the root system increased by 33.15% and 40.68%, while Cd content in the aboveground part decreased by 15.02% and 9.30%. Cd enrichment coefficient in the aboveground part decreased by 24.35% and 18.91% and Cd transport coefficient in pepper body decreased by 30.15% and 33.72%. Based on canonical correlation analysis, residual state Cd with a large typical weight had a positive effect on the change of Cd content in soil, and Cd enrichment coefficient in root and Cd transport coefficient in pepper had negative effect on the change of Cd content. For the analysis of typical loading and cross loading, Cd in low acid- so-luble state in soil resulted in weak removal degree, while Cd in high residual state resulted in strong retention degree, so pepper had poor ability to accumulate and transfer Cd. 【Conclusion】The distribution of Cd between aboveground part and root of pepper is controlled by inoculation of mycorrhizal fungi, and it can inhibit the transfer of Cd in soil from root to aboveground part.

        徐笠,陸安祥,田曉琴,何洪巨,殷敬偉. 2017. 典型設(shè)施蔬菜基地重金屬的累積特征及風險評估[J]. 中國農(nóng)業(yè)科學(xué),50(21): 4149-4158. [Xu L,Lu A X,Tian X Q,He H J,Yin J W. 2017. Accumulation characteristics and risk assessment of heavy metals in typical greenhouse vegetable bases[J]. Scientia Agricultura Sinica,50(21): 4149-4158.]

        張文麗,姚丹成,孫嘉龍,韓京秀,尚琪. 2015. 貴州省赫章縣鎘污染區(qū)人群健康損害狀況調(diào)查及損害指標關(guān)系探討[J]. 衛(wèi)生研究,44(5):780-787. [Zhang W L,Yao D C,Sun J L,Han J X,Shang Q. 2015. Survey on the status of health effects and relationship between indices of health effects of population in environment cadmium po-lluted area in Hezhang County,Guizhou Province[J]. Journal of Hygiene Research,44(5):780-787.]

        Aloui A,Recorbet G,Gollotte A,Robert F,Valot B,Gianina-zzi-Pearson V,Aschi-Smiti S,Dumas-Gaudot E. 2009. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis:A root proteomic study[J]. Proteomics,9(2):420-433.

        Bissonnette L,St-Arnaud M,Labrecque M. 2010. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial[J]. Plant and Soil,332:55-67

        Chaturvedi R,F(xiàn)avas P,Pratas J,Varun M,Paul M S. 2018. Assessment of edibility and effect of arbuscular mycorrhizal fungi on Solanum melongena L. grown under heavy metal(loid) contaminated soil[J]. Ecotoxicology and Environmental Safety,148:318-326.

        Chen B D,Liu Y,Shen H,Li X L,Christie P. 2004. Uptake of cadmium from an experimentally contaminated calca-reous soil by arbuscular mycorrhizal maize(Zea mays L.)[J]. Mycorrhiza,14:347-354.

        Coninx L,Martinova V,Rineau F. 2017. Mycorrhiza-assisted phytoremediation[J]. Advances in Botanical Research,83:127-188.

        González-Chávez M C,Carrillo-González R,Wright S F,Ni-chols K A. 2004. The role of glomalin,a protein produced by arbuscular mycorrhizal fungi,in sequestering potentially toxic elements[J]. Environmental Pollution,130(3):317-323.

        Hassan S E,Hijri M,St-Arnaud M. 2013. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflfl ower plants grown on cadmium contaminated soil[J]. New Biotechnology,30(6): 780-787.

        Hu J L,Tsang W,Wu F Y,Wu S C,Wang J H,Lin X G,Wong M H. 2016. Arbuscular mycorrhizal fungi optimize the acquisition and translocation of Cd and P by cucumber(Cucumis sativus L.) plant cultivated on a Cd-conta-minated soil[J]. Journal of Soils and Sediments,16:2195-2202.

        Joner E J,Briones R,Leyval C. 2000. Metal-binding capacity of arbuscular mycorrhizal mycelium[J]. Plant and Soil,226:227-234.

        Koide R T,Mosse B. 2004. A history of research on arbuscular mycorrhiza[J]. Mycorrhiza,14:145-163.

        Kuga Y,Zhang X,Wu S L,Ohtomo R. 2018. Uptake and intra-radical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis[J]. Microbes and Environments,33(3):257-263.

        Liu Y Z,Xiao T F,Baveye P C,Zhu J M,Ning Z P,Li H J. 2015. Potential health risk in areas with high naturally-occurring cadmium background in southwestern China[J]. Ecotoxicology and Environmental Safety,112:122-131.

        Mnasri M,Janou?ková M,Rydlová J,Abdelly C,Ghnaya T. 2017. Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network[J]. Chemosphere,171:476-484.

        Repetto O,Corre G B,Dumas-Gaudot E,Berta G,Gianinazzi-Pearson V,Gianinazzi S. 2003. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots[J]. New Phytologist,157(3):555-567.

        Wang F Y,Shi Z Y,Xu X F,Wang X G,Li Y J. 2013. Contribution of AM inoculation and cattle manure to lead and cadmium hytoremediation by tobacco plants[J]. Environmental Science:Processes & Impacts. doi:10.1039/c3em3 0937a.

        Xin J L,Huang B F,Liu A Q,Zhou W J,Liao K B. 2013. Identification of hot pepper cultivars containing low Cd levels after growing on contaminated soil:Uptake and redistribution to the edible plant parts[J]. Plant and Soil,373:415-425.

        Zhang X Y,Chen D M,Zhong T Y,Zhang X M,Cheng M,Li X H. 2015. Assessment of cadmium(Cd) concentration in arable soil in China[J]. Environmental Science and Pollution Research,22: 4932-4941.

        (責任編輯 鄧慧靈)

        猜你喜歡
        叢枝菌根真菌辣椒
        關(guān)于辣椒的快問快答
        原來,你還是這樣的辣椒
        你的辣椒結(jié)出果實了嗎?
        辣椒也瘋狂
        揀辣椒
        中外文摘(2020年9期)2020-06-01 13:47:56
        丹參主產(chǎn)區(qū)AMF的多樣性研究
        重慶植煙區(qū)叢枝菌根真菌資源調(diào)查及初選分析
        綠色科技(2017年1期)2017-03-01 10:21:41
        叢枝菌根真菌對丹參內(nèi)源激素的影響
        吃辣椒
        健康管理(2015年3期)2015-11-20 17:03:39
        叢枝菌根真菌侵染根系的過程與機理研究進展
        亚洲国产人成自精在线尤物| 国产看黄网站又黄又爽又色| 毛片毛片免费看| 男女性搞视频网站免费| 青草久久婷婷亚洲精品| 久久人妻少妇嫩草av无码专区| 色两性网欧美| 亚洲中文字幕乱码一二三区| 国产视频激情在线观看| 猫咪av成人永久网站在线观看| 丰满少妇被猛烈进入无码| 人妻精品一区二区免费| 偷拍综合在线视频二区日韩| 97精品久久久久中文字幕| 东北无码熟妇人妻AV在线| 日本av一区二区播放| 亚洲视频在线免费不卡| 亚洲国产精品毛片av不卡在线| 在线视频你懂的国产福利| 91亚洲国产成人久久精品网站| 日本一区二区视频免费在线看| 天码人妻一区二区三区| 久久精品一品道久久精品9| 美利坚亚洲天堂日韩精品| 国产午夜av秒播在线观看| 亚洲永久精品ww47| 亚洲AV日韩AV高潮喷潮无码| 黄色国产精品福利刺激午夜片| 久久久久亚洲精品无码网址蜜桃 | 亚洲av无码专区在线播放中文| 一本到无码AV专区无码| 一区二区三区日本美女视频| 国产精品久久久久久av| 久久久精品波多野结衣| 亚洲高清在线观看免费视频| 在线a亚洲视频播放在线播放| 无码人妻精品丰满熟妇区 | 亚洲一区二区三区在线观看蜜桃| 国产精品一区二区偷拍 | 亚洲熟女综合一区二区三区| 91精品国产91热久久p|