亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        GLOBAL WELL-POSEDNESS FOR FRACTIONAL NAVIER-STOKES EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV-MORREY SPACES?

        2021-04-08 12:52:00MuhammadZainulABIDINJiechengCHEN陳杰誠

        Muhammad Zainul ABIDIN Jiecheng CHEN(陳杰誠)

        College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua 321004,China E-mail:zainbs359@gmail.com;jcchen@zjnu.edu.cn

        Abstract In this paper we study the Cauchy problem of the incompressible fractional Navier-StokesequationsincriticalvariableexponentFourier-Besov-MorreyspaceWe prove global well-posedness result with small initial data belonging toThe result of this paper extends somerecent work.

        Key words fractional Navier-Stokes equations;global well-posedness;Fourier-Besov-Morrey space

        1 Introduction

        We are concerned with the incompressible fractional Navier-Stokes(FNS)equations,

        Recently,FNS equations have gained more attention as models were proposed to simulate fluid flows.The face-centred hypercubic(FCHC)lattice[1]for 3D has been shown to satisfy the incompressible Navier-Stokes equations.

        Let(u,p)be a smooth solution of the(FNS)equations.Taking the divergence of equation(FNS)and noticing that divu=0,we immediately obtain It follows that ?p=(??)?div[(u·?)u].Introducing the Leray projector over divergence-free vector fields,namely P:=I+(??)?div,equation (FNS) will be in the form

        It is easy to see that the entries of P(u·?)u are first order homogeneous Fourier multipliers applied to bilinear expressions.

        2 Preliminaries

        Let Pbe the set of all measurable functions p(·):R→(0,∞]such that

        For p ∈P(R) let L(R) be the set of all measurable functions f on Rsuch that for some λ>0,

        We postulate the following standard conditions to ensure that the Hardy-Maximal operator M is bounded on L(R):

        We use C(R) as the set of all real valued functions p:R→R satisfying 1) and 2).

        The second norm on the right hand side is bounded by 1 due to the choice of δ.To show that the first norm is also bounded,we investigate the corresponding modular:

        3 Well-posedness

        In this section,from using the structure and propositions of the variable exponent homogeneous Fourier-Besov Morrey space,we study the global well-posedness of fractional Navier-Stokes equations in the frequency space with variable.It is clear that the solution u(x,t)of the Cauchy problem (FNS) is given by

        In a similar way to the case of space Y,it can be obtained that for

        Acknowledgements

        The authors would like to thank Dr.Ru Shaolei for useful discussions and helpful suggestions on this article.

        三年的高清电影免费看| 亚洲男人在线天堂av| 日本a爱视频二区三区| 成人亚洲一区二区三区在线| 女人的精水喷出来视频| 亚洲精品蜜夜内射| 国产精品亚洲综合色区韩国| 免费一级国产大片| 精品黑人一区二区三区久久hd| 精品亚洲麻豆1区2区3区| 日本japanese少妇高清| 国产主播一区二区三区在线观看 | 97精品国产高清自在线看超| 日本女同视频一区二区三区| 国产日韩欧美一区二区东京热| 亚洲精品无码久久久久av麻豆| 久久中文字幕日韩无码视频| 丁香九月综合激情| 日本高级黄色一区二区三区| 国内最真实的xxxx人伦| 亚洲色大成网站www尤物| 亚洲av综合色区在线观看| 极品尤物在线精品一区二区三区| 成人乱码一区二区三区av| 久久AV老司机精品网站导航| 国产传媒剧情久久久av| 精品在线视频在线视频在线视频 | 美腿丝袜诱惑一区二区| 国产国产人免费人成免费视频 | 亚洲国产美女精品久久| 久久婷婷色香五月综合激激情| 日韩av精品视频在线观看| 三男一女吃奶添下面| 免费一级国产大片| 国产一区二区三免费视频| 北条麻妃国产九九九精品视频| 久草视频福利| 色妞一区二区三区免费视频| 给你免费播放的视频| 日韩好片一区二区在线看| 久久久久亚洲AV无码去区首|