王曉帆,吳勇,張鐘莉莉,郭瑞,王麗學(xué)
不同水源磁化處理對(duì)生菜光合和礦質(zhì)元素及產(chǎn)量的影響
王曉帆1,2,吳勇3,張鐘莉莉2,郭瑞2,王麗學(xué)1*
(1.沈陽(yáng)農(nóng)業(yè)大學(xué) 水利學(xué)院,沈陽(yáng) 110161;2.北京農(nóng)業(yè)信息技術(shù)研究中心,北京 100097;3.全國(guó)農(nóng)業(yè)技術(shù)推廣服務(wù)中心,北京 100125)
探究不同水源磁化處理對(duì)生菜光合特性等生理生化和產(chǎn)量的影響。在日光溫室條件下,以意大利生菜為供試對(duì)象,采用隨機(jī)區(qū)組設(shè)計(jì),設(shè)置2個(gè)因素:磁化(M)和灌溉水源(T),磁化設(shè)置未磁化處理(M0)和磁化處理(M1)2個(gè)水平,灌溉水源設(shè)置淡水(T1)、再生水(T2)、微咸水(T3)3個(gè)水平,共6個(gè)處理。通過(guò)盆栽試驗(yàn)研究了3種水源磁化處理對(duì)生菜凈光合速率、抗氧化酶活性、礦質(zhì)元素及產(chǎn)量等的影響。不同水源磁化處理灌溉效果有所差異。生長(zhǎng)中期,M1T1、M1T2處理分別較M0T1、M0T2處理的凈光合速率顯著提高11.16%、14.73%。3種水源磁化處理灌溉的超氧化物歧化酶、過(guò)氧化物酶、過(guò)氧化氫酶活性顯著提高12.77%~23.09%。M1T1、M1T2處理分別較M0T1、M0T2處理的生菜葉片氮質(zhì)量分?jǐn)?shù)顯著提高7.71%、6.83%,生菜產(chǎn)量分別顯著提高9.42%、10.15%,但M1T3與M0T3處理的生菜產(chǎn)量無(wú)顯著差異。不同水源磁化處理的生菜葉片P、Ca、Mg、Na、K質(zhì)量分?jǐn)?shù)有不同程度的提高,水分利用效率提高5.03%~11.65%。磁化水灌溉有利于生菜光合等生理生化活動(dòng),提高產(chǎn)量和水分利用效率,淡水和再生水磁化效果優(yōu)于微咸水。
磁化水;生菜;光合特性;礦質(zhì)元素;產(chǎn)量;水分利用效率
【研究意義】隨著社會(huì)經(jīng)濟(jì)發(fā)展,我國(guó)農(nóng)產(chǎn)品需求日益增長(zhǎng),國(guó)家農(nóng)產(chǎn)品安全與水土資源約束的矛盾日益尖銳,提高農(nóng)業(yè)水土資源的高效利用是實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展的重要舉措[1]。除了對(duì)傳統(tǒng)的節(jié)水技術(shù)深入研究外,農(nóng)業(yè)節(jié)水研究還向磁場(chǎng)、激光等更廣泛的領(lǐng)域拓展,其中磁化水技術(shù)受到越來(lái)越多學(xué)者的關(guān)注。
【研究進(jìn)展】水通過(guò)磁場(chǎng)后性能發(fā)生改變,成為磁化水[2-4]。對(duì)磁化水的研究始于20世紀(jì)40年代,Vermeiren首先發(fā)現(xiàn)磁化水能抑制水垢的形成,并獲得專利[5]。目前對(duì)磁化水的研究已涉及工業(yè)、農(nóng)業(yè)、醫(yī)學(xué)等多個(gè)領(lǐng)域[6-8]。磁化水在農(nóng)業(yè)生產(chǎn)上的應(yīng)用主要為磁化水灌溉,磁化水灌溉能夠提高土壤和作物體內(nèi)的酶活性[9-10],影響作物光合效率[11]。韋業(yè)等[12]研究發(fā)現(xiàn),磁化水灌溉顯著提高葡萄葉片的凈光合速率,而蒸騰速率無(wú)顯著差異,表明磁化水處理下的植株光合性能提高,有利于植物有機(jī)物的合成累積。磁化水灌溉能夠提高作物礦質(zhì)元素質(zhì)量分?jǐn)?shù)和產(chǎn)量[13-15]。El-Shafik等[16]通過(guò)2 a不同占比的農(nóng)業(yè)排水和淡水交替灌溉研究表明,磁化水灌溉的番茄產(chǎn)量2 a分別顯著提高7.71%、8.59%。彭遙等[17]研究發(fā)現(xiàn),田間小區(qū)滴灌條件下,磁化水灌溉不僅提高了棉花產(chǎn)量,同時(shí)水分利用效率提高了8.4%~12.9%。
【切入點(diǎn)】我國(guó)非常規(guī)水資源儲(chǔ)量豐富,2015年全國(guó)微咸水可利用量為8.78×109m3,再生水可利用量為3.67×1010m3,其中用于農(nóng)業(yè)灌溉的微咸水和再生水量高達(dá)1.25×109m3[18]。緩解水資源短缺要做到開(kāi)源與節(jié)流并重,在大力發(fā)展農(nóng)業(yè)節(jié)水的同時(shí),我國(guó)鼓勵(lì)開(kāi)發(fā)利用微咸水和再生水資源[19-20]。磁化水灌溉在農(nóng)業(yè)生產(chǎn)中的研究,水源主要以淡水為主,對(duì)再生水和微咸水的磁化處理灌溉研究較少,磁化處理是直接對(duì)水產(chǎn)生改變效應(yīng),對(duì)不同水源影響效應(yīng)有所差異,有必要研究不同水源的磁化處理灌溉對(duì)作物的影響效應(yīng)。目前磁化水灌溉的研究主要集中于對(duì)土壤水鹽運(yùn)移、作物生長(zhǎng)發(fā)育和產(chǎn)量等表觀結(jié)果[21],缺乏對(duì)作物光合等生理活動(dòng)的研究。蔬菜作為需水量較大且對(duì)水分敏感的一類作物,適宜作為磁化水灌溉的供試對(duì)象,生菜是葉菜類蔬菜的典型代表,營(yíng)養(yǎng)豐富,兼具一定的保健價(jià)值和藥用價(jià)值,近年來(lái)栽培規(guī)模迅速增長(zhǎng)。【擬解決的關(guān)鍵問(wèn)題】本研究通過(guò)盆栽試驗(yàn)研究不同水源磁化處理灌溉對(duì)生菜光合特性、抗氧化酶活性、礦質(zhì)元素和產(chǎn)量的影響,以期從作物生理生化方面研究磁化水灌溉對(duì)作物產(chǎn)量的影響效應(yīng)。
試驗(yàn)于2019年10月—2020年1月在北京市昌平區(qū)小湯山鎮(zhèn)小湯山國(guó)家精準(zhǔn)農(nóng)業(yè)試驗(yàn)基地日光溫室內(nèi)進(jìn)行。試驗(yàn)期間日光溫室平均溫度為16.84 ℃,平均濕度為72.79%,溫濕度變化如圖1。土壤取自基地農(nóng)田0~20 cm的土層,為粉砂質(zhì)壤土,自然風(fēng)干后粉碎過(guò)2 mm篩,土壤理化性質(zhì)見(jiàn)表1。試驗(yàn)所用塑料盆內(nèi)徑28 cm,盆高23 cm。每盆裝有10 kg風(fēng)干土,一次性分別施用尿素(含N 46%)、磷酸二胺(含N 12%,P2O542%)、硫酸鉀(含K2O 52%)1.96、1.91、1.92 g作為底肥,并與土壤攪拌均勻,生育期內(nèi)不追肥。淡水取自日光溫室水管中,總氮、總磷、氯化物質(zhì)量濃度分別為6.25、0.12、35.73 mg/L,再生水采用北京碧水再生水廠處理的二級(jí)出水,符合《城市污水再生利用農(nóng)田灌溉用水水質(zhì)》標(biāo)準(zhǔn),總氮、總磷、氯化物質(zhì)量濃度分別為13.41、0.58、92.60 mg/L,向淡水中添加2 g/L氯化鈉(分析純)制備微咸水(礦化度2.46 g/L)。試驗(yàn)品種為意大利生菜,磁化設(shè)備采用上海宣通公司生產(chǎn)的Act型磁化器,磁化器形成靜態(tài)磁場(chǎng),當(dāng)灌溉水以垂直方向流經(jīng)該磁場(chǎng)時(shí),水分子產(chǎn)生共振,瞬時(shí)形成磁化水。灌溉時(shí),采用50 L水桶供應(yīng)灌溉水,750 W增壓泵增壓,使得灌溉水以2.2 m3/h的流量通過(guò)直徑為32 mm的PVC水管,制得磁化水,為保證磁化效果,磁化時(shí)間5 min,使得水流循環(huán)5~6次,磁化器示意如圖2。
圖1 空氣溫濕度變化
圖2 磁化器示意
試驗(yàn)設(shè)置2個(gè)因素:磁化(M)和灌溉水源(T),采用隨機(jī)區(qū)組設(shè)計(jì)。磁化設(shè)置未磁化處理(M0)和磁化處理(M1)2個(gè)水平,灌溉水源設(shè)置淡水(T1)、再生水(T2)、微咸水(T3)3個(gè)水平,共6個(gè)處理組合,分別為未磁化淡水灌溉(M0T1)、未磁化再生水灌溉(M0T2)、未磁化微咸水灌溉(M0T3)、磁化淡水灌溉(M1T1)、磁化再生水灌溉(M1T2)、磁化微咸水灌溉(M1T3),每個(gè)處理重復(fù)3次。
2019年11月26日,選用長(zhǎng)勢(shì)相同的6葉1心期生菜定植,每盆1株,全生育期69 d,劃分為生長(zhǎng)前期、中期、后期,每個(gè)時(shí)期23 d左右。意大利生菜喜濕,為保證生長(zhǎng)期內(nèi)土壤水分充足,設(shè)置田間持水率的80%為灌水下限,田間持水率的95%為灌水上限,通過(guò)稱質(zhì)量法計(jì)算盆栽的土壤含水率,當(dāng)土壤含水率降低到灌水下限時(shí),進(jìn)行灌水使土壤含水率達(dá)到灌水上限。
表1 土壤理化性質(zhì)
注 土壤養(yǎng)分為未添加底肥測(cè)定的值。
1.3.1 光合速率與蒸騰速率
每個(gè)生育期,采用美國(guó)PP Systems公司生產(chǎn)的CIRAS-3型光合儀,選擇晴朗天氣的09:00—11:00,選取從上往下的第二片完全展開(kāi)葉測(cè)定生菜葉片的凈光合速率和蒸騰速率。
1.3.2 抗氧化酶活性
生菜收獲時(shí),選取從上往下的第1片完全展開(kāi)葉的相同部位0.5 g,分3次(2、2、1 mL)共加入5 mL,0.05 mol/L的磷酸緩沖溶液(pH值7.8)研磨、沖洗,于離心機(jī)中以4 000 r/min離心20 min,上清液用于測(cè)定抗氧化酶活性。超氧化物歧化酶(SOD)、過(guò)氧化物酶(POD)、過(guò)氧化氫酶(CAT)測(cè)定分別采用氮藍(lán)四唑法[22]、愈創(chuàng)木酚法[22]、H2O2紫外吸收法[23]。
1.3.3 葉片礦質(zhì)元素
全氮采用凱氏定氮法;全磷、全鉀、全鈉、全鈣、全鎂測(cè)定采用電感耦合等離子發(fā)射光譜儀法(ICP—OES)。
1.3.4 產(chǎn)量
收獲時(shí),將生菜從根莖處斷開(kāi),去離子水洗凈根部并用吸水紙吸干,先用電子秤稱量地上部和地下部的鮮質(zhì)量,然后在105 ℃干燥箱中殺青15 min,60℃干燥至質(zhì)量恒定后測(cè)定其干質(zhì)量。
1.3.5 耗水量和水分利用效率
每日08:00采用電子秤測(cè)定塑料盆質(zhì)量,按照灌水上下限進(jìn)行灌水,記錄數(shù)據(jù),次日同一時(shí)間稱質(zhì)量,二者差值為日耗水量(若有灌水,日耗水量為當(dāng)日塑料盆質(zhì)量加灌水量與次日盆質(zhì)量差值),水分利用效率()=生菜產(chǎn)量/全生育期耗水量。
數(shù)據(jù)處理采用Microsoft Excel 2010,圖表繪制采用Origin 2017軟件,統(tǒng)計(jì)分析采用DPS7.05軟件,多重比較采用Duncan新復(fù)極差法。
由圖3可知,不同水源磁化處理后灌溉,凈光合速率提高,且總體呈現(xiàn)生長(zhǎng)中期凈光合速率最大,生長(zhǎng)后期凈光合速率居中,生長(zhǎng)前期凈光合速率最小。生長(zhǎng)前期與后期,3種水源磁化處理灌溉均提高了生菜凈光合速率,但差異不顯著;生長(zhǎng)中期,M1T1、M1T2處理與M0T1、M0T2處理相比,生菜凈光合速率分別顯著提高11.16%、14.73%,M1T3處理較M0T3處理的生菜凈光合速率提高4.97%,但差異不顯著。除生長(zhǎng)前期,M0T1處理較M0T2和M0T3處理的凈光合速率無(wú)顯著差異外,不同生長(zhǎng)時(shí)期,微咸水較淡水和再生水灌溉的凈光合速率顯著降低20.16%~31.72%。與淡水和再生水相比,微咸水顯著抑制生菜的凈光合速率。由圖4可知,不同水源磁化處理灌溉的生菜蒸騰速率有所提高,其中生長(zhǎng)前期和中期,M1T2處理較M0T2處理的生菜蒸騰速率分別顯著提高18.35%、23.57%。微咸水處理的生菜蒸騰速率較淡水和再生水處理降低,且隨著生育期的推進(jìn),微咸水處理對(duì)蒸騰速率的抑制作用逐步增大。
圖3 生菜凈光合速率
圖4 生菜蒸騰速率
由表2可知,不同水源磁化處理后灌溉,SOD、POD、CAT活性提高,M1T1處理較M0T1處理分別顯著提高18.08%、20.97%、22.54%,M1T2處理較M0T2處理分別顯著提高12.77%、18.14%、23.09%,M1T3處理較M0T3處理分別顯著提高14.68%、16.99%、18.55%。未磁化處理下,微咸水較淡水、再生水灌溉的SOD和POD活性分別顯著降低12.20%、15.57%和14.74%、14.14%;磁化處理下,微咸水較再生水灌溉的SOD活性顯著降低6.95%,微咸水較淡水、再生水灌溉的POD活性顯著降低6.48%、7.86%。微咸水與淡水、再生水灌溉的CAT活性無(wú)顯著差異。
由表3可知,不同水源磁化處理后灌溉,生菜葉片氮質(zhì)量分?jǐn)?shù)提高,M1T1、M1T2處理與M0T1、M0T2處理相比,生菜葉片氮質(zhì)量分?jǐn)?shù)分別顯著提高7.71%、6.83%,M1T3處理較M0T3處理,生菜葉片氮質(zhì)量分?jǐn)?shù)提高3.75%。M1T2、M0T3處理下的氮質(zhì)量分?jǐn)?shù)分別為最大和最小處理,最大處理較最小處理顯著提高15.96%。不同水源磁化處理灌溉,生菜葉片P、Ca、Mg、Na、K質(zhì)量分?jǐn)?shù)有不同程度的提高,但無(wú)顯著差異。P、K、Mg質(zhì)量分?jǐn)?shù)最大處理均為M1T1,分別為7.03、61.12、2.95 g/kg,較最小處理分別顯著提高20.17%、7.74%、26.61%;Ca、Na質(zhì)量分?jǐn)?shù)最大處理均為M1T3處理,最小處理為M0T1,M1T3處理較M0T1處理分別顯著提高13.03%、92.71%。微咸水與淡水、再生水灌溉相比,N、P、Mg質(zhì)量分?jǐn)?shù)有所降低,K、Ca質(zhì)量分?jǐn)?shù)有所提高,Na質(zhì)量分?jǐn)?shù)顯著提高。
表2 生菜抗氧化酶活性
注 不同小寫(xiě)字母表示同列數(shù)據(jù)存在顯著性差異(<0.05),下同。
表3 生菜葉片礦質(zhì)元素
表4 生菜產(chǎn)量和水分利用效率
由表4可知,與M0T1、M0T2處理相比,M1T1、M1T2處理生菜地上部鮮質(zhì)量(產(chǎn)量)分別顯著提高9.42%、10.15%,M1T3處理較M0T3處理生菜產(chǎn)量提高了3.94%,M1T2處理較M0T2處理生菜地下部鮮質(zhì)量顯著提高19.06%,不同水源磁化處理后灌溉的地上部干質(zhì)量無(wú)顯著差異,M1T1、M1T2處理較M0T1、M0T2處理的生菜地下部干質(zhì)量分別顯著提高25.87%、20.35%,水分利用效率分別顯著提高8.45%、11.65%。M1T3處理較M0T3處理的生菜地下部干質(zhì)量無(wú)顯著差異,水分利用效率提高5.03%。所有處理中水分利用效率最大M1T2處理(48.40 kg/m3)較最小M0T3處理(40.13 kg/m3),顯著提高20.61%。
產(chǎn)量和地上部干質(zhì)量最大處理均為M1T1處理,最小處理均為M0T3處理,M1T1處理較M0T3處理的產(chǎn)量和地上部干質(zhì)量分別顯著提高33.44%、31.29%;生菜地下部鮮質(zhì)量和水分利用效率最大處理均為M1T2處理,最小處理均為M0T3處理,M1T2處理較M0T3處理顯著提高31.29%、20.61%。
植物的光合作用為自身生長(zhǎng)發(fā)育提供有機(jī)物,研究表明磁化水灌溉可以提高植物的光合作用[24]。本研究發(fā)現(xiàn),生菜生長(zhǎng)前期磁化水灌溉的凈光合速率有所提高,但未呈顯著差異;生菜生長(zhǎng)中期,磁化處理顯著提高了生菜的凈光合速率;生長(zhǎng)后期,磁化水灌溉較未磁化水灌溉,凈光合速率無(wú)顯著差異,可能是生長(zhǎng)前期磁化水灌溉處理時(shí)間較短,隨著處理時(shí)間的增長(zhǎng),磁化水灌溉對(duì)生菜凈光合速率的促進(jìn)效果在生菜新陳代謝最旺盛的生長(zhǎng)中期得以體現(xiàn),而在作物成熟后,磁化水灌溉對(duì)生菜的促進(jìn)效果降低[25]。微咸水較淡水與再生水灌溉的生菜凈光合速率顯著降低,因?yàn)槲⑾趟喔忍岣咄寥乐蠳a+量,過(guò)高的Na+會(huì)對(duì)植物的光合色素產(chǎn)生迫害作用,降低植物的凈光合速率[26]。
植物體內(nèi)的活性酶對(duì)生長(zhǎng)發(fā)育有著重要的調(diào)節(jié)作用,其中抗氧化酶SOD、POD、CAT相互協(xié)同,抵御活性氧對(duì)植物的毒害[27]。張佳等[29]研究發(fā)現(xiàn),在番茄幼苗期和開(kāi)花期,磁化水灌溉的番茄葉片超氧化物歧化酶、過(guò)氧化物酶及過(guò)氧化氫酶活性提高,表明磁化水灌溉提高了番茄的抗氧化能力。劉璇等[30]研究亦發(fā)現(xiàn),在重金屬鎘脅迫下,磁化水灌溉較未磁化水灌溉,提高了玉米葉片的超氧化物歧化酶和過(guò)氧化氫酶活性。本研究中,3種水源磁化處理較未磁化處理灌溉,SOD、POD、CAT活性顯著提高,在未磁化處理和磁化處理下,微咸水較淡水、再生水灌溉的生菜葉片超氧化物歧化酶和過(guò)氧化物酶活性降低,這與前人研究結(jié)果基本一致[31],表明磁化水灌溉能夠增強(qiáng)植物的抗氧化防御機(jī)制。
植物礦質(zhì)營(yíng)養(yǎng)是植物維持生長(zhǎng)代謝的需要而吸收或利用的無(wú)機(jī)營(yíng)養(yǎng)元素,對(duì)植物生長(zhǎng)生理有重要作用,磁化水灌溉可以影響作物的礦質(zhì)元素吸收[32]。Maheshwari等[33]研究表明,磁化水灌溉的芹菜P、Ca質(zhì)量分?jǐn)?shù)顯著提高。本研究發(fā)現(xiàn)磁化水灌溉提高了生菜葉片的N、K、Ca、Mg質(zhì)量分?jǐn)?shù),有助于良好品質(zhì)的形成。微咸水灌溉的生菜葉片氮、磷質(zhì)量分?jǐn)?shù)較淡水和再生水灌溉降低,表明微咸水灌溉抑制了生菜對(duì)土壤中氮素和磷素的吸收。鈉元素是植物的必需元素,但過(guò)高的鈉質(zhì)量濃度對(duì)植物的生長(zhǎng)產(chǎn)生脅迫作用。淡水和再生水磁化處理灌溉,促進(jìn)生菜根系生長(zhǎng),進(jìn)而提高生菜產(chǎn)量。生菜是一種耐鹽度較低的蔬菜,可能是本研究中所用微咸水對(duì)生菜產(chǎn)生了較重的鹽脅迫,導(dǎo)致微咸水磁化處理灌溉的效果降低。同時(shí)在本研究中,未磁化處理和磁化處理下,再生水較淡水灌溉并沒(méi)有顯著提高生菜的產(chǎn)量,原因是再生水中氮素質(zhì)量濃度與淡水相比,無(wú)顯著的差異,Blum[34]研究發(fā)現(xiàn),利用不同氮素質(zhì)量濃度的再生水灌溉時(shí),當(dāng)?shù)刭|(zhì)量濃度小于12 g/L時(shí),對(duì)作物的生物量無(wú)顯著影響。Maheshwari等[33]研究還表明,3.0 g/L微咸水磁化處理灌溉后,芹菜產(chǎn)量提高,表明磁化水灌溉的效果與試驗(yàn)作物有關(guān)。作物產(chǎn)量與光合作用密切相關(guān),水分直接參與作物的光合作用,又是生理活動(dòng)中物質(zhì)運(yùn)輸?shù)拿浇?,同時(shí)光合效率與作物葉片氮素等必需元素,參與光合作用的酶活性等有關(guān)[35-36]。本研究中,磁化水灌溉提高了生菜葉片的光合效率和礦質(zhì)元素質(zhì)量分?jǐn)?shù),有利于植物有機(jī)物的累積,這可能是磁化水灌溉對(duì)作物產(chǎn)量和水分利用效率的一個(gè)重要影響途徑。
1)3種水源磁化處理灌溉可以提高生菜凈光合速率,葉片抗氧化酶活性顯著提高12.77%~23.09%,增強(qiáng)了生菜抗氧化防御機(jī)制。
2)磁化處理提高生菜葉片的礦質(zhì)元素質(zhì)量分?jǐn)?shù),其中淡水和再生水磁化處理灌溉,生菜葉片氮質(zhì)量分?jǐn)?shù)分別顯著提高7.71%、6.83%,產(chǎn)量和水分利用效率均顯著提高。微咸水較淡水和再生水灌溉的生菜產(chǎn)量顯著降低,淡水和再生水磁化處理效果優(yōu)于微咸水。
[1] 易小燕, 吳勇, 尹昌斌, 等. 以色列水土資源高效利用經(jīng)驗(yàn)對(duì)我國(guó)農(nóng)業(yè)綠色發(fā)展的啟示[J]. 中國(guó)農(nóng)業(yè)資源與區(qū)劃, 2018, 39(10): 37-42, 77.
YI Xiaoyan, WU Yong, YIN Changbin, et al. The enlightenment of Isael's efficient utilization of land and water resources to the green development of agriculture in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(10): 37-42, 77.
[2] TOLEDO E J L, RAMALHO T C, MAGRIOTIS Z M. Influence of magnetic field on physical-chemical properties of the liquid water: Insights from experimental and theoretical models[J]. Journal of Molecular Structure, 2008, 888(1/2/3): 409-415.
[3] ESMAEILNEZHAD E, CHOI H J, SCHAFFIE M, et al. Characteristics and applications of magnetized water as a green technology[J]. Journal of Cleaner Production, 2017, 161: 908-921.
[4] 王全九, 解江博, 張繼紅, 等. 磁場(chǎng)強(qiáng)度對(duì)磁化水入滲和土壤水鹽運(yùn)移特征的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2020, 51(2): 292-298.
WANG Quanjiu, XIE Jiangbo, ZHANG Jihong, et al. Effects of magnetic field strength on magnetized water infiltration and soil water and salt movement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 292-298.
[5] VERMEIREN T. Magnetic treatment of liquids for scale and corrosion prevention[J]. Anti-Corrosion Methods and Materials, 1958, 5(7): 215-219.
[6] SILVA J A T D, DOBRANSZKI J. Impact of magnetic water on plant growth[J]. Environmental and Experimental Biology, 2014, 12(1): 137-142.
[7] SIMONI? M, URBANCL D. Alternating magnetic field influence on scaling in pump diffusers[J]. Journal of Cleaner Production, 2017, 156: 445-450.
[8] AWAD M A, HINDI A A, AL-WOHIBY N, et al. Magnetic treatment of water: Properties and prevention of the growth of bacteria[J]. Journal of Computational and Theoretical Nanoscience, 2018, 15(4): 1 312-1 319.
[9] 王淥, 郭建曜, 劉秀梅, 等. 磁化水灌溉對(duì)鹽漬化土壤生化性質(zhì)的影響[J]. 核農(nóng)學(xué)報(bào), 2018, 32(1): 150-156.
WANG Lu, GUO Jianyao, LIU Xiumei, et al. Effects of irrigation with magnetized salty water on biochemical properties of salty soil[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(1): 150-156.
[10] 畢思圣. 磁化水灌溉對(duì)桑樹(shù)硬枝扦插生根的影響[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2018.
BI Sisheng. Effect of magnetized water on hardwood cutting rooting of[D]. Taian: Shandong Agricultural University, 2018.
[11] 張瑛, 劉秀梅, 張志浩, 等. 磁化水處理對(duì)鎘脅迫下歐美楊幼苗光合及生長(zhǎng)特性的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2019, 27(2): 305-313.
ZHANG Ying, LIU Xiumei, ZHANG Zhihao, et al. Effect of magnetized water treatment on photosynthetic and growth characteristics of‘Neva’ seedlings under exogenous cadmium stress[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 305-313.
[12] 韋業(yè), 王淥, 朱紅, 等. 施氮條件下磁化水灌溉對(duì)葡萄生長(zhǎng)和光合特性的影響[J]. 核農(nóng)學(xué)報(bào), 2020, 34(4): 849-859.
WEI Ye, WANG Lu, ZHU Hong, et al. Effects of magnetized water irrigation on growth and photosynthetic characteristics of grape under nitrogen application[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 849-859.
[13] SURENDRAN U, SANDEEP O, JOSEPH E J. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics[J]. Agricultural Water Management, 2016, 178: 21-29.
[14] 朱練峰, 張均華, 禹盛苗, 等. 磁化水灌溉促進(jìn)水稻生長(zhǎng)發(fā)育提高產(chǎn)量和品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(19): 107-114.
ZHU Lianfeng, ZHANG Junhua, YU Shengmiao, et al. Magnetized water irrigation enhanced rice growth and development, improved yield and quality[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 107-114.
[15] GREWAL H S, MAHESHWARI B L. Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings[J]. Bioelectromagnetics, 2011, 32(1): 58-65.
[16] EL-SHAFIK EL-ZAWILY A, MELEHA M, EL-SAWY M, et al. Application of magnetic field improves growth, yield and fruit quality of tomato irrigated alternatively by fresh and agricultural drainage water[J]. Ecotoxicology and Environmental Safety, 2019, 181: 248-254.
[17] 彭遙, 周蓓蓓, 張繼紅, 等. 磁化水膜下滴灌對(duì)棉田水鹽分布特征及棉花生長(zhǎng)特性的影響[J]. 水土保持學(xué)報(bào), 2019, 33(5): 334-342, 357.
PENG Yao, ZHOU Beibei, ZHANG Jihong, et al. Effects of mulched drip irrigation with magnetized water on soil water-salt distribution and growth characteristics of cotton[J]. Journal of Soil and Water Conservation, 2019, 33(5): 334-342, 357.
[18] 胡雅琪, 吳文勇. 中國(guó)農(nóng)業(yè)非常規(guī)水資源灌溉現(xiàn)狀與發(fā)展策略[J]. 中國(guó)工程科學(xué), 2018, 20(5): 69-76.
HU Yaqi, WU Wenyong. Review and development strategy of irrigation with unconventional water resources in China[J]. Strategic Study of CAE, 2018, 20(5): 69-76.
[19] 馬中昇, 譚軍利, 魏童. 中國(guó)微咸水利用的地區(qū)和作物適應(yīng)性研究進(jìn)展[J]. 灌溉排水學(xué)報(bào), 2019, 38(3): 70-75.
MA Zhongsheng, TAN Junli, WEI Tong. The variation of salt-tolerance of crops in different regions irrigated with brackish water in China[J]. Journal of Irrigation and Drainage, 2019, 38(3): 70-75.
[20] 崔丙健, 高峰, 胡超, 等. 非常規(guī)水資源農(nóng)業(yè)利用現(xiàn)狀及研究進(jìn)展[J]. 灌溉排水學(xué)報(bào), 2019, 38(7): 60-68.
CUI Binjian, GAO Feng, HU Chao, et al. The use of brackish and reclaimed waste water in agriculture: a review[J]. Journal of Irrigation and Drainage, 2019, 38(7): 60-68.
[21] 張瑞喜, 王衛(wèi)兵, 褚貴新. 磁化水在鹽漬化土壤中的入滲和淋洗效應(yīng)[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(8): 1 634-1 641.
ZHANG Ruixi, WANG Weibing, CHU Guixin. Impacts of magnetized water irrigation on soil infiltration and soil salt leaching[J]. Scientia Agricultura Sinica, 2014, 47(8): 1 634-1 641.
[22] 王學(xué)奎. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 2版. 北京: 高等教育出版社, 2006.
WANG Xuekui. Principles and techniques of plant physiological biochemical experiment[M]. Version 2. Beijing: Higher Education Press, 2006.
[23] 張志良, 瞿偉菁, 李小方. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 4版. 北京: 高等教育出版社, 2009.
ZHANG Zhiliang, QU Weijing, LI Xiaofang. Experimental guidance for plant physiology[M]. Version 4. Beijing: Higher Education Press, 2009.
[24] 王文明, 姜益娟, 鄭德明, 等. 磁化水滴灌對(duì)棗樹(shù)光合作用與蒸騰作用的影響[J]. 新疆農(nóng)業(yè)科學(xué), 2010, 47(12): 2 421-2 425.
WANG Wenming, JIANG Yijuan, ZHENG Deming, et al. Influence of magnetization water irrigation on photosynthesis and transpiration of jujube tree[J]. Xinjiang Agricultural Sciences, 2010, 47(12): 2 421-2 425.
[25] ALI Y, SAMANEH R, KAVAKEBIAN F. Applications of magnetic water technology in farming and agriculture development: a review of recent advances[J]. Current World Environment, 2014, 9(3): 695-703.
[26] JAMES R A, MUNNS R, VON CAEMMERER S, et al. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+and Cl-in salt-affected barley and durum wheat[J]. Plant Cell Environment, 2006, 29(12): 2 185-2 197.
[27] LIU Xiumei, WANG Huatian, WANG Yanping, et al. Analysis of magnetic salinity water irrigation promoting growth and photosynthetic characterisitcs of‘Neva’[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S1): 1-7.
[28] 馬歡歡, 高峰, 樊向陽(yáng), 等. 鋅對(duì)鎘脅迫下黃菖蒲抗氧化酶系統(tǒng)及富集鎘的影響[J]. 灌溉排水學(xué)報(bào), 2020, 39(11): 104-111.
MA Huanhuan, GAO Feng, FAN Xiangyang, et al. The effects of Zn on antioxidant enzymes and accumulation of cadmium inunder Cd stress[J]. Journal of Irrigation and Drainage, 2020, 39(11): 104-111.
[29] 張佳, 李海平, 李靈芝, 等. 磁化水灌溉對(duì)番茄生長(zhǎng)及生理特性的影響[J]. 農(nóng)業(yè)工程, 2018, 8(1): 108-112.
ZHANG Jia, LI Haiping, LI Lingzhi, et al. Effects of magnetized water irrigation on growth and physiological characteristics of tomato[J]. Agricultural Engineering, 2018, 8(1): 108-112.
[30] 劉璇, 張婷婷, 黃馨瑤, 等. 磁化水對(duì)玉米耐受重金屬鎘的影響[J]. 廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 47(S2): 278-281.
LIU Xuan, ZHANG Tingting, HUANG Xinyao, et al. Magnetic water improve the tolerance of corn to Cd ion[J]. Journal of Xiamen University (Natural Science), 2008, 47(S2): 278-281.
[31] 董元杰, 陳為峰, 王文超, 等. 不同NaCl濃度微咸水灌溉對(duì)棉花幼苗生理特性的影響[J]. 土壤, 2017, 49(6): 1 140-1 145.
DONG Yuanjie, CHEN Weifeng, WANG Wenchao, et al. Effects of brackish water irrigation under different NaCl concentrations on physiological characteristics of cotton seedlings[J]. Soils, 2017, 49(6): 1 140-1 145.
[32] 王洪波, 王成福, 吳旭, 等. 磁化水滴灌對(duì)土壤鹽分及玉米產(chǎn)量品質(zhì)的影響[J]. 土壤, 2018, 50(4): 762-768.
WANG Hongbo, WANG Chengfu, WU Xu, et al. Effects of drip irrigation with different magnetic water on soil salinity, maize yield and quality[J]. Soils, 2018, 50(4): 762-768.
[33] MAHESHWARI B L, GREWAL H S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity[J]. Agricultural Water Management, 2009, 96(8): 1 229-1 236.
[34] BLUM J, MELFI A J, MONTES C R, et al. Nitrogen and phosphorus leaching in a tropical Brazilian soil cropped with sugarcane and irrigated with treated sewage effluent[J]. Agricultural Water Management, 2013, 117: 115-122.
[35] 馮曉鈺, 周廣勝. 夏玉米葉片水分變化與光合作用和土壤水分的關(guān)系[J]. 生態(tài)學(xué)報(bào), 2018, 38(1): 177-185.
FENG Xiaoyu, ZHOU Guangsheng. Relationship of leaf water content with photosynthesis and soil water content in summer maize[J]. Acta Ecologica Sinica, 2018, 38(1): 177-185.
[36] 王全九, 孫燕, 寧松瑞, 等. 活化灌溉水對(duì)土壤理化性質(zhì)和作物生長(zhǎng)影響途徑剖析[J]. 地球科學(xué)進(jìn)展, 2019, 34(6): 660-670.
WANG Quanjiu, SUN Yan, NING Songrui, et al. Effects of activated irrigation water on soil physicochemical properties and crop growth and analysis of the probable pathway[J]. Advances in Earth Science, 2019, 34(6): 660-670.
Effects of Magnetization Irrigation on Photosynthesis, Mineral Elements and Yield of Lettuce Vary with Water Sources
WANG Xiaofan1,2, WU Yong3, ZHANG ZHONG Lili2, GUO Rui2, WANG Lixue1*
(1. College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China;2. Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China;3. National Agro-Tech Extension and Service Center, Beijing 100125, China)
【】Magnetizing the water prior to irrigation is a new technology developed over the past decades in China. The objective of this paper is to investigate how different irrigation water sources alter the effects of the magnetization on photosynthesis, physiological and biochemical characteristics, as well as the yield of lettuce.【】The experiment was conducted in a solar greenhouse with the Italian lettuce taken as the model plant. It consisted of non-magnetization (M0) and magnetization (M1); added to these are three irrigation water sources: fresh water (T1), reclaimed water (T2) and saline water (T3). Overall, there were six treatments which were arranged in the greenhouse by a randomized block design. For each treatment, we measured the net photosynthetic rate, transpiration rate, antioxidant enzyme activity, mineral element, yield and water use efficiency of the lettuce.【】Effects of the three water sources after magnetization on crop growth were different. For a given water source, there was no significant difference in the net photosynthetic rate between magnetization and non-magnetization in the early and late growth stage, but in the middle growth stage the magnetized fresh water and the reclaimed water increased the net photosynthetic rate of the crop by 11.16% and 14.73%, respectively. Saline water irrigation reduced the net photosynthetic rate at significant level, and there was no significant difference in net photosynthetic rate between the fresh water and reclaimed water irrigation. Magnetizing the fresh water, reclaimed and saline water increased the transpiration rate, despite not at significant, but they significantly boosted the activities of SOD by 18.08%, 12.77% and 14.68% respectively, the activities of POD by 20.97%, 18.14% and 16.99% respectively, and the activities of CAT by 22.54%, 23.09% and 18.55% respectively. In the meantime, magnetizing the fresh water and the reclaimed water increased the total nitrogen in the lettuce leaves by 7.71% and 6.83%, respectively. Magnetization also altered the content of P, Ca, Mg, Na and K in the leaves, with the alterations varying with water sources. For yield, magnetizing the fresh and the reclaimed water increased the yield by 9.42% and 10.15% at significant level, respectively, magnetizing the saline water did not lead to a noticeable change in the yield. M1T1 was most effective in improving yield and the above-ground dry mass, whereas M0T3 was the least effective. Compared with M0T3, M1T1 increased the yield and the above-ground dry mass by 33.44% and 31.29%, respectively. Depending on water sources, magnetization could also increase water use efficiency by 5.03%~11.65%.【】Magnetizing the water in irrigating lettuce was beneficial to its physiological and biochemical activities such as photosynthesis and antioxidant enzyme activity, thereby increasing yield and water use efficiency. But the improvement depends on water sources. In our study, magnetizing the fresh water and the reclaimed water was more effective than the saline water.
magnetized irrigation; lettuce; photosynthetic characteristic; mineral element; yield; water use efficiency
S121;S636.2
A
10.13522/j.cnki.ggps.2020378
1672 - 3317(2021)03 - 0040 - 08
王曉帆, 吳勇, 張鐘莉莉, 等. 不同水源磁化處理對(duì)生菜光合和礦質(zhì)元素及產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào), 2021, 40(3): 40-47.
WANG Xiaofan, WU Yong, ZHANG ZHONG Lili, et al.Effects of Magnetization Irrigation on Photosynthesis, Mineral Elements and Yield of Lettuce Vary with Water Sources[J]. Journal of Irrigation and Drainage, 2021, 40(3): 40-47.
2020-07-10
北京市農(nóng)林科學(xué)院創(chuàng)新能力建設(shè)項(xiàng)目(KJCX20180704,KJCX20200430)
王曉帆(1994-),男。碩士研究生,主要從事節(jié)水灌溉及區(qū)域水資源高效利用研究。E-mail: wangxiaofan09@163.com
王麗學(xué)(1964-),女。教授,博士生導(dǎo)師,博士,主要從事水土資源開(kāi)發(fā)利用與管理研究。E-mail: wlx1964@163.com
責(zé)任編輯:陸紅飛