文蔣育芳
(作者單位:江蘇省無錫市西漳中學(xué))
眾所周知,我們在學(xué)習(xí)三角形的時候,高線、中線、角平分線是三角形中重要的元素,也是中考考查的重要知識點。希望本文能幫助大家深入了解并掌握三角形的高線。
例1(2015·湖南長沙)如圖,過△ABC的頂點A,作BC邊上的高,作法正確的是( )。
A
B
C
D
【解析】回歸三角形高線的定義:從三角形的一個頂點出發(fā),向它的對邊所在直線作垂線,頂點與垂足之間的線段即為這條邊上的高。定義不僅描述了什么是三角形的高,而且給出了畫三角形高的步驟。本題要求畫BC邊上的高,根據(jù)定義,我們就可以知道過BC所對頂點A向BC邊所在直線作垂線段即為BC邊上的高。特別注意三角形的高線是一條線段。故本題選A。
例2如圖1,在△ABC中,BD、AE分別是邊AC、BC上的高,BC=6,BD=3,AC=4,求AE的長。
圖1
【解析】我們知道三角形有三條高,三條高與三個底,對應(yīng)三種面積計算,這就是等積法的根本依據(jù)。等積法是中考中經(jīng)常要用到的基本方法,需要我們熟練掌握。本題給出了兩組底和高,運用等積法,用方程的思想求AE的長??傻肁E=2。
例3在△ABC中,∠B=60°,AD是BC邊上的高,且∠DAC=10°,則∠BAC=___。
【解析】可能會有一部分同學(xué)不假思索地填上40°,畫圖沒錯(如圖2),計算沒錯。但是,卻少考慮一種情況。難道我們在畫圖的時候就沒有猶豫或可疑的地方嗎?先畫∠B是確定的,再畫高AD是確定的,但是∠DAC習(xí)慣性地往高AD的右側(cè)畫,為什么不可以往左側(cè)畫呢(如圖3)?故本題答案是40°或20°。
圖2
圖3
【再回顧】這恰恰是我們在課本上學(xué)習(xí)三角形高的時候,容易忽視的地方:在三角形的三類特殊線段中,只有高最特殊,既可以在三角形內(nèi)部,也可以在三角形外部,還可以與邊重合。而三角形的角平分線和中線都沒有這種特殊性。
中考中常常會出現(xiàn)沒有圖形或是圖形不確定的幾何問題,這時候我們要提高警惕。不確定就意味著可能有多解,我們就要多角度嘗試、考慮多種可能。